
IBM VisualAge TeamConnection Enterprise Server

User’s Guide
Version 3.0

SC34-4499-04

IBM

IBM VisualAge TeamConnection Enterprise Server

User’s Guide
Version 3.0

SC34-4499-04

IBM

January, 1999

Note
Before using this document, read the general information under “Notices” on page xi.

This edition applies to Fixpack 3.0.2 of the licensed program IBM TeamConnection and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level
of the product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between
8:30 a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is
(800) 284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM Corporation
Attn: Information Development
Department T99B/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.

If you have comments about the product, address them to:

IBM Corporation
Attn: Department TH0/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Notices . xi

Trademarks . xiii

About this book . xv
How this book is organized . xv
Conventions . xv
Tell us what you think . xvi

Part 1. Introducing TeamConnection . 1

Chapter 1. An introduction to TeamConnection 3
TeamConnection definitions . 4

TeamConnection’s client/server architecture 4
TeamConnection database 5
Interfaces . 5
Families . 5
Users and host lists . 5
Parts . 6
Components . 6
Releases. 7
Work areas . 7
Drivers . 8
Defects and features . 8
Processes . 9
Build . 10
Packaging . 10

Roles people play . 11

Part 2. Developing a product using TeamConnection 13

Chapter 2. Getting familiar with the TeamConnection client interfaces . . 15
Using the GUI . 15

Starting the GUI . 16
Stopping the GUI. 16
Performing tasks with the GUI 17
Using the Settings notebook 17
Online help information . 18

Using the command line interface 19
Using the TeamConnection web client 20

Chapter 3. The basics of using TeamConnection 23
Laying the groundwork. 23

Authority to perform tasks 24
Finding objects within TeamConnection 25

Finding parts . 25
Using work areas . 26

Naming your work areas . 26
Creating parts . 27

Naming your parts . 27

© Copyright IBM Corp. 1992, 1999 iii

Preparing to build your parts 28
Working with parts . 28

Working in serial or concurrent development mode 29
Working with common parts 29
Getting parts from TeamConnection 30
Checking parts in to TeamConnection 31

Finding different versions of TeamConnection objects 32
Versioning releases . 32
Versioning work areas . 33
Versioning drivers . 33
Versioning parts . 34

Working with defects and features 35
Testing and verifying part changes 36

Chapter 4. The states of TeamConnection objects 37
Defects and features . 37
The states of work areas . 40
The states of drivers . 43
Verification and test records . 45

Chapter 5. Working with no component or release processes 47
Working in serial development 47

Accepting a defect . 48
Creating a work area . 49
Checking out a part . 50
Searching for a part. 51
Checking in a part . 53
Verifying and testing part updates 54
Freezing the work area . 58
Refreshing the work area. 59
Building the application . 60
Integrating the work area . 61
Closing a defect . 62

Working in concurrent development 63
Refreshing the work area from the driver 63
Integrating the work area . 64
Reconciling differences . 65

Chapter 6. Working with component and release processes 69
Moving through design, size, and review 70
Changing defect ownership . 70
Accepting a defect . 71
Approving the fix . 72
Checking out a part . 73
Checking in the changes . 74

Freezing the work area . 75
Building the application . 76

Accepting fix records . 77
Integrating changed parts into a release 78

Adding a driver member . 78
Reconciling the differences 79
Refreshing the driver . 81
Building the driver . 82
Restricting the driver . 83
Integrating the parts. 83
Completing the driver . 84

iv User’s Guide

Testing the built application 85
Using a configured process . 86
Retrieving a past version of a part 86

Part 3. Using TeamConnection Notes Integrated Databases 91

Chapter 7. Introduction to TeamConnection Integrated Notes Databases . 93
Getting started. 93
Prerequisites and dependencies 93
Using TeamConnection with Lotus Notes 94

Sources of user information 94
Database types . 95
Forms and subforms . 96
Views . 97
Reviews . 98
Document archiving . 98

Chapter 8. Creating and Maintaining Integrated Notes Databases 99
Initializing the original template and creating a database 100
Creating customized production databases 103
Performing reconciliation . 104
Database maintenance: refreshing design from a template 106
Making the database available on the web 107

Miscelaneous Hints and Tips 108

Chapter 9. Database Design Strategies and Advanced Customization . . . 111
Rules of thumb and general advice 111
Using the Customization setup facility 112

Notes Database Customization 113
Modify TeamConnection Access 114
Reconciliation of Notes and TeamConnection Data 114

Advanced customization . 115

Part 4. Using TeamConnection to build applications 117

Chapter 10. Basic build concepts 119
The physical structure of the build function 119
The build object model. 120
Parent-child relationships in a build tree 121
Working with a build tree . 123
Putting the pieces together . 124

Chapter 11. Installing, starting, and stopping build servers 127
Installing the build function . 127

Creating a build server on MVS 127
Creating a build server on MVS/OE 129

Starting build servers using teamcbld 129
Starting an MVS build server 131
Starting the MVS/OE build server. 132
Creating build startup files (for non-MVS environments) 133
Stopping the build servers . 134
Stopping an MVS build server 134

Chapter 12. Working with build scripts and builders 135
Creating a builder . 135

Contents v

Writing a build script . 138
Passing parameters to a build script. 138
Writing a simple build script 140
Writing an executable file for a build script 140

Testing a build script . 141
Modifying the contents of a build script. 142
Putting a builder to work . 142
Removing a builder from a part 143

Working with VisualAge C++ and Templates 144

Chapter 13. Working with MVS build scripts and builders 145
Creating a builder for MVS builds. 145
Writing an MVS build script . 148

File name conversions for MVS 149
Passing parameters to an MVS build script 150
TeamConnection syntax for MVS build scripts 151
Supported JCL syntax . 151
Example of a build script for a C compile 153
Example of a build script for a COBOL compile 155
Example of a build script for a link 156

Chapter 14. Working with parsers 159
Creating a parser . 159
Writing a parser command file 161
Putting a parser to work . 162
Removing a parser from a part 163

Chapter 15. Building an application: an example 165
Starting the build servers . 166
Creating builders and parsers 167
Creating the build tree for the application 167
Starting the build on the client 171
Putting the build scripts to work 173
Finishing the job and reporting the results to the user 173
Monitoring the progress of a build 173
Running a build in spite of errors 174
Building all parts, regardless of build times 174
Finding out which parts will be built 175
Canceling a build. 175
More sample build trees . 176

Defining multiple outputs from a single build event 176
Synchronizing the build of unrelated parts 176

Part 5. Using TeamConnection to package products179

Chapter 16. Using TeamConnection to package a product 181
Setting up your build tree for packaging 181

Setting up a build tree for the gather tool 182

Chapter 17. Using the Gather tool 185
Using the teamcpak command for the Gather tool. 185

Command line flags. 186
Examples of the teamcpak gather command 187

Writing a package file for the Gather tool 188
Syntax rules for a Gather package file 188

vi User’s Guide

Chapter 18. Using the Tivoli Software Distribution packaging tool 193
Using the teamcpak command with Tivoli Software Distribution 193

Command line flags. 194
Example of the teamcpak softdist command 194

Writing a package file for Tivoli Software Distribution. 195
Syntax rules for a Tivoli Software Distribution package file 195
Keywords for a Tivoli Software Distribution package file 195

Problem determination for the Tivoli Software Distribution tool 198
Sample package file . 198

Part 6. Appendixes .201

Appendix A. Environment Variables 203
Setting environment variables 208

Appendix B. Importing makefile information into TeamConnection 209
Creating a rules file . 210

Appendix C. TeamConnection Merge 213

Appendix D. Enabling an OS/2 Workframe project for TeamConnection . . 215
Creating a TeamConnection-enabled Workframe project 215
Setting up your project options. 215
Using your TeamConnection Workframe project 216

Project actions. 216
Part actions. 217

Using your project: a simple scenario 217

Appendix E. Enabling a Workframe/NT project for TeamConnection . . . 219
Setting up your project options: 219
Using your TeamConnection WorkFrame project 220
Project actions. 220
Part actions. 220

Appendix F. Enabling and Using the VisualAge TeamConnection
Enterprise Server Bridge 223

Overview of the VisualAge TeamConnection Enterprise Server Bridge 223
Scope of this documentation 224
Description of the bridge . 224

Preparing to use the VisualAge TeamConnection Enterprise Server Bridge . . 225
Setting up the bridge environment 226
Installing and activating the bridge 226

Using the VisualAge TeamConnection Enterprise Server Bridge 228
Setting default properties . 228
Exporting VisualAge TeamConnection for Smalltalk components to

TeamConnection . 231
Importing VisualAge TeamConnection for Smalltalk components from

TeamConnection . 233
Using the bridge: a simple scenario for VisualAge Generator developers . . . 234

Scenario assumptions . 234
Exporting VisualAge TeamConnection for Smalltalk components to

TeamConnection . 235
Object mapping in TeamConnection 235
Build generation . 236
Making a change to a member. 237

Contents vii

Appendix G. Source Code Control User’s Guide 239
Differences between other source code control providers and TeamConnection . 239

Projects vs Families. 239
Installing the TeamConnection source code control DLL 240

Connecting TeamConnection to an IDE 241
Removing the TeamConnection Source Code Control DLL 241

Using TeamConnection as your source code control provider 241
Before you start . 241
Opening a project . 242
Integrated features . 242
Full features of TeamConnection 243

Appendix H. Supported expandable keywords 247

Appendix I. Authority and notification for TeamConnection actions . . . 249

Appendix J. Sample REXX execs, build scripts, and parsers 263
Sample REXX execs . 263
Sample build scripts . 266
Sample parsers . 267
Sample package files . 267

Appendix K. XML Support in TeamConnection 269
Get Method . 269
PUT Method . 272

Service and Support . 275
VisualAge TeamConnection Services! 275
VisualAge TeamConnection Support! 275

IBM Lotus Passport Advantage Program 275
DB2 Service Maintenance and Technical Library 275
For North American Customers 275
Support for Customers Outside North America 277

Bibliography . 279
IBM VisualAge TeamConnection Enterprise Server library 279
TeamConnection technical reports 280
DB2 . 280
Related publications . 281

Glossary . 283

Index . 291

Readers’ Comments — We’d Like to Hear from You 299

viii User’s Guide

Figures

1. A sample TeamConnection client/server network 4
2. Sample of a component hierarchy. 6
3. Parts, releases, and components 7
4. Tasks window . 16
5. Components window . 24
6. Accept Defects window 48
7. Create Work Areas window 49
8. Check Out Parts window 50
9. Part Filter window . 51

10. Edit Task List window . 52
11. Check In Parts window. 53
12. Build Parts window . 55
13. Extract Parts window . 56
14. Check Out Parts . 57
15. Check In Parts window. 58
16. Freeze Work Areas window 59
17. Refresh Work Areas window. 60
18. Build Parts window . 61
19. Integrate Work Areas window 61
20. Verify Defects window . 62
21. Refresh Work Areas window. 64
22. Integrate Work Areas window 65
23. Reconcile Collision Record window 66
24. Modify Defect Owner window 71
25. Accept Defects window 72
26. Accept Approval Records window 73
27. Check Out Parts window 74
28. Check In Parts window. 75
29. Freeze Work Areas window 76
30. Build Parts window . 77
31. Complete Fix Records window 78
32. Add Driver Members window 79
33. Fix Work Areas window 80
34. Activate Fix Records window 80
35. Refresh Work Areas window. 81
36. Refresh Drivers window 82
37. Build Parts window . 82
38. Restrict Drivers window 83
39. Commit Drivers window 84
40. Complete Drivers window 84
41. Accept Test Records window 85
42. Notes Integrated Database Creation and Staging 99
43. The physical structure of TeamConnection 119
44. Sample build object model for msgcat.exe 122
45. The build tree for the hello application 123
46. Two versions of a build tree 124
47. TeamConnection components on separate machines. 127
48. Create Builder window . 136
49. Modify Part Properties window 143
50. Modify Part Properties window 144
51. Create Builder window . 146
52. A JCL fragment for an MVS compile 153
53. A JCL fragment converted to a build script 155

© Copyright IBM Corp. 1992, 1999 ix

54. Create Parser window . 160
55. Modify Part Properties window 162
56. Modify Part Properties window 163
57. Sample build tree . 165
58. Sample build object model for msgcat.exe 166
59. Create Parts window . 168
60. Create Parts window . 169
61. Modify Part Properties window 170
62. Connect Parts window . 170
63. The build tree display . 171
64. Build Parts window . 171
65. The build tree for robot.dll. 176
66. The build tree for robot.app 177
67. Part of the build tree for robot.app 182
68. Adding the gather step to the build tree. 183

x User’s Guide

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the Site Counsel, IBM Corporation, P.O.
Box 12195, 3039 Cornwallis Road, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

© Copyright IBM Corp. 1992, 1999 xi

xii User’s Guide

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States and/or other countries:

AIX® OS/390
C/370™ OS/400
DB2® PowerPC
IBM® RISC System/6000
MVS™ RS/6000
MVS/ESA™ SP2
MVS/XA™ TalkLink
OpenEdition® TeamConnection™
OS/2® VisualAge®

Lotus and Lotus Notes are registered trademarks and Domino is a trademark of
Lotus Development Corporation.

Tivoli, Tivoli Management Environment, and TME 10 are trademarks of Tivoli
Systems Inc. in the United States and/or other countries.

The following terms are trademarks of other companies:

HP-UX 9.*, 10.0 and 10.01 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products. HP-UX 10.10 and 10.20 for HP 9000 Series
700 and 800 computers are X/Open Company UNIX 95 branded products.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are registered trademarks of Intel Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered trademarks
of Microsoft Corporation.

Java, HotJava, Network File System, NFS, Solaris and the Sun logo are trademarks
or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Netscape Navigator is a U.S. trademark of Netscape Communications Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Reader, and PostScript
are trademarks of Adobe Systems Incorporated.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1992, 1999 xiii

xiv User’s Guide

About this book

This book is part of the documentation library supporting the IBM TeamConnection
licensed programs. It is a guide for client users.

For additional information when performing TeamConnection tasks, refer to the
Commands Reference when entering commands or online help when using the
graphical user interface (GUI).

Getting Started with the TeamConnection Clients contains basic information for the
client user.

This book is available in PDF format. Because production time for printed manuals
is longer than production time for PDF files, the PDF files may contain more
up-to-date information. The PDF files are located in directory path nls\doc\enu
(Intel) or softpubs/en_US (UNIX). To view these files, you need a PDF reader such
as Acrobat.

How this book is organized
“Part 1. Introducing TeamConnection” on page 1, gives all users an overview of
the concepts of TeamConnection and introduces the terminology that is used
throughout this book.

“Part 2. Developing a product using TeamConnection” on page 13, describes the
different interfaces and basic TeamConnection tasks. It uses scenarios to
explain how to do many tasks.

This part is for everyone using TeamConnection to do daily work. The
information is meant for both the person who uses the command line interface
and the person who uses the GUI, as instructions for both are provided.

“Part 4. Using TeamConnection to build applications” on page 117, tells how to
use the TeamConnection build function. For information in installing and
administering the build function, refer to the Administrator’s Guide

“Part 5. Using TeamConnection to package products” on page 179, tells how
TeamConnection helps you automate the packaging and distribution of your
application.

Information on customer service, a bibliography, and a glossary are included at the
back of this book.

Conventions

This book uses the following highlighting conventions:

v Italics are used to indicate the first occurrence of a word or phrase that is defined
in the glossary. They are also used for information that you must replace.

v Bold is used to indicate items on the GUI.

v Monospace font is used to indicate exactly how you type the information.

v File names follow Intel conventions: mydir\myfile.txt. AIX, HP-UX, and Solaris
users should render this file name mydir/myfile.txt.

© Copyright IBM Corp. 1992, 1999 xv

Tips or platform specific information is marked in this book as follows:

Shortcut techniques and other tips

IBM VisualAge TeamConnection Enterprise Server for OS/2

IBM VisualAge TeamConnection Enterprise Server for Windows/NT

IBM VisualAge TeamConnection Enterprise Server for Windows 95

IBM VisualAge TeamConnection Enterprise Server for AIX

IBM VisualAge TeamConnection Enterprise Server for HP-UX

IBM VisualAge TeamConnection Enterprise Server for Solaris

Tell us what you think

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other IBM
VisualAge TeamConnection Enterprise Server documentation fill out one of the
forms at the back of this book and return it by mail, by fax, or by giving it to an IBM
representative.

xvi User’s Guide

Part 1. Introducing TeamConnection

Chapter 1. An introduction to TeamConnection 3
TeamConnection definitions . 4

TeamConnection’s client/server architecture 4
TeamConnection database 5
Interfaces . 5
Families . 5
Users and host lists . 5
Parts . 6
Components . 6
Releases. 7
Work areas . 7
Drivers . 8
Defects and features . 8
Processes . 9
Build . 10
Packaging . 10

Roles people play . 11

This section presents an overview of the TeamConnection product. The information
in this section should be read and understood by everyone who is going to work
with TeamConnection.

Additional conceptual information is provided in Parts 3, 4, 5, and 6.

© Copyright IBM Corp. 1992, 1999 1

2 User’s Guide

Chapter 1. An introduction to TeamConnection

TeamConnection is a team programming environment that helps you manage and
control your development projects, increase team productivity, and increase
software quality. You can use TeamConnection to communicate with and share data
among team members to keep up with the many tasks in the development life
cycle, from planning through maintenance.

TeamConnection helps you streamline the following tasks:

v Configuration management: the process of identifying, organizing, managing, and
controlling software modules as they change over time. This includes controlling
access to your software modules and providing notification to team members as
software modules change.

v Release management: the logical organization of objects that are related to an
application. The release provides a logical view of objects that must be built,
tested, and distributed together. Releases are versioned, built, and packaged.

v Version control: the tracking of relationships among the versions of the various
parts that make up an application. Version control enables you to build your
product using stable levels of code, even if the code is constantly changing. It
provides control over which changes are available to everyone and, optionally,
allows more than one developer at a time to update a part.

v Change control: the controlling of changes to parts that are stored in
TeamConnection. TeamConnection keeps track of any part changes you make
and the reasons you make them. Your development team can build releases with
accuracy and efficiency, even as the parts evolve. The product ensures that the
change process is followed and that the changes are authorized. After changes
are made, it allows you to integrate the changes and build the application.
TeamConnection tracks all changes to the parts across multiple products and
environments.

The change control process is configurable. Your team can decide how strict the
change control should be, from loose to very tight. You can also adjust the level
of control as you move through a development cycle.

v Build support: the function that enables you to define the structure of your
application and then to create it within TeamConnection from your input parts.
Independent steps in a build can run in parallel on different servers, thus
reducing your build time. You can build applications for platforms in addition to
the one TeamConnection runs on—currently, you can use TeamConnection to
build applications on AIX, HP-UX, OS/2, Windows NT, Windows 95, Solaris,
MVS, and MVS OpenEdition.

v Packaging support: the preparation of your application for electronic distribution
to other users.

This chapter defines the basic terms and concepts you need to make the most of
TeamConnection. Read this chapter first; then decide which information you need
next:

Topic and description Page

Developing products using TeamConnection:

v Getting familiar with the interfaces

v The basics of using TeamConnection

v More about defects and features

v Following TeamConnection processes

14

© Copyright IBM Corp. 1992, 1999 3

Topic and description Page

Using TeamConnection to build applications:

v Build concepts

v Installing build agents and processors

v Working with build scripts and builders

v Working with parsers

v Building an application

118

Packaging applications:

v Using the packaging function

v Using the Gather utility

v Using the NVBridge utility

“Chapter 16. Using
TeamConnection to
package a product” on
page 181

TeamConnection definitions

The following definitions are in logical order rather than alphabetical. provides
additional information about these terms.

TeamConnection’s client/server architecture

Figure 1 is an example of a network of TeamConnection clients and servers.

TeamConnection family servers control all data within the TeamConnection
environment. Data stored in a family server’s database includes:

v Text objects, such as source code and product documentation

v Binary objects, such as compiled code

v Modeled objects that are stored in the information model by tools such as
VisualAge Generator

v Other TeamConnection objects that are metadata about the other objects

A TeamConnection client gives team members access to the development
information and parts stored on the database server.

Figure 1. A sample TeamConnection client/server network

4 User’s Guide

TeamConnection database

TeamConnection is built on IBM’s DB2 Universal Database. Please refer to the DB2
documentation referenced in this document’s “Bibliography” on page 279 for
detailed information on DB2 database configuration, administration, and utilities.

Interfaces

TeamConnection provides the following interfaces that you can use to access data:

v A graphical user interface based on industry standards.

v A command line interface that lets you type TeamConnection commands from a
prompt or from within TeamConnection

v A web client that you access through your web browser.

You can use any interface to do your TeamConnection work, or you can switch
among them. This book usually gives instructions for using both interfaces.

For more information, see “Chapter 2. Getting familiar with the TeamConnection
client interfaces” on page 15.

Families

A family represents a complete and self-contained collection of TeamConnection
users and development data. Data within a family is completely isolated from data
in all other families. One family cannot share data with another.

Refer to the Administrator’s Guide for more information about families.

Users and host lists

Users are given access to the TeamConnection development data in a specific
family through their user IDs. Each family has at least one superuser, who has
privileged access to the family. The superuser gives other users the authority to
perform some set of actions on particular data. Depending on the authority granted
to a user, that user might in turn be able to grant some equal or lesser level of
authority to other users. However, the ability to grant authority for some actions is
reserved to the superuser. There are no actions which the superuser cannot
perform.

For host-based authentication, each user ID is associated with a host list, which is a
list of client machine addresses from which the user can access TeamConnection
when using that ID.

A single user can access TeamConnection from multiple systems or logins.
Likewise, a single system login can act on behalf of multiple users. The set of
authorized logins for a TeamConnection user ID makes up the user’s host list.

It is also possible to authenticate users through the use of passwords, either in
place of host lists, or as an alternative form of authentication.

Refer to the Administrator’s Guide for more information.

Chapter 1. An introduction to TeamConnection 5

Parts

TeamConnection parts are objects that users and tools store in TeamConnection.
They include text objects, binary objects, and modeled objects. These parts can be
stored by the user or the tool, or they can be generated from other parts, such as
when a linker generates an executable file. Parts can also be groupings of other
TeamConnection objects for building and distribution, or simply for convenient
reference. Common part actions include the following:

Create
To store a part from your workstation on the server; from that time on,
TeamConnection keeps track of all changes made to the part. Or, to create
a part to use as a place holder to store the output of a build.

Check out
To get a copy of a part so that you can make changes to it.

Check in
To put the changed part back into TeamConnection.

Extract
To get a copy of the part without making changes to the current version in
TeamConnection.

Edit To change a part from within TeamConnection using a specified editor.

Build To construct an output part from parts that you have defined to
TeamConnection as input to the output part.

These are simplified definitions of part actions; there is more about the actions you
can perform against parts in “Chapter 3. The basics of using TeamConnection” on
page 23.

The current version of each part is stored in the TeamConnection database, along
with previous versions of each part. You can return to previous versions if you need
to.

Components

Within each family, development data is organized into groups called components.
The component hierarchy of each family includes a single top component, called
root, and descendants of that root. Each child component has at least one parent
component; a child can have multiple parents.

The following figure depicts a component hierarchy.

Figure 2. Sample of a component hierarchy

6 User’s Guide

TeamConnection uses components to organize development data, control access to
the data, and notify users when certain actions occur. Descendant components
inherit access and notification information from ancestor components. Information
about the components is stored in the database, including:

v The component’s position in its family hierarchy.

v The user who owns the component. The component owner is responsible for
managing data related to it, including defects or features.

v The users who have access to the component and the level of access each user
has. This information makes up the component’s access list.

v The users who are to be notified about changes to the component. This set of
users is called the notification list.

v The process by which the component handles defects and features.

Releases

An application is likely to contain parts from more than one component. Because
you probably want to use some of the same parts in more than one application, or
in more than one version of an application, TeamConnection also groups parts into
releases. A release is a logical organization of all parts that are related to an
application; that is, all parts that must be built, tested, and distributed together. Each
time a release is changed, a new version of the release is created. Each version of
the release points to the correct version of each part in the release.

Each part in TeamConnection is managed by at least one component and contained
in at least one release. One release can contain parts from many components; a
component can span several releases. Figure 3 shows the relationships between
parts, the releases that contain them, and the components that manage them.

Each time a new development cycle begins, you can define a separate release.
Each subsequent release of an application can share many of the same parts as its
predecessor. Thus maintenance of an older release can progress at the same time
as development of a newer one. Each release follows a process by which defects
and features are handled.

Work areas

A release contains the latest ″official″ version of each of its parts. As users check
parts out of the releases, update them, and then check them back in,
TeamConnection keeps track of all of these changes, even when more than one

Figure 3. Parts, releases, and components

Chapter 1. An introduction to TeamConnection 7

user updates the same part at the same time. To make this possible,
TeamConnection uses something called a work area.

A work area is a logical temporary work space that enables you to isolate your work
on the parts in a release from the official versions of the parts. You can check parts
out to a work area, update them, and build them without affecting the official version
of the parts in the release. After you are certain that your changes work, you
integrate the work area with the release (or commit the driver that the work area is
a member of, if you are using the driver subprocess). The integration makes the
parts from your work area the new official parts in the release.

You can do the following with work areas:

v Check out parts from a release

v Update any or all of the checked-out parts

v Get the latest copies of the parts in the release, including any changes integrated
by other users

v Get the latest copies of the parts in another work area

v Freeze the work area, making a snapshot of the parts as they exist at a
particular instant in case you need to return to it later

v Build the parts in the work area

v Move all parts back into the release by integrating the work area

For more information, see “Using work areas” on page 26.

Drivers

A driver is a collector for work areas. You create drivers associated with specific
releases so that you can exercise greater control over which work areas are
integrated into the release and commit the changes from multiple work areas
simultaneously.

When a work area is added to a driver, it is called a driver member. A single work
area can be a member of more than one driver. By making a work area part of a
driver, you associate the parts changed in relation to that work area with the
specified driver. These parts must be members of the release associated with the
driver.

Drivers enable you to place the following controls over work area integrations:

v Define and monitor prerequisite and corequisite work areas to ensure that
mutually dependent changes are integrated in proper order.

v Monitor and resolve conflicting changes to the same part (if you use concurrent
development).

v Restrict access to driver members so that they can be changed only by users
with proper authority.

Defects and features

A defect is a record of a problem to be fixed. A feature is a record of a request for a
functional addition or enhancement. Both must be associated with a work area and
must follow the processes defined for the component and release that are
associated with the work area. TeamConnection tracks both objects through their
life cycles as developers change and commit parts.

8 User’s Guide

You can use defects and features to record problems and design changes for things
other than the products you are developing under TeamConnection control. For
example, you can use defects to record information about personnel problems,
hardware problems, or process problems. You can use features to record proposals
for process improvements and hardware design changes.

For more information, see “Working with defects and features” on page 35.

Processes

An application changes over time as developers add features or correct defects.
TeamConnection controls these changes according to the processes you choose for
your application’s components and releases. A process enforces a specific level of
control to part changes and ensures that actions occur in a specified order.

Two separate types of processes are defined: component processes, which can be
different for each component within a family, and release processes, which apply to
all activities associated with a given release. Component or release processes are
built from a number of lower-level processes, or subprocesses, that are included
with the TeamConnection product.

A defect or feature written against a component moves through successive states
during its life cycle. The TeamConnection actions that you can perform against it
depend on its current state. The component processes define these actions. You
can require users to do some, all, or none of the following for tracking defects and
features:

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that the features have been implemented correctly

dsrDefect
Design, size, and review fixes to be made for defects

verifyDefect
Verify that the fixes work

At the release level you can require some, all, or none of the following
subprocesses:

track This subprocess is TeamConnection’s way of relating all part changes to a
specific defect or feature and a specific release. Each work area gathers all
the parts modified for the specified defect or feature in one release and
records the status of the defect or feature. The work area moves through
successive states during its life cycle. The TeamConnection actions that you
can perform against a work area depend on its current state.

You must use the track subprocess if you want to use any of the other
release subprocesses.

approval
This subprocess ensures that a designated approver agrees with the
decision to incorporate changes into a particular release and electronically
signs a record. As soon as approval is given, the changes can be made.

fix This subprocess ensures that as users check in parts associated with a
work area, an action is taken to indicate that they have completed their

Chapter 1. An introduction to TeamConnection 9

portion. When everyone is done, the owner of the fix record (usually the
component owner) can change the fix record to complete. The parts are
then ready for integration.

driver A driver is a collection of all the work areas that are to be integrated with
each other and with the unchanged parts in the release at a particular time.
The driver subprocess allows you to include these changes incrementally
so that their impact can be evaluated and verified before additional changes
are incorporated. Each work area that is included in a driver is called a
driver member.

test The test subprocess guarantees that testing occurs prior to verifying that
the fix is correct within the release.

TeamConnection is shipped with several predefined processes. If these do not
apply to your organization, you can configure your own processes by defining
different combinations of subprocesses.

See “Chapter 4. The states of TeamConnection objects” on page 37 for an
explanation of TeamConnection states.

Build

The TeamConnection build function automates the process of building individual
parts or entire applications, both in the work group LAN environment and on an
enterprise server. This function enables you to reliably and repeatedly build the
same output from the same inputs. You can also build different outputs from the
same inputs for different environments.

You start a build against an output part that has an associated builder. A builder is
an object that describes how to translate input parts to get the desired output, such
as a linker or compiler. An input part might have an associated parser, which
determines the dependencies for the input parts in a build.

The build function does the following:

v Tracks build times of inputs and outputs so that it builds only those parts that are
out of date themselves or that have out of date dependents. You can also force a
build regardless of the build times.

v Enables you to spread the build over multiple machines running at the same time
or into multiple processes running on a single machine, such as on MVS.

For more information, see “Part 4. Using TeamConnection to build applications” on
page 117.

Packaging

Packaging is any of the steps necessary to distribute software and data onto the
machines where they are to be used. TeamConnection includes two tools that you
can use to automate the electronic distribution of TeamConnection-managed
software and data:

Gather
An automated data mover for server or file transfer-based distribution.

10 User’s Guide

Tivoli Software Distribution
A bridge utility that automates the installation and distribution of software or
data using Tivoli as the distribution vehicle.

For more information, see “Part 5. Using TeamConnection to package products” on
page 179

Roles people play

Because TeamConnection is extremely flexible, no two projects are likely to use it in
the same way, and the jobs that people perform likewise vary. Still, TeamConnection
tasks can be grouped into the following general categories:

System administrator
Has superuser access to the family server and database administration
access to the database management system. This administrator is
responsible for the following:

v Installing and maintaining the TeamConnection server

v Maintaining and backing up the database used by TeamConnection

Note: On UNIX systems, the system administrator must also have root
access to the host machine.

Family administrator
Has superuser access to the family server and database administration
access to the database management system. This administrator is
responsible for the following:

v Planning and configuring TeamConnection for one or more families

v Managing user access to one or more families

v Maintaining one or more families

v Creating and updating configurable fields

v Configuring release and component processes for a family

v Creating and updating user exits

v Monitoring the user activity of a family

Build administrator
This administrator is responsible for the following:

v Setting up and maintaining build servers

v Planning for builds

v Creating builders and parsers

v Starting and stopping build servers

v Defining pools

v Monitoring build performance

v Creating driver members

v Committing and completing drivers

v Extracting releases

v Packaging and distributing applications

End user
End users, such as project leaders, programmers, and technical writers,
use one or more TeamConnection families to control and maintain
application development data.

Chapter 1. An introduction to TeamConnection 11

12 User’s Guide

Part 2. Developing a product using TeamConnection

Chapter 2. Getting familiar with the TeamConnection client interfaces . . 15
Using the GUI . 15

Starting the GUI . 16
Stopping the GUI. 16
Performing tasks with the GUI 17
Using the Settings notebook 17
Online help information . 18

Using the command line interface 19
Using the TeamConnection web client 20

Chapter 3. The basics of using TeamConnection 23
Laying the groundwork. 23

Authority to perform tasks 24
Finding objects within TeamConnection 25

Finding parts . 25
Using work areas . 26

Naming your work areas . 26
Creating parts . 27

Naming your parts . 27
Preparing to build your parts 28

Working with parts . 28
Working in serial or concurrent development mode 29
Working with common parts 29
Getting parts from TeamConnection 30
Checking parts in to TeamConnection 31

Finding different versions of TeamConnection objects 32
Versioning releases . 32
Versioning work areas . 33
Versioning drivers . 33
Versioning parts . 34

Working with defects and features 35
Testing and verifying part changes 36

Chapter 4. The states of TeamConnection objects 37
Defects and features . 37
The states of work areas . 40
The states of drivers . 43
Verification and test records . 45

Chapter 5. Working with no component or release processes 47
Working in serial development 47

Accepting a defect . 48
Creating a work area . 49
Checking out a part . 50
Searching for a part. 51
Checking in a part . 53
Verifying and testing part updates 54

Extracting a part . 55
Checking out the part one more time 56
Checking the part back in 57

Freezing the work area . 58
Refreshing the work area. 59
Building the application . 60

© Copyright IBM Corp. 1992, 1999 13

Integrating the work area . 61
Closing a defect . 62

Working in concurrent development 63
Refreshing the work area from the driver 63
Integrating the work area . 64
Reconciling differences . 65

Chapter 6. Working with component and release processes 69
Moving through design, size, and review 70
Changing defect ownership . 70
Accepting a defect . 71
Approving the fix . 72
Checking out a part . 73
Checking in the changes . 74

Freezing the work area . 75
Building the application . 76

Accepting fix records . 77
Integrating changed parts into a release 78

Adding a driver member . 78
Reconciling the differences 79

Returning the work area to the fix state 79
Reactivating the fix record 80
Refreshing the work area. 81

Refreshing the driver . 81
Building the driver . 82
Restricting the driver . 83
Integrating the parts. 83
Completing the driver . 84
Testing the built application 85

Using a configured process . 86
Retrieving a past version of a part 86

This section is for anyone who uses the TeamConnection client to do daily work.
The information is meant for both the person who uses the command line interface
and the person who uses the GUI; instructions for both are provided.

All the tasks in this part are done from a client machine.

Before reading this section, you should be familiar with the TeamConnection
terminology and concepts presented in “Chapter 1. An introduction to
TeamConnection” on page 3.

14 User’s Guide

Chapter 2. Getting familiar with the TeamConnection client
interfaces

TeamConnection provides several interfaces that you can use to access data:

v A graphical user interface based on industry standards.

v A command line interface that lets you type TeamConnection commands from a
prompt or from within TeamConnection.

v A web client, that you access through your web browser.

You can use any of the interfaces to do all of your TeamConnection work, or you
can switch back and forth between the them. You might find that some tasks are
easier to do from the GUI or through the web, while others are easier to do from
the command line.

The examples throughout “Part 2. Developing a product using TeamConnection” on
page 13 give instructions for both GUI and command line interface usage.

This chapter helps you to begin using the TeamConnection client interfaces. It
describes the following:

v Using the GUI

– Starting and stopping the GUI

– Getting around in the GUI

– Using the Settings notebook

– Using the online help that is provided with TeamConnection

v Using the command line interface

v Using the web client

Before you can use TeamConnection, someone in your organization with superuser
or admin authority, such as your family administrator, must create for you a unique
user ID and a host list entry for the workstation where you installed the client.

Using the GUI

TeamConnection provides a GUI that you can use to do all of your TeamConnection
work. To use the GUI efficiently, set your default values in your Settings notebook to
suit your working environment, and then become familiar with the Tasks window
and how you can save time by adding your most common tasks to it.

Note: If available, use the Select Preference File window to specify your
configuration file for the TeamConnection GUI. This is the file that
TeamConnection uses to store and retrieve the information you have
selected for the various GUI windows. Preferences such as which view you
are using for a window (for example Details view on the Defects window),
the column order for a window, and the window size are saved in this file.

If you are using AIX, HP_UX, or Solaris and are about to use the GUI for the first
time, you need to do the following tasks:

1. See Configure the environment variables in the .profile in the Getting Started
with the TeamConnection Clients manual.

2. See Ensure that the TeamConnection client command is accessible in the
Getting Started with the TeamConnection Clients manual.

© Copyright IBM Corp. 1992, 1999 15

3. Copy the sample initial tasks list for the main GUI window by typing the
following command (this needs to be done only once):
cp $TC_HOME/nls/cfg/$LANG/teamcv3x.ini $HOME/.
chmod u+w $HOME/teamcv3x.ini

Where $TC_HOME is the location where the TeamConnection code was
installed.

Starting the GUI

You can start the TeamConnection client GUI in one of the following ways:

v Select the TeamConnection Client icon from the TeamConnection Group folder
on the desktop.

v Type teamcgui from a prompt.

The Tasks window appears.

Initially, a set of default tasks appears in your Tasks window. As you become more
familiar with TeamConnection and see what tasks you do most often, you can
change, delete from, and add new tasks to this list. To learn how to do this, select
How do I from the Help pull-down menu, and then select Update tasks on the
Tasks window.

From the Tasks window, you can either select actions from the menu bar or select a
task.

Stopping the GUI

To stop the TeamConnection client GUI, do one of the following:

v Select Close from the System menu in the Tasks window.

v Select Exit from the File pull-down menu of a TeamConnectionwindow.

Figure 4. Tasks window

16 User’s Guide

Performing tasks with the GUI

There are several ways you can perform TeamConnection tasks with the GUI. You
can:

v Select an action from the Actions pull-down menu and then select the object you
want to work with. For example, if you want to view a specific defect, select
Defects → View from the Actions pull-down menu; then type the name of the
defect in the View Defects window.

This method is useful when you know the exact names of the objects you want
to work with.

v Select the type of object you want to work with, such as Defects , from the
Objects pull-down menu. A Filter window appears in which you can specify
search criteria. You then get a list of objects that match the search criteria.
Online help provides information about using the Filter window.

This method is useful when you do not know the exact name of the object you
want to work with, or you want to view a list of objects.

After you have a list of objects, and if you are going to use this list at other times,
you can keep the window open. Leave the window in the background as you do
your other work, or minimize it. This way, you can quickly retrieve the list when
you want to perform another action.

v Select a task from the Tasks window.

This method provides a fast path within the GUI. When you select a task,
TeamConnection performs the underlying query or command and then displays
the requested information.

v Select an object from an object window (such as the Parts, Defects, or Features
window) and then select an action to perform on the selected part from the
Selected menu. You can also display a pop-up menu listing valid actions for a
specific object by placing the mouse pointer over the object and pressing mouse
button 2.

Using the Settings notebook

The TeamConnection GUI provides a Settings notebook in which you can set
default values for your working environment. To open the Settings notebook, select
Settings from the Windows pull-down menu. You can set the following values; for
more information about them, refer to the online help. The notebook has five pages.

Note: The environment variables you specify are relevant for the GUI only, not the
command line.

On the Environment
page:

v Family

v Release

v Component

v Work area

v Become user

v User ID

v Top

v Relative directory

v Working directory

Chapter 2. Getting familiar with the TeamConnection client interfaces 17

On the Setup page: v NLS path

v Log file

v Case

v Print command

v Compare command

v Edit command

On the GUI page: v Verbose commands

v Auto refresh

v Multiple object windows

v Show query line

v Sort pre-defined list values

v Use small icons in icon views (not available in Windows or
UNIX clients)

v Use small icons in tree views (not available in Windows or
UNIX clients)

v Font for object windows (not available in Windows or UNIX
clients)

v Font for output windows (not available in Windows or UNIX
clients)

v Required field label color

v Modified field label color

On the Extract page: v Destination directory

v Create backup files when extract or check out

v Read-only

v Expand keywords

v CRLF conversion

v Files module change to read only after check in or create

On the Pool page: v Pool

Online help information

Online help information is available from anywhere in the TeamConnection GUI.
Use the online help when you need more information about a topic or task.

TeamConnection offers two types of help:

v General help

This is help for a specific window. General help provides an overview of the task
and describes the objects on the window, such as menu-bar items, icons, fields,
and push buttons. Do one of the following to access general help:

– Select Help from a menu bar.

– Select the Help push button.

– Press F1.

v How do I

This is where you find step-by-step instructions for doing a specific task. How
you do a task depends on the component or release process that is being
followed, and this help information takes that into consideration. To access this
help, select How do I from the Help pull-down menu. Double-click on one of the
task items.

18 User’s Guide

At the bottom of each Help window is a Diagram push button. Select this push
button to view a graphical process diagram. Step your way through the diagram to
better understand the processes that TeamConnection components and releases
can follow. The processes that your components and releases follow depend on
how the processes are configured for your organization. The defined processes
determine the actions that must occur before a defect or feature can move toward
completion.

Using the command line interface

To use the command line interface effectively, you must be familiar with the actions
that you can perform using TeamConnection commands. A complete description of
each command, including examples for each, is available in the Commands
Reference

To view the syntax of a TeamConnection command online, type the following at a
prompt:
teamc commandName

Where commandName is the name of the TeamConnection command.

The Quick Commands Reference is a booklet that lists the syntax of each
TeamConnection command.

You can also become familiar with the commands by looking at the contents of the
log file where TeamConnection stores the commands that are issued as you use
the GUI. This file is specified in the Log file field on the Setup page of the Settings
notebook. The default name is teamc.log; it is stored in the directory where the
client is installed (for AIX, HP-UX, and Solaris it is stored in the $HOME directory of
the user), unless you specify a different location in the Settings notebook.

You can type TeamConnection commands from a prompt within any directory; the
TeamConnectionGUI does not need to be started. Or if you start the GUI, you can
type a command on the command line in the Tasks window (this command line is
located at the bottom of the window, just above the footer that indicates the user
name and family name).

Before you start to use the command line interface, you might want to set the most
used environment variables, such as TC_FAMILY or TC_COMPONENT. You are not
required to set these environment variables, but if you do not, you will need to
specify them in the command when required.

You set environment variables differently for different platforms:

v AIX, HP-UX, and Solaris users set environment variables in the .profile (sh, ksh
environment), .dtprofile (cde environment), or .cshrc (csh environment).

v OS/2 users set environment variables in the config.sys file or from a command
line prompt.

v Windows 95 and Windows NT users set environment variables in the Windows
Control Panel.

v Some environment variables are set in your config.sys file during installation.

You can override the value you set for an environment variable by using the
corresponding flag in the command. For example, you have the TC_FAMILY

Chapter 2. Getting familiar with the TeamConnection client interfaces 19

environment variable set to robot, but you need a file from another family named
octo, so you issue the following command:
teamc part -extract hello.c -family octo -release 9501

“Appendix A. Environment Variables” on page 203 provides a complete list of the
TeamConnection environment variables.

Using the TeamConnection web client

The TeamConnection web client provides family server connectivity and a great
deal of the functionality provided by a standard TeamConnection client without the
overhead required by a standard client installation. Using a web browser, anyone in
the organization can access server data (provided the server is configured
appropriately) by addressing a machine and a port number. Most familiar
TeamConnection functions are available through the web client. If you want to
disable the web client interface, you must set the environment variable
TC_WWWDISABLED before starting the family.

To begin using the TeamConnection web client you must point your web browser to
the correct web address. The syntax of the web address is: http://host name of the
server:port number of your family. For example, if your server host name is testfam
and your port number is 7890, the web address would look like:
http://testfam:7890

When connecting to the web client, you will be prompted for a user name and a
password. The browser will cache this user name and password until it is closed.
The user name is required, but the password may not be, depending on the
authentication level of the family and the host on which the browser is running.

If your organization authentication level is set for PASSWORD_ONLY, you must
login using a password to gain access. If your organization authentication level is
HOST_ONLY, you may be denied access to the web client because either the host
being used is not in the user’s host list, or the browser is not bypassing the proxy.
You may be able to gain access by doing one of the following:

v If the host being used is not in the user’s host list, you must add the host to the
user’s host list to gain access.

v If the browser is not bypassing the proxy, do one of the following:

– Temporarily disable the proxy when using the web client.

– Reconfigure the browser to bypass the proxy when connecting to the family
server.

– Use an autoproxy so the browser will automatically bypass the proxy when
connecting to the family server.

v Change the authentication level to HOST_OR_PASSWORD and login using a
password.

Using the web client is much like using the TeamConnection GUI. The following are
some differences you might find:

v Releases, Drivers, and Work areas cannot be extracted with the web client.

v A filter for Corequisites does not exist in the TeamConnection GUI.

v For the FeatureModify action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):

– newName

20 User’s Guide

|
|
|
|
|
|
|
|

|

|

|

|
|

|

– orginLogin.

v For the DriverMemberView action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):

– state

– defectName

– defectAbstract

– committedVersion.

v For the ChangeView action, the following are available with the TeamConnection
web client (but not the TeamConnection GUI):

– ChangeView

– workAreaState.

v For the PartBuild action, the following are available with the TeamConnection
web client (but not the TeamConnection GUI):

– cancel

– partType.

v The PartChildInfoView action does not exist in the TeamConnection GUI.

v For the PartDelete action, force is available for use with the TeamConnection
web client (but not the TeamConnection GUI).

v For the PartDisconnect action, parentType is available for use with the
TeamConnection web client (but not the TeamConnection GUI.)

v For the PartModify action, fileType is available for use with the TeamConnection
web client (but not the TeamConnection GUI).

v For the PartUnlock action, Source Directory is available in the TeamConnection
GUI but not in the TeamConnection web client.

v For the PartViewContents, Expand Keywords is available in the TeamConnection
GUI. In the TeamConnection web client, an option for turning keyword expansion
on and off is provided.

v For the UserView Filter action, the following are available with the
TeamConnection web client (but not the TeamConnection GUI):

– pswStatus

– pswModifyTime

– pswCreateTime.

Chapter 2. Getting familiar with the TeamConnection client interfaces 21

|

|
|

|

|

|

|

|
|

|

|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|

22 User’s Guide

Chapter 3. The basics of using TeamConnection

All users of TeamConnection perform a number of basic tasks, such as checking
parts out of TeamConnection and then back in, and testing and verifying part
changes. Before you start doing these tasks, you need to understand the basic
concepts behind them; that is what this chapter explains.

This chapter assumes that you have read “Chapter 1. An introduction to
TeamConnection” on page 3 and are familiar with the different objects, such as
components and releases. The other chapters in this part of the book define in
more detail how you perform the TeamConnection tasks.

Laying the groundwork

Someone has already created your family’s component structure, and those
components manage your parts and control access to the data. Your
TeamConnection family also contains releases. A release identifies a version of all
the parts that comprise an application at a given point in time. When you create a
release, you specify the component that will manage it. One component manages a
release, but many components can manage the individual parts associated with that
release.

A single part can be associated with more than one release, but it is managed by
one component. When you create a part, you specify the release that you want to
associate with the part and the component that you want to manage it. At any time,
you can link the created part to other releases so that the part can be shared, or
you can change its managing component.

Before you start working with parts, you need to be familiar with your family’s
component structure. This will help you when trying to locate parts within
TeamConnection and when writing defects and features. You can do the following to
display your family’s component structure from the GUI:

1. Select Components → Components from the Objects pull-down menu on the
Tasks window. The Component Filter window appears.

2. Type the name of the component that is at the top of your component hierarchy
in the Component field, and select OK. Initially this component is called root.
The Components window appears, listing the component.

3. Verify that the component is displayed in tree view (a plus sign (+) appears
before the component name). If not, select Tree from the View pull-down menu.

4. Select Expand fully from the Selected pull-down menu.

© Copyright IBM Corp. 1992, 1999 23

|

From a command prompt, you can issue the following command to view the
component structure.
teamc report -view -raw bCompView -where "name='root'"

Authority to perform tasks

As a TeamConnection user, you are automatically given the authority to perform
some basic tasks. You can:

v Open defects and features

v Add notes to existing defects and features

v Modify the information for your user ID

v Display information about any user ID

v Search for information within TeamConnection to create reports

You receive authority to perform additional actions when you become the owner of
a TeamConnection object, such as a component or a part, or when authority is
explicitly given to you by the component owners.

If you attempt an action that you do not have authority to do, TeamConnection tells
you so. When this happens, you can ask the component owner, the family
administrator, or a user with superuser authority to grant you the necessary
authority.

Note: You can issue queries to generate reports of data from tables and views
using the -view action flag. If you do not specify selection criteria, such as
the fields and the search conditions you want to use, the report query selects
all entries for the table or view indicated that the user has authority to
access. This command does not show any objects in components that you
are not authorized to access

Figure 5. Components window

24 User’s Guide

“Appendix I. Authority and notification for TeamConnection actions” on page 249 lists
the types of authority you need in order to perform various TeamConnection
actions.

Finding objects within TeamConnection

All TeamConnection objects are stored on a server in a database. To find one or
more of these objects within a family, do one of the following:

v Use the report command with the -view action flag from a command line or a
command line within TeamConnection.

Command usage is explained in the Commands Reference

v Use a Filter window in the GUI.

Online helps explain how to use the Filter windows.

For now, you need to understand that the database is case-sensitive. You need to
refer to and search for objects in the correct case. For example, if a component is
stored in the database as hand, you would not find it if you typed Hand or HAND. This
is why it is important that your organization sets a naming convention, and that
everyone follows that decision when creating objects. If you do not know what
naming convention has been established for your organization, talk to your family
administrator.

Note: It is recommended that you use all lowercase whenever possible.

Finding parts

There are three Filter windows that you can use to find parts within
TeamConnection:

Note: Use the forward slash (/) when specifying path names, such as
directory/file.txt. The Intel convention of using the backward slash is not
recognized in the Filter window.

Parts Use when you want to limit your search to a particular context of a work
area or driver in a release, or a particular version of a release. This is
generally the view users will use most often.

If you specify only a release, TeamConnection lists the committed parts for
that release. However, if you want a list of all parts in a specified work area
and release, TeamConnection displays all the parts visible to the work area.
This includes parts that are committed to the release as well as changed
parts that are visible only to the work area.

BuildView
Use when you want to search for information related to building your
application, such as viewing a build tree, or when you want to do build
actions.

PartFull
Use when you want to search for parts across releases, components, or
work areas. For example, you want a list of all the optics.c parts. Unlike the
Parts Filter, you can specify one or more release or work area names.

You can also use this filter to display only parts that have been changed in
a work area. For example, you check out robot.c to work area 310:1, and

Chapter 3. The basics of using TeamConnection 25

that is the only part that you have changed. If you use the PartFull Filter to
query for all the parts in work area 310:1, only one record is returned.

You cannot use this filter to search for build information.

Refer to the online help, in particular How do I , for more information on how to use
the Filter windows. Select How do I from the Help pull-down menu to access the
information.

Using work areas

A work area is a logical temporary work space that enables you to isolate your work
on the parts in a release from the official versions of the parts. You can check parts
out to a work area, update them, and build them without affecting the official version
of the parts in the release. You must create a work area before you can create,
check out, or check in parts. If your component’s process includes a design, size,
review subprocess for defects or features and the release follows a tracking
subprocess, a work area is automatically created when sizing records exist and the
associated defect or feature is accepted. TeamConnection associates these work
areas with the appropriate defect or feature.

The parts in a work area do not become available in the release until the work area
is integrated. Also, if your release follows a driver subprocess, parts that have been
changed do not become available in the release until the associated driver is
committed. However, users who have the authority to access the work area can
view and work with the parts in it.

You can save intermediate versions of the parts in your work area by freezing your
work area. Every time you freeze a work area, TeamConnection saves a revision
level of the work area. When you freeze work area 123:1, for example, a version
called 123:2 is created. This version contains information about each part in the
work area and its current version at the time the work area was frozen. It may
contain version 1 of part optics.c, for example. If you freeze the work area again
later, a new version called 123:3 is created with information about the versions of
the parts in the work area when it was frozen. This version may contain version 2 of
part optics.c. Each of these work area versions is saved in the database and you
can retrieve the versions of the parts they contain before you integrate the work
area into the release. Therefore, you should freeze a work area whenever there is a
possibility that you will want to return to that version of the work area. For example,
you might be adding a major feature to the code, and you want to be able to return
to something that works in case the application no longer builds. When you
integrate a work area or commit a driver, the work area is frozen automatically.

Naming your work areas

When TeamConnection automatically creates a work area, the work area is given
the same name as the defect or feature it was created for plus the initial version
number, :1. When you create a work area, you can also give it the same name as
the defect or feature, or you could give it any other name. Where possible, we
recommend that you name it after a defect or feature, or relate the name to the
change that is being made.

Here are some things you should know before you name a work area:

v Work area names must be unique within the context of a release.

26 User’s Guide

v After you create a work area, you cannot delete it. You can, however, cancel the
work area in the following situations:

– No part changes were made.

– You undo the changes you made.

v With the proper authority, other users in your organization will be able to access
your work area and make changes to the parts. This means that you need to
make it easy for them to locate the work area. Following your local naming
conventions will help.

v After the work area is integrated with the release, you cannot reuse the work
area. If the defect is still in the working state, you can create another work area
with a different name after the initial work area is integrated with the release.

Creating parts

A TeamConnection part is controlled by the TeamConnection server. A
TeamConnection part is uniquely identified by the path name of the part, the part
type, and the name of the release in which it is contained. You must specify both
the release name and the path name whenever you perform a TeamConnection
action on a part. Multiple releases can share the same part.

When you create a part, you do one of the following:

v Take an existing text or binary file that is on your workstation and place it into
TeamConnection.

v Create an empty part that has no content. Empty parts are used as place holders
until an application is built. For example, you can create a place holder for an
executable part that will be created by a build. See “Creating the build tree for
the application” on page 167 for an example of creating a place holder.

After you put a part under TeamConnection control, the official copy of the part
resides in the database. The copy on your workstation is changed to read-only
mode. You can then change the part by checking it out to your workstation or
editing it within the GUI.

Use the online help facility if you need assistance when creating parts.

Naming your parts

If your organization has a naming convention, be sure to follow it when naming your
parts. When the naming convention is not followed, everybody in your organization
can have trouble locating parts. Part names created on the server are
case-sensitive; they must be retrieved using the same case in which they were
created.

When you name TeamConnection parts, you can specify only the base name, such
as hand.c, or you can specify the directory path in addition to the base name, such
as robot\hand\hand.c. Specifying the path name as part of the name lets you have
several identical base name parts included in the same release, such as
robot\hand\msg.h and robot\optics\msg.h.

You can also have identical part names within the context of a release as long as
their part types are different, such as TCPart and vgdata.

Note: It is recommended that you use lowercase letters to name your parts.

Chapter 3. The basics of using TeamConnection 27

A parts name may contain spaces provided it is enclosed in double quotation marks
during processing. For example:
teamc part -create "This is a long file name.txt"

The name with spaces will be shown as-is by the GUI (without the double quotes).
If the name has spaces and is not enclosed in double quotation marks, then you
may get an error message repeated many times, one for each ″token″ separated by
spaces in the long name.

Note: The base name may contain a maximum of 63 characters, not including the
double quotations. The path name, which includes the base name, may
contain a maximum of 195 characters, not including the double quotations.

Preparing to build your parts

If you are going to use the TeamConnection build function, you must provide certain
information about each part that participates in a build. You can provide this
information when you create the parts or wait until later. You can also change the
information at any time.

To associate a part with a build, you must specify the following information:

v The parent part that you want to associate the part with.

v The type of relationship the part has to the parent, such as:

Input The part will be used as input to building its parent. An example of an
input part is a C language source file, x.c, which is compiled to create its
parent, x.obj.

Output
The part will be a generated output from the same build that creates its
parent part. In other words, both the parent part and this child part are
outputs when the parent part is built.

Dependent
The part will be needed for the build operation of its parent to complete,
but it will not be passed directly to the builder. An example of this is an
include file.

If you do not provide this information when you create the part, you can provide it
later using the connect function.

You can also specify the builder or parser that a part will use, as well as any build
parameters.

“Part 4. Using TeamConnection to build applications” on page 117 explains the build
function in more detail.

Working with parts

After the parts are created in TeamConnection, you will be working with these parts
— getting them to your workstation so you can change them and then getting them
back in to TeamConnection. This section gives a brief overview of these tasks.
“Chapter 5. Working with no component or release processes” on page 47 and
“Chapter 6. Working with component and release processes” on page 69 go into
more detail about these and other TeamConnection tasks.

28 User’s Guide

Working in serial or concurrent development mode

A release is set up for either serial development or concurrent development mode.
Once the development mode is set you can change from serial mode to concurrent
mode, but not from concurrent mode to serial mode. In serial development, a part is
locked when a user checks it out, and no one else can update the part as long as it
is checked out. In concurrent development, more than one user can simultaneously
have the same part checked out.

In concurrent development, more than one user can check out and change the
same part. Prior to integrating their changes, each user should refresh their work
area from the driver in which they plan to put it. The first user will be able to
integrate their work area, complete fix records for tracking releases, with their
release. When the next user refreshes their work area, TeamConnection recognizes
that the parts differ and notifies them. It is up to this user to resolve the differences,
using the TeamConnection merge program, VisualAge TeamConnection
VisualMerge Facility, or some other merge program. If the user fails to refresh their
work area from the driver, TeamConnection will not notify them that the parts differ
until they try to add the work area to the driver. They will then have to put the fix
records back in the fix state, reactivate the work area, refresh the work area,
reconcile the differences, refresh their work area again, and reintegrate their work
area before they can add their changes to the driver.

Before getting parts from TeamConnection, you might want to find out if the
development mode for the release is concurrent or serial. To determine the mode,
view the information about the specific release. To do this, select View from the
Selected pull-down menu on the Releases window.

Working with common parts

A common part is a part with identical content that is shared by two or more
releases or two or more work areas. For example, when an identical part is needed
in two separate releases, you can link the part from one release to the other (if you
have the proper authority). Both releases would then have a link to the current
version of that part.

When a common part is checked out of a release, TeamConnection locks the
current version of the part in all releases if one of them uses serial development.
When putting the part back into the release, one of the following actions reflects the
change in all releases in which the part is common:

v You integrate the work area when the driver subprocess is not followed, or

v You commit the driver when the driver subprocess is followed.

You can break the common link if you make changes to a common part and you do
not want these changes reflected in other releases or work areas that link to the
part. You can break the common link when you check out, check in, rename, delete,
re-create, connect, or disconnect parts. When a part is common to more than two
releases, you can maintain the common link with some of the releases while
breaking the link with other releases. When a link is broken, the parts still share the
same name, but the information contained in the parts is different.

Parts can also be linked between two or more work areas in the same or different
releases, making the parts common to those work areas. For example, a user
working in one work area can link to the latest version of a part in another work
area of the same release (the part has yet to be integrated with the release). The

Chapter 3. The basics of using TeamConnection 29

part is then common to the two work areas within the same release. If you want to
maintain the common link to all work areas, you must specify the names of the
common work areas when you check in, rename, delete, or re-create the parts. As
with common parts in releases, you can break the common link.

You can also link all the parts within a release to another release. This function is
especially helpful when development begins on a new release of a product, and you
want the parts in the new release to initially be the same as the parts in the current
release. As development of the two releases continues, the common link between
the parts can be broken to separate development of the new release from
maintenance of the current release.

For more information about how to link parts, refer to the Commands Reference
and online help.

Getting parts from TeamConnection

Checking out a part implies that you intend to modify it; extracting a part merely
gives you a copy of the part. Normally, when you extract a part, you do not plan to
change the current version in TeamConnection.

You must have the necessary authority to a component before you can check out or
extract parts from that component. You need PartExtract authority to extract a part
from TeamConnection; you need PartCheckOut authority to check a part out. See
“Appendix I. Authority and notification for TeamConnection actions” on page 249 for
a listing of all the TeamConnection actions and their authority requirements.

Parts are checked out to work areas. The work area is where you store updated
parts and do builds without affecting the version of the parts in the release. When a
part is checked out of the release to the specified work area, TeamConnection locks
the part in the release if you are working in serial development. If you are working
in concurrent development, the part is never locked. TeamConnection also puts a
copy of the part on your workstation. It is here where you update the part. If a
read-only copy of the part already exists on your workstation, it is renamed and
saved as a backup copy. The renamed file will have an extra character inserted
before the extension. On OS/2 and Windows platforms, this extra character is a ″$″
(dollar sign). On Unix platforms, this character is a ″_″ (underscore). If a backup
copy already exists, it is deleted. When you are finished updating the part, you
check it back in to the work area. A work area is optional when extracting a part.

The environment variables TC_BACKUP, TC_BACKUPCHAR and TC_MODPERM
may be set to change the backup and read-only options. TC_BACKUP controls
whether or not backup files are created. If this environment variable is set to off,
backup files are not created. TC_BACKUPCHAR controls the extra character that is
inserted before the extension. If this variable is set, the specified character will be
used instead of the ″$″ or ″_″. TC_MODPERM controls whether or not the
read-only attribute is set. The default for this environment variable sets the
read-only attribute on.

When you extract a part, TeamConnection copies the part to your workstation, and
the part is not locked. In other words, other users can still check out the same
version of the part and make changes to it, even in serial development mode. By
default, TeamConnection sets the extracted part to read-only access. This is done
to keep you from inadvertently changing the part on your workstation when the part
in TeamConnection is not locked. You can, however, change this in the Settings

30 User’s Guide

window or when you are extracting the part. When you do this, be aware that
someone else can change the official part in TeamConnection, making your
workstation copy back level.

Where TeamConnection places a checked-out or extracted part on your workstation
depends on the following:

v Your workstation’s current working directory

v Whether you use the -relative flag on the command line or the Destination
directory field on the GUI

v Whether the TC_TOP environment variable is set

For more information about how these interact, refer to the part command examples
in the Commands Reference.

When you want to make changes to a part, you can do one of the following:

v Check out one or more parts and edit the parts on your workstation. When you
finish making changes to the parts, you check them back in.

v Edit a part from within the TeamConnection GUI using a specified editor. When
you exit the editor, the Check In Parts window appears and you can check the
part back in to TeamConnection.

In either case, if you are working in concurrent development and someone else
changed a part while you had it checked out, you are asked to resolve the
differences when you try to integrate your work area.

Checking parts in to TeamConnection

After you have verified the accuracy of your part changes, you are ready to check
them in to TeamConnection. Any parts that you have checked out, you have the
authority to check back in.

As mentioned earlier, you check parts out to a work area so you can work on them.
Therefore, when you check in a part, you must specify the work area where that
part is checked out. In other words, you check the part back in to the same work
area. When the part is checked in, the copy on your workstation is flagged
read-only. The environment variable TC_MODPERM controls whether or not the
read-only attribute is set. The default for this environment variable sets the
read-only attribute on.

At this time, the changed part is visible in only the named work area; it is not visible
at the release or to any other work area. This lets you test your changes by building
the version of the code that is in your work area.

When you are satisfied with your changes, you can integrate the parts into the
release by integrating your work area. This action makes the work area visible to all
the users in the release.

If you are working in concurrent development mode, TeamConnection generates a
collision record when a changed part conflicts with a previously committed part. For
example, both you and Keith have hand.c checked out. Keith makes changes to the
part and then integrates the work area that contains that part. (Depending on the
process being followed, Keith might have to commit the work area rather than
integrate it.) Later, after making changes to hand.c, you attempt to integrate the
work area that contains the part. Because the part was already integrated by Keith,

Chapter 3. The basics of using TeamConnection 31

you are notified of a collision and asked to refresh your work area. After the refresh,
you can view the collision record and decide how you want to resolve the conflicts.
“Reconciling differences” on page 65 explains in more detail how this works.

Finding different versions of TeamConnection objects

TeamConnection version control maintains different versions of the following
objects:

v Releases

v Work areas (and driver members)

v Drivers

v Parts

When you want to find and retrieve previous versions of these objects, it is helpful
to know how TeamConnection creates and deletes previous versions of each object.

Some basics of TeamConnection versioning will help you understand how
TeamConnection identifies unique versions of objects:

v When you first create an object, the initial version name is the object name
suffixed with :1. When you create a new work area called myWorkArea, for
example, its version is myWorkArea:1. Subsequent versions are identified in
numerical order: myWorkArea:2, myWorkArea:3, myWorkArea:4, and so on.
Versions of releases and drivers are identified similarly: myRelease:1,
myRelease:2, myRelease:3; myDriver:1, myDriver:2, myDriver:3; and so on.

v Unique versions of parts are identified by association with a specific version of a
release, work area, or driver. Your TeamConnection family may have three
different versions of a part called myPart, for example: one associated with
release myRelease:2, one associated with work area myWorkArea:1, and one
associated with work area myWorkArea:2.

Versioning releases

TeamConnection creates new versions of releases whenever you do the following:

v Create a release

This is the initial version of a release and contains no parts. When you create
myRelease, for example, its version name is myRelease:1 and it contains no
parts.

v Commit a work area to the release

Committing a work area to a new release creates a new version of the release
and adds the parts in the work area to the release. When you commit work area
myWorkArea:1, for example, to myRelease:1, TeamConnection creates a version
of myRelease called myRelease:2. It also associates the parts in myWorkArea:1
with myRelease:2.

v Commit a driver to a release

Because drivers are simply collections of work areas, committing a driver to a
release has the same effect as committing a work area: TeamConnection creates
a new version of the release. When you commit myDriver:2 to myRelease:2, for
example, TeamConnection creates a version of myRelease called myRelease:3.

TeamConnection deletes versions of releases whenever you prune the release.
Refer to the Administrator’s Guide for an explanation of pruning.

32 User’s Guide

Versioning work areas

TeamConnection creates new versions of work areas whenever you do the
following:

v Create a work area

This is the initial version of a work area. When you create myWorkArea, for
example, its version name is myWorkArea:1.

v Refresh a work area

Refreshing a work area updates it with any new versions of parts that have been
integrated with the release. When a workarea is refreshed, two versions of the
workarea are created. One of the contents before the refresh and one with the
contents after the refresh.

v Freeze a work area

Freezing a work area is like taking a snapshot of the work area. It preserves the
parts as they are at a given point in time. If you create work area myWorkArea:1,
add three new parts to it — called part1, part2, and part3 — and then freeze it,
your family contains a work area called myWorkArea:2, with part1, part2, and
part3. The version name of each of these parts is myWorkArea:1. If you then
alter part2 and freeze the work area again, your family contains the following:

– myWorkArea:1, with nothing in it

– myWorkArea:2 contains part1, part2, and part3 at version myWorkArea:1

– myWorkArea:3 contains part1 and part3 at version myWorkArea:1, and part2
at version myWorkArea:2

v Commit a work area

Committing a work area adds the parts in the latest version of the work area to
the release. It also does the following:

– Creates a new version of the release

– Creates new versions of the parts in the release

– Deletes any intermediate versions of the work area

Using the previous example, if you commit myWorkArea:3 to myRelease:1, the
following happens:

– TeamConnection creates a new version of myRelease called myRelease:2.

– TeamConnection creates new versions of the parts in myRelease:2.

– TeamConnection deletes myWorkArea:1, myWorkArea:2, and myWorkArea:3.

TeamConnection deletes versions of work areas whenever you commit them to a
release. Once a work area has been committed, you can no longer use it for
making part changes and you cannot create a new work area with the same name.

Deleting work area versions is controlled by the autopruning option of the release
associated with the work area. By default, TeamConnection always deletes work
area versions on commit, but you can change this option. Refer to the
Administrator’s Guide for an explanation of autopruning.

Versioning drivers

TeamConnection creates new versions of drivers whenever you do the following:

v Create a driver

When you create a new driver, TeamConnection makes two versions of it:
myDriver:1, for example and myDriver:2.

Chapter 3. The basics of using TeamConnection 33

v Add a work area (driver member) to a driver

If you add myWorkArea:1 to myDriver:2, for example, TeamConnection creates a
new version of myDriver called myDriver:3.

v Freeze a driver

Freezing a driver is like taking a snapshot of the driver. It preserves the parts as
they are when the driver is frozen. If you freeze myDriver:3, for example,
TeamConnection creates a new version called myDriver:4.

v Refresh a driver

Refreshing a driver updates the driver with all changes that have been made in
all of its driver members. Refreshing a driver actually creates two new versions of
the driver, as follows:

1. Freezes the driver (so that TeamConnection can have a point to roll back to if
an error occurs during the refresh operation).

2. Updates the driver with any changes from the driver members

3. Freezes the driver again, thus preserving a copy of the updated driver.

If the current version of myDriver is myDriver:2, for example, and the parts in its
driver members have been changed, then TeamConnection does the following
when it refreshes the driver:

1. Freezes myDriver, creating myDriver:3.

2. Updates myDriver with changes from its driver members.

3. Freezes myDriver again, creating myDriver:4.

The result of refreshing myDriver (version myDriver:2) is two new versions:
myDriver:3, containing a snapshot of the driver before the refresh, and
myDriver:4, containing a snapshot of the driver after the refresh.

TeamConnection deletes versions of drivers whenever you remove driver members
or commit a driver to a release.

v If you have a driver version myDriver:4 with driver members myWorkArea,
yourWorkArea, and ourWorkArea, and you remove myWorkArea, then
TeamConnection deletes driver versions myDriver:2, myDriver:3, and myDriver:4
and creates a new driver version called myDriver:5 containing members
yourWorkArea and ourWorkArea. As a result, the family contains two versions of
the driver, myDriver:1 and myDriver:5.

v When you commit a driver to a release, all intermediate versions of the driver
(resulting from driver member add, driver freeze, driver refresh, or driver member
remove operations) are deleted.

Versioning parts

TeamConnection versions parts in association with other TeamConnection objects,
such as work areas. If, for example, you create part1 in myWorkArea:1, the current
version of part1 is myWorkArea:1. If part1 is in release myRelease:2 and work area
myWorkArea:2, then you can view the version of the part for either the release or
the work area. The version label for part1 in myRelease:2 is myRelease:2 and in
myWorkArea:2 is myWorkArea:2.

TeamConnection deletes part versions whenever it deletes versions of the object
that the part is associated with. In addition to versioning in association with other
TeamConnection objects, TeamConnection maintains versions of build output parts
(parts that are created as the result of a build, such as an .exe file or a .hlp file).
When you create a release, you can set the maximum number of versions of build
output parts to maintain. If you set this maximum to 10, for example, then

34 User’s Guide

TeamConnection saves only 10 versions of build output parts and discards the
oldest version each time a new version is created.

Working with defects and features

Defects are used to report problem information; features are used to record
information about proposed design changes. After a defect or feature is opened,
TeamConnection tracks the progress of the defect or feature through various states.
To what degree defects and features are tracked depends on the processes
followed by the release and component to which they are assigned. The following
describes actions that your defined processes might require:

Analyzing defects and features
The owner is responsible for analyzing a defect or feature after it is opened.
The owner can then return it if it is not valid or feasible, reassign it to
another user or component, or accept it for resolution.

Designing the resolution
After a defect or feature has been accepted, the actual resolution needs to
be designed so that an informed evaluation can be made. This resolution
needs to be designed by users who are familiar with the product or area
affected by the defect or feature.

Identifying the required resources
Sizing records are created by the owner to identify the components and
releases that might be affected by the defect or feature. Each owner of a
component that is referenced in a sizing record needs to evaluate the
impact of the defect or feature on the parts managed by the component. If
the defect or feature requires changes to parts, the sizing record is
accepted and sizing information is added.

When sizing records exist and the associated defect or feature is accepted,
TeamConnection automatically creates a work area.

Reviewing the design and resource estimates
After the resolution has been designed and the resources have been
identified, the proposal needs to be reviewed. If the review indicates that
work should continue on the defect or feature, it is accepted.

Resolving defects and implementing features
Resolving one defect or implementing one feature in one release can
involve one or more users changing many parts. To change a part, a user
must check out the part, make the changes required to resolve the problem
or implement the design change, and check the part back in. If the release
follows a tracking process, all defects or features must be associated with a
work area. Parts that are checked out refer to the work areas that are
monitoring the defect or feature.

Resolving a defect or implementing a feature also involves integrating the
changed parts with changes made for other defects and features in that
release. All changed parts are eventually integrated with the unchanged
parts within the release.

Verifying the resolution of the defect or feature
The originator uses a verification record to acknowledge that the defect or
feature was satisfactorily resolved or not. Accepting a verification record
formally closes the defect or feature. Rejecting a verification also closes the
defect or feature. In this case you might want to open a new defect or
feature if you still want to proceed with the original defect or feature.

Chapter 3. The basics of using TeamConnection 35

“Chapter 4. The states of TeamConnection objects” on page 37 explains in more
detail the various states that different TeamConnection objects can go through
depending on the process that is being followed. A diagram in this chapter shows
the flow of these states. You might want to study this information before you start to
work with defects and features.

Testing and verifying part changes

You can use TeamConnection’s build function to build your program. Before you
check in updated parts, you will probably want to verify the accuracy of your
changes.

The scenarios in “Chapter 5. Working with no component or release processes” on
page 47 and “Chapter 6. Working with component and release processes” on
page 69 include information about testing and verifying part changes. “Part 4. Using
TeamConnection to build applications” on page 117 provides detailed information
about the build function.

36 User’s Guide

Chapter 4. The states of TeamConnection objects

The actions that you can perform on certain TeamConnection objects are controlled
by two factors:

v The process followed by the component and by the release

v The current state of the object

Certain TeamConnection objects follow certain states through their life cycle. An
instance where an object might not follow all the possible states is when it moves
through the states defined in the subprocesses of the component and the release.
The following table briefly lists the component and release subprocesses. For more
information on component and release subprocesses, refer to the Administrator’s
Guide.

Component subprocesses

v dsrDefect - Design, size, and review fixes to be made for defects

v verifyDefect - Verify that defect fixes work

v dsrFeature - Design, size, and review changes to be made for features

v verifyFeature - Verify that feature changes work

Release subprocesses

v track - Relate all part changes to a specific defect or feature and a specific
release

v approval - Require all changes to be approved before incorporating them into a
release

v fix - Use fix records to ensure that all required changes are made

v driver - Use drivers to integrate changes into a release

v test - Require all changes to be tested before they are integrated into the release

This chapter explains the possible states of certain TeamConnection objects and
how objects are moved from one state to the next. It also explains how component
and release subprocesses affect the flow of states. For a diagram showing the flow
of states, refer to the poster Staying on track with VisualAge TeamConnection
processes.

Defects and features

Use defects to report problem information; use features to record information about
proposed design changes. After you open defect or feature, TeamConnection tracks
the progress of the defect or feature through various states. Defects and features
are tracked according to the processes followed by the release and component that
they are assigned to. The possible states for defects and features are:

Open state
When you open a defect or feature, it is in the open state and you are
considered the originator.

You assign the defect or feature to a component. The owner of this
component becomes the feature or defect owner and is responsible for
managing its resolution. The component you open a defect or feature
against should be one that manages the parts affected by the enhancement
or problem. Use the component descriptions and the structure of your

© Copyright IBM Corp. 1992, 1999 37

family’s hierarchy to find the most appropriate component. If you open a
defect or feature in an inappropriate component, the component owner can
reassign it.

While the defect or feature owner is responsible for implementation, the
originator is responsible for verifying that the defect or feature is resolved
correctly.

Returned state
A defect or feature owner can return a defect or feature to its originator. You
can return a feature or defect from the open, design, size, or review state if
you decide that the defect or feature is not feasible or not valid. You can
return a defect or feature back to the working state only if it has no
associated work areas. If there are associated work areas, you must cancel
or undo them before you can return the defect or feature. When you return
a defect or feature, add your reason for returning it so that the originator
and any other users can evaluate why you believe it is not feasible or not
valid.

Canceled state

A feature or defect in the open or returned state can be canceled only by its
originator or by a superuser. A canceled defect or feature remains inactive
unless it is reopened by the originator.

Design state
If the component to which a defect or feature is assigned includes the
dsrDefect or dsrFeature subprocess, you move defects or features in the
open or returned state to the design state.

In this state, the proposed change is designed, and a description of the
design change is entered. The owner must describe the design change
before the defect or feature can move to the next state.

If the release includes the fix subprocess, fix records are automatically
created when a defect or feature is designed.

Size state
Defects or features move to this state after the owner enters design
information.

In this state, users can create a sizing record for each release that contains
parts affected by the enhancement or problem. A sizing record identifies the
work that is required for and the resources affected by the defect or feature.
The owner of the component that is referenced in the sizing record is the
owner of the sizing record. The owner is responsible for entering
information about the amount of work that is required to implement the
feature or resolve the problem.

The sizing record owner can reject the sizing record if it does not affect the
specified component. After all sizing records are either accepted or rejected,
the defect or feature moves to the review state or returns to the design
state if more design information is needed.

Review state
Defects or features move to this state after they have been sized. In this
state, the design text and sizing records are reviewed to determine the
feasibility of the proposal. The owner can do one of the following:

v Accept the defect or feature if all design and sizing records are
acceptable. This moves the defect or feature to the working state.

38 User’s Guide

v Return the defect or feature to the originator if all design and sizing
records are not acceptable. If necessary, the originator can reopen a
defect or feature.

v Move the defect or feature back to the design state if design
modifications are needed.

Working state
Defects or features move to this state when the owner accepts the defect or
feature when it is in the:

v Review state, if the component includes the dsrDefect or dsrFeature
subprocess

v Open state, if the component does not include the dsrDefect or
dsrFeature subprocess

When you accept a defect or feature, you accept the responsibility of
resolving it. A defect or feature might require changes in more than one
release.

What happens after a defect or feature is accepted varies according to the
subprocesses in effect:

Component subprocesses

v dsrDefect or dsrFeature - TeamConnection creates a work area in the
approve state for each release identified in the accepted sizing records
for the defect or feature.

v verifyDefect or verifyFeature - TeamConnection creates verification
records in the notReady state.

Release subprocesses

v fix - TeamConnection creates fix records in the notReady state based on
the sizing records.

v approval - TeamConnection creates approval records for each user on
the release’s approver list.

If the component does not include the dsrDefect or dsrFeature subprocess,
then you must manually create a work area before you can check out or
create parts to address the defect or feature.

Verify state
Defects and features go through the verify state only if their component
includes the verifyDefect or verifyFeature subprocess. Defects and features
are automatically moved to this state when all work areas (there can be
multiple work areas for the defect or feature) for the release are integrated.
If a release is specified on the defect or feature when it was created, then
the defect/feature will only go to the verify state when all the workareas for
the release specified move to complete state.

Note: If you do not intend to fix that defect for the release specified, then
you must move the defect to verify state manually by doing a defect
-verify. This should be done by the originator of the defect.

When a defect or feature is accepted, TeamConnection creates a
verification record. This record lets the originator:

v Accept the fix if the resolution was satisfactory

v Reject the fix if not satisfied with the resolution

Chapter 4. The states of TeamConnection objects 39

v Abstain if unable to assess the resolution

Once all verification records have been accepted or abstained, the defect or
feature moves to the closed state. If a verification record is rejected, the
defect or feature also returns to the closed state. In this case you might
want to open a new defect or feature if you still want to proceed with the
original defect or feature.

A defect or feature can have more than one verification record. For
example, if defect 123 is returned because it is a duplicate of defect 122, a
second verification record is created for defect 122. The originator of defect
123 is the owner of the second verification record for defect 122. If the
originator is the same for both defects, only one verification record is
created.

Note: For a discussion of verification records and test records, see
“Verification and test records” on page 45.

Closed state
The closed state is the final state of a defect or feature.

If the defect is associated with multiple work areas, the defect will remain in
the working state until all of the work areas are integrated.

If the component includes the verifyDefect or verifyFeature subprocess, the
defect or feature automatically moves to the closed state after all
verification records are in the accept or abstain state and all work areas are
in the complete state. If a verification record is rejected, the defect or
feature moves back to the working state. Otherwise, the defect or feature
moves directly from the working state to the closed state when the first
work area moves to the complete state.

You cannot re-open a defect or feature that is in the closed state. If the
defect or feature was not resolved correctly, you must open a new defect or
feature to address the necessary changes.

The states of work areas

A work area is a storage area where you can work on the parts in a release without
affecting the ″official″ versions of those parts. A work area can be associated with a
specific defect or feature, but it does not have to be. These attributes can affect the
state of a workarea:

workareafixhold With the workareafixhold attribute and the fix subprocess, a workarea
will remain in the fix state rather than moving to the integrate state
when the final fix -complete command has been issued. A workarea
-integrate command must be issued to move the workarea into the
integrate state.

workareacommithold If an environment list exists for the release associated with the work
areas, the automatic transition to the test state can be disabled by
including the -workareacommithold attribute in the release process. A
workarea -test command must be issued to move the workarea into
the test state.

workareatesthold With the workareatesthold attribute and the test subprocess, a
workarea will remain in the test state rather than moving to the
complete state when the final test is marked. A workarea -complete
command must be issued to move the workarea into the complete
state.

40 User’s Guide

Approve state
When a work area is created, it goes to this state if the release includes the
approval subprocess. TeamConnection creates an approval record for each
user on the release’s approver list. Each approver indicates their evaluation
of the changes in their approval record:

v Accept that work should continue

v Abstain if unable to assess if work should continue

v Reject if work should not continue

When all approval records are marked as abstain or accept, the work area
goes automatically to the fix state. If any approval record is marked as
reject, the state of the work area remains at approve. You can change
rejected approval records to accept or abstain.

Fix state
If the release does not include the approval subprocess, work areas for the
release begin in the fix state.

While the work area is in this state, parts are checked out to the work area,
changes are made to these parts, and builds are done to verify the
accuracy of the changes.

If the release includes the fix subprocess, any fix records created for a
defect or feature move to the active state when a part change is associated
with the work area for the defect or feature. A fix record monitors the part
changes within a single component. Fix records provide a mechanism for
reviewing all part changes that apply to components before integrating
those changes with changes made for other defects and features.

How fix records are handled varies according to the subprocesses in effect:

Component subprocesses

v dsrDefect or dsrFeature - TeamConnection creates fix records for
features or defects when existing sizing records are accepted.

Release subprocesses

v fix - If a fix record does not already exist for the component,
TeamConnection creates one when a part managed by that component is
checked in to the database.

If neither of these subprocesses are in place and a defect or feature owner
needs to create a work area manually, he or she can create fix records at
the same time. Existing fix records go to the active state when a part is
checked in to the work area.

Fix records provide a way of ensuring that all necessary part changes
within the specified component have been made and are reviewed or
inspected. The fix record owner is responsible for this review. When the fix
record owner is satisfied that the part changes made within that component
are complete and ready for integration with other parts in the release, the
owner marks the fix record as complete. When all existing fix records for a
work area are complete, the work area automatically moves to the integrate
state.

Integrate state
Work areas can be moved to the integrate state as follows. If the release
includes the fix and driver subprocesses, the work area automatically
moves to the integrate state when all fix records are complete. If all fix

Chapter 4. The states of TeamConnection objects 41

records are not complete, you can force a work area to the integrate state,
provided that no part changes are associated with the work area. If the
release does not include the fix and driver subprocesses, you must move
the work area to the integrate state manually.

While a work area is in integrate state, you must add it to an existing driver
as a driver member if the release includes the driver subprocess. All work
areas in the integrate state do not have to be added to the same driver.
The work area stays in the integrate state until the driver in which it is a
member is committed.

You can move work areas from the integrate to the following states,
according the subprocesses in effect:

Release subprocesses

v driver - A work area moves to the commit state when the driver it is a
member of is committed, or to the restrict state when the driver is
restricted. You can also force a work area to the commit state, provided
that no part changes are associated with the work area.

v test - A work area moves to the test state so that test records can be
approved or rejected.

If the release does not include these subprocesses, you can manually
complete a work area in the integrate state.

Restrict state
Work areas can be moved to the restrict state only when the release
includes the driver subprocess. The work area moves automatically to the
restrict state when the driver to which it belongs is restricted. If a work area
in this state is removed from the driver, it returns to the integrate state.
Otherwise, the work area remains in the restrict state until the driver to
which it belongs is committed.

Commit state
Work areas can be moved to the commit state only when the release
includes the driver subprocess. The work area moves automatically to the
commit state when the driver to which it belongs is committed. At this point,
all parts that were changed in this release to resolve the feature or defect
are committed. The work area remains in the commit state until the driver to
which it belongs is completed.

Test state
Work areas can be moved to the test state only when the release includes
the test subprocess. When the associated driver moves to the complete
state or when a work area is committed without a driver, the work area
moves to the test state. The driver is then ready for formal testing in the
specified environments. Test records for the work area are created in the
ready state when the work area moves to the test state. The work area
stays in the test state until all test records are accepted, rejected, or
abstained.

Complete state
The complete state is the final state of a work area; the work area can no
longer be used. If the test subprocess is not included in the release
process, the work area moves directly to this state when the associated
driver is completed or when the work area is explicitly integrated.

42 User’s Guide

When a work area is completed, the feature or defect associated with that
work area automatically moves to the verify or complete state. The defect
does not leave the working state until the work area for that release is
completed.

The states of drivers

Drivers monitor and implement the integration of part changes within a release.
Those part changes are included in a driver by adding the work areas containing
the changed parts to the driver as driver members.

Working state
The working state is the initial state of a driver. While the driver is in this
state, it is not associated with any work areas and, therefore, contains no
part changes.

If the release includes the driver subprocess, drivers can be explicitly
created at any time.

Integrate state
Each driver automatically moves to the integrate state when the first work
area is added to it as a driver member. If all work areas are removed from
the driver, the driver automatically returns to the working state.

Work areas can be added to drivers as driver members when the driver is
in the working, integrate, or restrict state and the work area is in the fix
state. Adding driver members to a driver in restrict state requires proper
authority.

You can extract the driver when it is in the integrate state; however, only
those parts that were changed in reference to driver members are
extracted. This is referred to as extracting a delta part tree.

Restrict state
Before a driver is committed, you can move it to the restrict state. While a
driver is in this state, work areas in the integrate state can be created for or
deleted from the driver by only a superuser or an individual with the special
authority of memberCreateR or memberDeleteR. This allows a build
administrator to have better control over what is being built. The build
administrator can delete driver members that are causing build errors or
add driver members to fix build errors. You can then commit an error-free
driver.

When a driver moves to the restrict state, all work areas that are included
as driver members also move to the restrict state.

Commit state
Committing a driver commits all work areas included as driver members
and all parts that were changed in reference to those work areas.
TeamConnection commits only a successfully built driver. Committing a
driver changes it to the commit state. You can, however, manually commit
the driver. You can also commit an unsuccessful driver by using the force
option.

When a driver moves to the commit state, all work areas that are included
as driver members also move to the commit state. When a work area is in
the commit state, all part changes associated with the work area become
the ″official″ versions of the parts in the release and are visible to all users
of the release.

Chapter 4. The states of TeamConnection objects 43

A committed driver can be extracted as a full part tree as well as a delta
part tree. A full part tree is the part structure of all the parts within the
release.

Complete state
The complete state is the final state of a driver. In this state, the driver is
ready for formal testing in the specified environments.

If the release includes the test subprocess, the work areas that are included
as driver members move to the test state. Any existing test records for the
work area move to the ready state when the work area moves to the test
state. The work area stays in the test state until all test records are
accepted, rejected, or abstained.

Test records are used to record the outcome of environment tests for
changes implemented in a driver. This record lets the owner:

v Accept the record if the test was satisfactory

v Reject the record if not satisfied with the test results

v Abstain if unable to assess the results

Once all test records have been accepted or abstained, the states of other
objects change as follows:

v Work areas - Go to complete state.

v Defects and features - Go to verify state if the component includes the
verifyDefect or verifyFeature subprocess; otherwise they go to the closed
state.

v Verification records - Go to ready state and are sent to the defect or
feature originators.

If the test subprocess is not configured, then work areas move to the
complete state and any defects or features move to the verify state.

If the component includes a verifyFeature or verifyDefect subprocess,
verification records move to the ready state and notification is sent to the
originators of any defects or features that were addressed in the completed
driver.

The commit and complete states of drivers differ as follows:

v When a driver is committed, all work areas are committed, but no
changes occur in the states of defects or features associated with the
work areas.

v When a driver is completed, then the states of other associated objects
(such as test records, work areas, verification records, defects. and
features) change according to the other subprocesses in effect:

– test - Work areas go to the test state and test records are created in
the ready state for each environment in the release’s environment list.

– verify - Verification records go to the ready state.

If the release includes neither of these subprocesses, then the work area
goes to the complete state and all features and defects associated with
the work area are closed.

44 User’s Guide

Verification and test records

If you use both the verify component subprocess (verifyDefect or verifyFeature) and
the test release subprocess, then TeamConnection creates both verification records
for features or defects and test records for each environment defined in the
release’s environment list. These records serve different purposes:

v Verification records provide a means of accepting or rejecting the product
changes made in response to defects or features and are thus specific in nature.

v Test records provide a means of accepting or rejecting the results of a build and
are more global in nature.

These records are handled by different people and enable you to monitor your
development progress in different ways. The sequence of creating and handling
verification and test records is as follows:

1. Verification records are created in the notReady state when a defect or feature
is accepted. This indicates that someone on the development team has begun
implementing the changes warranted by the defect or feature, but the changes
are not yet ready to be verified. A work area is also created for the part
changes.

2. When a driver is committed all part changes associated with the driver members
are integrated into the release.

3. To create test records, the driver is completed. This action creates one test
record for each environment on the release’s environment list. The testers on
your development team use the test records to accept or reject the results of
their tests on the part changes.

4. After all test records have been accepted or abstained, the verification records
are moved to the ready state. This indicates that the part changes have been
tested in the context of the build and each individual defect or feature is ready
to be accepted or rejected by the person who opened it.

5. The defect or feature originator accepts or abstains the verification record to
close the defect or feature. The originator can also reject the verification record
to move the defect or feature back to working state.

Chapter 4. The states of TeamConnection objects 45

46 User’s Guide

Chapter 5. Working with no component or release processes

To illustrate how to work with objects in a release that does not follow a tracking
process or component processes, this chapter follows an example of a
programming team that is developing the control systems for a robot. They are
working in a family called robot.

Instructions for performing the task are given for both the graphical user interface
(GUI) and the command line interface (Command).

This chapter illustrates two scenarios: working in serial development and working in
concurrent development. Working in serial development means that after you check
out a part, TeamConnection locks the part so that it cannot be updated by anyone
else. Compare this to concurrent development, in which more than one person can
simultaneously update the same part.

The following table directs you to the scenario you need:

For this scenario, Go to this
page.

Working in serial development 47

Working in concurrent development 63

Working in serial development

Alex is one of the programmers working on the robot application within a release
called robot_control. The release does not follow a tracking process, and the
release supports serial development. Even though the release does not follow a
tracking process, defects are opened when problems are found.

This example assumes that the parts that Alex will work with have already been
created in the release, and the build tree has been established. The build tree
shows the hierarchy of objects that take part in the build of an application. It
identifies parts as inputs, outputs, and dependencies of a build. For more
information about build trees, see “Working with a build tree” on page 123 or
“Creating the build tree for the application” on page 167.

This example also assumes that the family named robot has been defined in the
TC_FAMILY environment variable. Because Alex accesses information in several
releases, he has not defined the release named robot_control. Therefore, he must
explicitly identify the release when performing TeamConnection actions, but not the
family.

A fellow team member, Carol, has discovered that the robot’s aperture is not
working correctly. To address this problem, she opens a defect. To fix the problem,
Alex needs to make some modifications to the parts in this release. This fix will
require the tasks noted in the following table:

For information about this task, Go to this
page.

Accepting the defect 48

Creating a work area 49

© Copyright IBM Corp. 1992, 1999 47

For information about this task, Go to this
page.

Checking out a part 50

Searching for a part 51

Checking in a part 53

Verifying and testing part updates 54

Freezing the work area 58

Refreshing the work area 59

Building the application 60

Integrating the work area 61

Closing the defect 62

Accepting a defect

Alex is notified via electronic mail that defect 310 has been opened against the
robot component. After some research, he agrees that there is a problem with the
aperture of the robot’s on-board camera, so he accepts the defect. Alex does one of
the following:

GUI

From the GUI, he:

1. Selects Defects → Accept from the Actions pull-down menu on the Tasks
window. The Accept Defects window appears.

Note: The Accept Defects window in this example may be different than one
you may see based on your environment. Configurable fields may or may
not be shown depending on any configurable fields set by you or your
administrator,

2. Types 310 in the Defects field and selects program_defect from the Answer
list.

3. Selects OK.

Command

Figure 6. Accept Defects window

48 User’s Guide

From a command line, he issues the following command:
teamc defect -accept 310 -answer program_defect

Result

The defect goes to the working state.

Creating a work area

Because the component is not following a design, size, and review process, Alex
needs to manually create a work area in which to modify and build his parts. (If the
component follows a design, size, and review process, a work area is automatically
created when the defect moves to the working state, provided that sizing records
have been accepted for the defect.)

Before Alex checks out any parts, he creates a work area that will contain the latest
view of the parts in the release by doing one of the following:

GUI

From the GUI, he:

1. Selects Work areas → Create from the Actions pull-down menu on the Tasks
window.

2. Types 310 in the Work areas field and robot_control in the Releases field and
selects OK..

Note: 310 is the name of the defect that was opened for the problem, so this is
how Alex wants to identify the work area.

Command

From a command line, he issues the following command:
teamc workarea -create -name 310 -release robot_control

Result

TeamConnection creates a work area named 310 associated with release
robot_control. The following parts are currently available in the latest view of
release robot_control:

Figure 7. Create Work Areas window

Chapter 5. Working with no component or release processes 49

brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c
hand.c optics.obj
hand.obj

These parts are also visible in the work area 310 because the work area is
associated with the release upon creation, and it contains the latest view of the
entire release.

Checking out a part

Alex wants to update a subroutine within optics.c, which controls the aperture of the
robot’s on-board camera. He checks the part out to start the modifications.

Because Alex knows the exact name of the part, he does one of the following:

GUI

From the GUI, he:

1. Selects Parts → Check out from the Actions pull-down menu on the Tasks
window.

2. Types the following:

v optics.c in the Path names field

v robot_control in the Release field

v 310 in the Work area field

3. Selects OK.

Command

From a command line, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 310

Result

A copy of the part optics.c is checked out from TeamConnection and placed in the
directory specified on the Environment page of the Settings notebook of Alex’s
TeamConnection client. The part, optics.c, is locked. No other user can update the
part until Alex integrates his work area with the release.

Figure 8. Check Out Parts window

50 User’s Guide

Searching for a part

Because Alex knows exactly what part he wants to check out, he specifies the
name of the part. If he does not know the name, Alex can use the Parts Filter
window or the report command to search for the name. He can do one of the
following:

GUI

From the GUI, he:

1. Selects Parts → Parts from the Objects pull-down menu on the Tasks window.

He does not select the PartFull choice because he wants to limit his search to
a particular release and work area. He uses PartFull when he wants to search
for parts across releases, components, or work areas.

2. Types the following in the Parts Filter window:

v robot_control in the Release field

v 310 in the Work area field

v % in the Base names field and selects like

3. Selects Save to Task List .

Alex does this because he realizes that he is going to use this query many
times, so he wants to add the query to the Tasks window.

4. Adds the necessary information to the Edit Task List window, and selects
Add/Change .

5. Closes the Edit Task List window. The Tasks window appears.

Figure 9. Part Filter window

Chapter 5. Working with no component or release processes 51

6. Double-clicks on the task entry he just created. The Parts window appears.

Hereafter, to display the list of parts in his work area, he merely double-clicks on
the task entry.

7. Places the mouse pointer over the part name optics.c and presses mouse
button 2 to display the pop-up menu.

8. Selects Check out . The Check Out Parts window appears with the required
fields pre-filled. If Alex provided directory information on the Environment page
of the Settings notebook, the Destination directory field is pre-filled also.

9. Selects OK to check out the part.

Command

From a command line, he issues the following command:
teamc report -view partView -where "baseName like '%.c'" -release robot_control
-workArea 310

This command returns a list of all the parts that match the query. After Alex
determines which part he wants to check out, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 310

Result

A copy of the part optics.c is checked out from TeamConnection and placed in the
appropriate directory. The part optics.c is locked. No other user can update the part
until Alex integrates the work area with the release.

Figure 10. Edit Task List window

52 User’s Guide

Checking in a part

Alex edits the part, making the modifications he thinks necessary. Now, he wants to
test the modifications. First, he checks the changed part back into his work area.

GUI

From the GUI, he:

1. Selects Parts → Check in from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Check In Parts window, and then selects OK:

v optics.c in the Path names field

v robot_control in the Release field

v 310 in the Work area field

Note: Alex follows these steps because he knows the exact name of the part that
he is checking in. If he does not know the name, or if he is checking in many
parts, he can instead do one of the following to display a list of parts:

v Select the entry on his Tasks window that displays the list of parts.

v Re-open the Parts window if it was previously minimized.

v Add an entry to his Tasks window that lists all of his checked-out parts.

He then selects the parts that he wants to check in.

Command

From a command line, he issues the following command:
teamc part -checkin optics.c -release robot_control -workarea 310

Result

Figure 11. Check In Parts window

Chapter 5. Working with no component or release processes 53

At this point, it is important to note that the part is checked in to work area 310 and
is visible in work area 310 only. The change to optics.c is not visible at the release
level or to any other work area. Only the 310 work area contains the change, which
is why Alex must specify the work area on the check-out command. Because
changes to parts are isolated within work areas, the check-out command must
specify which work area to use so that the correct copy of the part is retrieved.

Thus, work area 310 contains the following parts:
brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c (modification 1)
hand.c optics.obj
hand.obj

Work area 310 continues to contain the unchanged parts from the requested
release view, but now the work area is overlaid with changes local to the work area
— optics.c in this case. Alex has his own copy of the application that he can modify
without impacting other developers. Alex has checked in optics.c; however, the
modified part remains locked until the work area is integrated with the release.

Verifying and testing part updates

Alex now requests a build of brain.exe, the high-level program for the robot control
application.

GUI

From the GUI, he:

1. Selects Parts → Build from the Actions pull-down menu. The Build Parts window
appears.

2. Types the following, and then selects OK to start the build:

v brain.exe in the Path name field

v robot_control in the Release field

v 310 in the Work area field

v normal in the Pool field

The Pool field tells TeamConnection which set of build agents will handle this
build. Alex got the name of the pool from his build administrator.

Alex could have selected brain.exe from a list of parts on the Parts window, and
then selected Build from the Selected pull-down menu. This action would have
placed some information in the fields, such as the path name and release
name.

54 User’s Guide

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 310 -pool normal

Result

TeamConnection determines the parts that are needed for the build from the set of
all the part versions that are currently visible from work area 310. The following part
versions are selected for build:
brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c (modification 1)
hand.c optics.obj
hand.obj

After the build is complete, TeamConnection stores the resulting outputs of the build
in the work area 310. After the build, the work area contains these parts:
brain.c leg.c
brain.obj leg.obj
brain.exe (contains modification 1) foot.c
arm.c foot.obj
arm.obj optics.c (modification 1)
hand.c optics.obj (modification 1)
hand.obj

Note: For a detailed build example, see “Chapter 15. Building an application: an
example” on page 165.

Extracting a part

Next, Alex tests his modifications in the robot prototype in his office. He extracts the
executable part from the work area 310.

GUI

From the GUI, he:

1. Selects Parts → Extract from the Actions pull-down menu on the Tasks window.

Figure 12. Build Parts window

Chapter 5. Working with no component or release processes 55

2. Types the following in the Extract Parts window, and then selects OK:

v brain.exe in the Path names field

v robot_control in the Release field

v 310 in the Work area field

Alex does this because he wants to extract the .exe part that is in his work
area. If he leaves the Work area field blank, he gets the latest committed
version of the .exe part from the release.

Command

From a command line, he issues the following command:
teamc part -extract brain.exe -release robot_control -workarea 310

Result

This action places a copy of the part brain.exe in the current directory.

Checking out the part one more time

Alex then downloads brain.exe to his robot, runs his test, and determines that the
modification did not work: the robot slams into the wall. However, Alex thinks he
knows what the problem is, so he needs optics.c for further modifications. First, he
checks out the part.

GUI

From the GUI, he:

1. Does one of the following to display the Check Out Parts window:

v Selects Parts → Check out from the Actions pull-down menu on the Tasks
window.

v Selects the entry on his Tasks window that displays the list of parts, and then
selects the part.

v Re-opens the Parts window if it was minimized, and then selects the part.

2. When the Check Out Parts window appears, he types the necessary information
and selects OK.

Figure 13. Extract Parts window

56 User’s Guide

Command

From a command line, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 310

Result

A copy of the previously modified optics.c from work area 310 is checked out and
placed in the current directory.

Checking the part back in

Alex makes his modification and checks the part in.

GUI

From the GUI, he:

1. Does one of the following to display the Check In Parts window:

v Selects Parts → Check in from the Actions pull-down menu on the Tasks
window.

v Selects the entry on his Tasks window that displays all the parts he has
checked out, and then selects the part.

v Re-opens the Parts window if it was minimized, and then selects the part.

2. When the Check In Parts window appears, he types the necessary information
and selects OK.

Figure 14. Check Out Parts

Chapter 5. Working with no component or release processes 57

Command

From a command line, he issues the following command:
teamc part -checkin optics.c -release robot_control -workarea 310

Result

Now the work area contains the following parts:
brain.c leg.c
brain.obj leg.obj
brain.exe (contains modification 1) foot.c
arm.c foot.obj
arm.obj optics.c (modification 2)
hand.c optics.obj (modification 1)
hand.obj

Because Alex did not specify that he wanted to save a copy of the work area by
freezing it, optics.c (modification 1) was overwritten.

Freezing the work area

Alex builds the application again, extracts the executable part, and runs his test.
This time, everything works, and the robot successfully finds its way to the snack
machine down the hall without hitting anything. Alex is very pleased, but he notices
an unrelated problem in the robot’s autofocus system. Before Alex begins repairing
the autofocus subroutine, he wants to save a copy of the application as it exists
now in his work area. So, Alex does one of the following to freeze the work area:

GUI

From the GUI, he:

1. Displays the Freeze Work Areas window in one of the following ways:

Figure 15. Check In Parts window

58 User’s Guide

v Selects Work areas → Freeze on the Actions pull-down menu from the Tasks
window.

v Selects 310 from the list of work areas on the Work Areas window, then
selects Freeze from the Selected pull-down menu.

2. Types 310 in the Work areas field and robot_control in the Releases field if
the data is not already in the fields.

3. Selects OK.

Command

From a command line, he issues the following command:
teamc workarea -freeze 310 -release robot_control

Result

The freeze command saves the work area 310. Thus, TeamConnection takes a
snapshot of the work area, with all its parts and their visible versions, and saves it.
Alex can come back to this stage of development in the work area if he wants.
Note, however, that a freeze action does not make the changes visible to the other
people working in the release, nor does it unlock the parts.

Refreshing the work area

Alex finally finishes his work on the robot’s optical systems after making three
additional attempts at modifying optics.c and rebuilding the application. Alex
modified and rebuilt the application a total of five times in the work area. Now, he
wants to share his work with the rest of the team. His work area currently contains
the following parts:
brain.c leg.c
brain.obj leg.obj
brain.exe (contains modification 5) foot.c
arm.c foot.obj
arm.obj optics.c (modification 5)
hand.c optics.obj (modification 5)
hand.obj

While Alex worked in his work area, other members of the team were working on
their own modifications. Some of these modifications have been integrated with the
release, so the copy of the release that Alex has is probably stale. If he were to
integrate his changes at this time with the release, he might cause the application
to break.

Alex first refreshes his work area with parts from the release by doing one of the
following:

GUI

Figure 16. Freeze Work Areas window

Chapter 5. Working with no component or release processes 59

From the GUI, he:

1. Selects Work areas → Refresh from the Actions pull-down menu on the Tasks
window.

2. Types 310 in the Work areas field and robot_control in the Releases field.

Alex wants to refresh from the release, so he does not specify a source.

3. Selects OK.

Command

From a command line, he issues the following command:
teamc workarea -refresh 310 -release robot_control

Result

This action updates work area 310 with any changes from the release, and it also
freezes work area 310, if it is not already frozen. Now Alex’s work area contains the
following versions of parts:
brain.c (Jenny's modification) leg.c
brain.obj (from Alex's build after refresh) leg.obj
brain.exe (contains modification 5) foot.c
arm.c foot.obj
arm.obj optics.c (modification 5)
hand.c (Joy's and Ken's modification) optics.obj (modification 5)
hand.obj (from Alex's build after refresh)

None of the objects that Alex modified and none of the objects built as a result of
Alex’s modifications is overwritten by the refresh.

Building the application

Alex again builds the application brain.exe within his work area to determine
whether his changes integrate with Jenny’s, Joy’s, and Ken’s modifications.

GUI

Alex has a Parts window open with a list of all the parts that exist in work area 310.
He highlights the part brain.exe, and then does the following:

1. Selects Build from the Selected pull-down menu.

2. Types normal in the Pool field. The other required fields have the correct
information.

3. Selects OK to start the build.

Figure 17. Refresh Work Areas window

60 User’s Guide

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 310 -pool normal

Result

Fortunately, nothing breaks, so Alex is ready to integrate his changes with the
release.

Integrating the work area

To integrate his changes with the release, Alex must integrate the work area he has
been using with the release. This will make the work area visible to all the users in
the release. He does one of the following:

GUI

From the GUI, he:

1. Selects Work areas → Integrate from the Actions pull-down menu on the Tasks
window. The Integrate Work Areas window appears.

2. Types 310 in the Work areas field and robot_control in the Releases field.

3. Selects OK.

Command

Figure 18. Build Parts window

Figure 19. Integrate Work Areas window

Chapter 5. Working with no component or release processes 61

From a command line, he issues the following command:
teamc workarea -integrate 310 -release robot_control

Result

TeamConnection first determines that Alex’s changes were built against the latest
version of the release. Then TeamConnection makes Alex’s changes visible at the
release level so that the other team members can see and use them. The following
part versions are now visible from the release:
brain.c (Jenny's modification)
brain.obj (from Jenny's build)
brain.exe (from Alex's build)
arm.c
arm.obj
hand.c (Joy's modification, Ken's modification)
hand.obj (from Ken's build)
leg.c
leg.obj
foot.c
foot.obj
optics.c (Alex's modification 5)
optics.obj (from Alex's build)

TeamConnection also makes a copy of the release before integrating Alex’s
changes. If something doesn’t work, the users or the administrator can go back to
the release prior to Alex’s integration. The part, optics.c, is now unlocked in the
release. The work area is now in the complete state and can no longer be used.

Closing a defect

Now that Alex is finished making changes to fix the problem reported in defect 310,
he is ready to close the defect. He does one of the following:

GUI

From the GUI, he:

1. Selects Defects → Verify from the Actions pull-down menu on the Tasks window.
The Verify Defects window appears.

2. Types 310 in the Defects field.

3. Selects OK.

Command

From a command line, he issues the following command:

Figure 20. Verify Defects window

62 User’s Guide

teamc defect -verify 310 -release robot_control

Result

Because the component does not include the verifyDefect subprocess in its
process, the defect moves directly to the closed state.

Working in concurrent development

The previous section discussed working in a serial development environment. While
Alex had optics.c in his work area, no one else on the team could check out the
part. TeamConnection allows you to hold the part until you are sure that it integrates
with the rest of the application. Therefore, the lock is not released until the work
area as a whole is integrated with the release.

The scenario changes slightly for concurrent development. In this case, several
users can work on the same part at the same time. These users must reconcile
their changes as they integrate their work areas with the release.

The following tasks are required:

For information about this task, Go to this
page.

Refreshing the work area from the driver 63

Integrating the work area 64

Resolving differences 65

Refreshing the work area from the driver

If Alex and Jenny are working on optics.c at the same time, they must resolve their
part differences at some point, because both want to make their changes visible to
the release. If Alex and Jenny were not required to do this before committing their
work areas, the last developer to commit would always overlay the other’s changes.
For this scenario, assume that Jenny finishes her changes first. The first thing she
does is refresh her work area.

GUI

From the GUI, she:

1. Selects Work areas → Refresh from the Actions pull-down menu on the Tasks
window.

2. Types 415 in the Work areas field.

3. Types robot_control in the Releases field. Jenny wants to refresh from the
driver.

4. Types driver name in the Source field.

5. Selects OK.

Chapter 5. Working with no component or release processes 63

Command

From a command line, she issues the following command:
teamc workarea -refresh 415 -release robot_control

Result

This command refreshes her work area with the latest view of the release. Her work
area now contains the following part versions:
brain.c (Jenny's modification 3)
brain.obj (Jenny's modification 3)
brain.exe (has Jenny's brain.c modification 3 and optics.c modification 4)
arm.c
arm.obj
hand.c (Joy's modification, Ken's modification)
hand.obj (Joy's modification, Ken's modification)
leg.c
leg.obj
foot.c
foot.obj
optics.c (Jenny's modification 4)
optics.obj (Jenny's modification 4)

Integrating the work area

The refresh shows Jenny only the parts integrated with the release. She does not
see Alex’s work because he has not integrated his work area yet. Jenny rebuilds
the application, tests it, and decides she is ready to integrate her changes. She
does one of the following:

GUI

From the GUI, she:

1. Selects Records →Fix records →Complete from the Actions pull-down menu on
the Tasks window. The Complete Fix Records window appears.

2. Types 415 in the Work areas field, robot_control in the Releases field, and
robot_component in the Component field.

3. Selects OK.

Figure 21. Refresh Work Areas window

64 User’s Guide

Command

From a command line, she issues the following command:
teamc workarea -integrate 415 -release robot_control

Result

Because Jenny is up-to-date with the latest view of the driver, her changes are
integrated after TeamConnection preserves a copy of the previous version of the
release.

Reconciling differences

Later, Alex is ready to integrate his modifications. Alex issues a refresh command
from the driver, as Jenny did (see page 63 for instructions).

This time, Alex receives a message that collision records were generated, because
both he and Jenny have updated the same parts. At this time he does not know
which parts collided. TeamConnection refreshes work area 310 with the exception
of the part optics.c, which had the collision. Alex’s work area shows the following
parts:
brain.c (Jenny's modification 3)
brain.obj (Jenny's modification 3)
brain.exe (Contains Alex's modification 5)
arm.c
arm.obj
hand.c (Joy's modification, Ken's modification)
hand.obj (Joy's modification, Ken's modification)
leg.c
leg.obj
foot.c
foot.obj
optics.c (Alex's modification 5)
optics.obj (Alex's modification 5)

Alex can use either the GUI or the command line to reconcile the differences. Four
steps are required from the command line:

1. Check out the latest uncommitted version.

2. Extract the latest committed version.

3. Run the merge program against the two parts.

4. Check in the resultant part.

Figure 22. Integrate Work Areas window

Chapter 5. Working with no component or release processes 65

However, on the GUI the reconcile action automatically does the preceding steps
for you, which can save you a considerable amount of work if several parts require
reconciliation.

GUI

From the GUI, he:

1. Selects Parts → Collision Records from the Objects pull-down menu. The
Collision Record Filter window appears.

2. Types 310 in the Work areas field and selects OK. The Collision Records
window appears with optics.c listed as the part having the collision.

3. Highlights the optics.c entry and selects Reconcile from the pop-up menu. The
Reconcile Collision Record window appears with the required information
pre-filled.

Alex does not have to reconcile every part for which a collision record is
created. He can choose either his copy or the copy at the release rather than
combining the two. For example, if Alex wants to use his copy of optics.c
without merging with the copy at the release level, he selects the reject action
(of course, he would not do that without first talking with Jenny). If he wants to
use the copy of optics.c at the release level without merging any of his changes
into the copy at the release level, he selects the accept action.

4. Because Alex wants to combine the two sets of changes, he selects Merge to
start the TeamConnection merge program, or any merge program of his choice.
Alex merges the changes and then saves and exits from the merge program.
TeamConnection checks the resultant part back in as part of this merge step.

The online help provides information on how to use the merge program.

5. Selects OK from the Reconcile Collision Record window.

Command

From a command line, he does the following steps:

v Issues a report command to determine which parts are in conflict:
teamc report -view collisionView -workarea 310

This report tells him that optics.c is the part that collided and gives the alternate
version ID of the part that caused the collision. Alex makes note of the alternate
version ID, robot_control:2, because he needs to specify that in a later step.

Figure 23. Reconcile Collision Record window

66 User’s Guide

v Extracts a copy of optics.c from the release:
teamc part -extract optics.c -release robot_control -relative d:\temp

By not specifying a work area on the part -extract command, Alex ensures that
he receives the last committed copy of the part at the release. Also, Alex
specifies a relative path for the part extract. By specifying the relative directory,
he prevents TeamConnection from placing the part in his default directory, where
he normally works on checked-out parts. For more information about the -relative
flag, refer to the Commands Reference

v Checks out his copy of optics.c from his work area:
teamc part -checkout optics.c -release robot_control -workarea 310

Because he did not specify a relative path, this part is checked out to his working
directory d:\robot.

v Uses the merge program to reconcile the two copies of optics.c:
tcmerge d:\temp\optics.c d:\robot\optics.c -out

d:\robot\optics.c -prime d:\temp\optics.c

If Alex decides not to merge the two parts, but instead wants to use his copy of
optics.c, he uses the collision -reject command. Or, if he wants to use the copy of
optics.c at the release level, he uses the collision -accept command.

v Checks the resultant copy of optics.c into his work area and builds it against the
rest of the system.

v After he is satisfied with the reconciled changes, he lets TeamConnection know
that the previously discovered conflict is reconciled. Alex does this by completing
the collision record that TeamConnection created when Alex attempted to
integrate his copy of optics.c. He does the following:
teamc collision -reconcile -path optics.c -release robot_control

-workarea 310 -altversion robot_control:2

Result

Alex is now ready to make his changes visible to the release. He can use either the
GUI or the command line to integrate the work area.

He refreshes from the driver again. The integrate is permitted because a completed
collision record exists for the conflict between the two versions of optics.c. However,
if Ken or Joy had integrated a new version of optics.c while Alex was busy resolving
the last collision, Alex’s driver add would fail. He would have to repeat the collision
resolution process.

Chapter 5. Working with no component or release processes 67

68 User’s Guide

Chapter 6. Working with component and release processes

The previous chapter described how to work with parts when the release does not
follow a tracking process. This chapter describes how to work with parts when a
tracking process is followed and how to use component processes for features and
defects.

When tracking is part of the process, users must associate any changes to their
parts with the defects or features active for the release. This association is made
through a work area. The work area is the object that ties a defect or feature with a
specific release. When checking out a part, the user must specify the work area
with which the modification is associated. For any release and defect or feature
pair, there can be multiple work area objects.

Aside from their association with a defect or feature, the work areas for a
full-tracking process environment are identical to those defined for working in a
no-tracking process environment. Work areas maintain a separate view for the user
working on the modifications associated with a defect or feature without affecting
the release. This view can be integrated with the release at some point. A work
area is implicitly created when a defect or feature is accepted if the managing
component follows a design, size, and review process for defects and features and
if a sizing record is created. The work area that TeamConnection creates is based
on the sizing record and has the same name as the defect or feature. If sizing
records were not created, you must explicitly create the work area.

As an example of how this all works, suppose that the robot project from the
previous chapter is entering system test. The administrator decides to turn on a
full-tracking process for the release, such as track_full. This process includes the
track, approval, fix, driver, and test subprocesses. The release follows concurrent
development, and the component follows a design, size, and review process for
both defects and features.

On a weekly basis the project leader, Carol, creates a driver. A driver monitors and
implements the integration of part changes within a release. These part changes
are included in a driver by adding the work areas referenced by the changed parts
to the driver as driver members.

One of the testers for the robot project discovers that the autofocus mechanism in
the robot’s eye fails when the robot is placed in front of striped wallpaper. The
tester must open a defect against the component optics, which is owned by Carol.
Carol verifies that the problem does exist, accepts the defect, and assigns it to Alex.
This fix will require the tasks noted in the following table:

For information about this task, Go to this
page.

Changing the defect owner 70

Accepting the defect 71

Approving the fix 72

Checking out a part 73

Checking in the changes 74

Freezing the work area 75

Building the application 76

© Copyright IBM Corp. 1992, 1999 69

For information about this task, Go to this
page.

Accepting fix records 77

Adding a driver member 78

Returning the work area to the fix state 79

Reactivating the fix record 80

Refreshing the work area 81

Refreshing the driver 81

Building the driver 82

Restricting the driver 83

Integrating the parts 83

Completing the driver 84

Testing the built application 85

Moving through design, size, and review

Because the defect was created against a component that follows the design, size,
and review process for defects, Carol must move the defect through this process
before the defect can be accepted and parts can be checked out. As the names
imply, the process requires that the following be done:

v Design what needs to be done in order to resolve the problem. She must enter
design text before the defect can move to the size state.

v Size the amount of work that is required to resolve the problem. At this time,
Carol creates a sizing record and specifies robot_control as the release that
contains the parts that require changing. If parts in other releases require
changing because of the defect, a sizing record is created for each release. A
sizing record assures that a work area is created when the defect is accepted. It
identifies the work that is required for and the resources affected by the defect or
feature. The owner of the component that is referenced in the sizing record is the
owner of the sizing record. The owner is responsible for entering information
about the amount of work that is required to implement the feature or resolve the
problem.

v Review all design text and sizing records and determine if work should continue
on the defect.

Changing defect ownership

Because Carol is the component owner, she is currently defined as the owner of
defect 456. But the problem is in Alex’s code, so she wants him to own the defect.
To reassign ownership, she does one of the following:

GUI

From the GUI, she:

1. Selects Defects → Modify → Owner from the Actions pull-down menu on the
Tasks window. The Modify Defect Owner window appears.

2. Types 456 in the Defects field and types Alex’s user ID, alexm, in the New
owner field.

70 User’s Guide

3. Selects OK.

Command

From a command line, she issues the following command:
teamc defect -assign 456 -owner alexm

Results

Alex is now the owner of defect 456. He is responsible for fixing the problem and
moving the defect through its various states.

Accepting a defect

When you accept a defect or feature, you accept the responsibility of resolving it. A
defect or feature might require changes in more than one release. If the component
includes the design, size, and review process, these releases were identified during
the size state, and TeamConnection created a work area for each identified release.
If the component does not include the design, size, and review process, you will
need to create a work area manually.

When the first work area moves to the complete state, the defect or feature
automatically moves to the verify state or closed state.

Alex, now the owner of the defect, accepts the defect by doing one of the following:

GUI

From the GUI, he:

1. Selects Defects → Accept from the Actions pull-down menu on the Tasks
window. The Accept Defects window appears.

Note: The Accept Defects window in this example may be different than one
you may see based on your environment. Configurable fields may or may
not be shown depending on any configurable fields set by you or your
administrator,

2. Types 456 in the Defects field and selects program_defect from the Answer
list.

3. Selects OK.

Figure 24. Modify Defect Owner window

Chapter 6. Working with component and release processes 71

Command

From a command line, he issues the following command:
teamc defect -accept 456 -answer program_defect

Results

Defect 456 moves to working state, and TeamConnection creates a work area
called 456. The work area is associated with the release specified on the sizing
record, which in this example is robot_control. When the work area is created, a fix
record is also created based on the sizing record. Because the approval
subprocess is included in the release’s process, the work area is created in the
approve state and the fix record is created in the notReady state.

Just as with a work area that is explicitly created, the defect work area contains a
view of the current versions visible to the release. In this case, the contents of the
work area are:
brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c
hand.c optics.obj
hand.obj

Approving the fix

Because the full-tracking process includes the approval subprocess, each person
identified on the approval list must approve the proposed changes before Alex can
begin work on the defect.

Linda and Sam are both listed as approvers. They have been notified by
TeamConnection that they have approval records. After reviewing the defect, they
do one of the following to indicate their approval:

GUI

From the GUI, they:

Figure 25. Accept Defects window

72 User’s Guide

1. Select Records → Approval records → Accept from the Actions pull-down
menu.

2. Type 456 in the Work areas field and robot_control in the Release field.

3. Select OK.

Command

From a command line, they both issue the following command for the approval
record that they have:
teamc approval -accept -workarea 456 -release robot_control

Results

After both Linda and Sam accept the approval records, TeamConnection moves the
work area to the fix state.

Checking out a part

Now that the approval records have been accepted, Alex can check out the
necessary parts. He decides that modifications are again required to the part
optics.c. So, that is the part he checks out.

Alex must specify the work area on the check-out command so that the part is
obtained from the defect’s work area. He does one of the following:

GUI

From the GUI, he:

1. Selects Parts → Check out from the Actions pull-down menu on the Tasks
window.

2. Types the following:

v optics.c in the Path names field

v robot_control in the Release field

v 456 in the Work area field

v d:\robot\src in the Destination directory field

3. Selects OK.

Figure 26. Accept Approval Records window

Chapter 6. Working with component and release processes 73

Command

From a command line, he issues the following command:
teamc part -checkout optics.c -release robot_control -workarea 456
-relative d:\robot\src

Results

A copy of the part optics.c is checked out from TeamConnection and placed in the
directory d:\robot\src. If the directory name is not specified in the command,
TeamConnection uses the directory specified in the TC_RELATIVE environment
variable. Because the release is following concurrent development mode, other
users can also check out and change this part while Alex has it checked out.

Checking in the changes

Alex makes his modifications and wants to test his corrections. First, he must check
the part into the work area. He does one of the following:

GUI

From the GUI, he:

1. Selects Parts → Check in from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Check In Parts window, and then selects OK:

v optics.c in the Path names field

v robot_control in the Release field

v 456 in the Work areas field

v d:\robot\src in the Source directory field

Figure 27. Check Out Parts window

74 User’s Guide

Note: Alex follows these steps because he knows the exact name of the part that
he is checking in. If he does not know the name, or if he is checking in many
parts, he can instead do one of the following to display a list of parts:

v Select the entry on his Tasks window that displays the list of parts.

v Re-open the Parts window if it was previously minimized.

v Add an entry to his Tasks window that lists all of his checked-out parts.

He then selects the parts that he wants to check in.

Command

From a command line, he issues the following command:
teamc part -checkin optics.c -release robot_control -workarea 456

Results

Now the work area contains the following part versions:
brain.c leg.c
brain.obj leg.obj
brain.exe foot.c
arm.c foot.obj
arm.obj optics.c (Alex's modification 1)
hand.c optics.obj
hand.obj

Freezing the work area

Alex now wants to save, or freeze, the working system. He does one of the
following:

GUI

From the GUI, he:

Figure 28. Check In Parts window

Chapter 6. Working with component and release processes 75

1. Displays the Freeze Work Areas window in one of the following ways:

v Selects Work areas → Freeze from the Actions pull-down menu on the Tasks
window.

v Selects Work areas from the Objects pull-down menu on the Tasks window.
Types the appropriate search information on the Work Area Filter window to
get a list of work areas. Selects 456 from the list of work areas on the Work
Areas window, and then selects Freeze from the Selected pull-down menu.
This method is useful when you are going to be working with several work
areas or you are unsure of the work area name.

2. Types 456 in the Work areas field and robot_control in the Releases field if
the information is not already there.

3. Selects OK.

Command

From a command line, he issues the following command:
teamc workarea -freeze 456 -release robot_control

Results

The freeze command saves the work area 456. Thus, TeamConnection takes a
snapshot of the work area, with all its parts and their visible versions, and saves it.
Note, however, that a freeze action does not make the changes visible to the other
people working in the release. This does not occur until the work area is integrated.

Building the application

Alex now builds the application to verify that the changes he has made have fixed
the problem. He does one of the following:

GUI

From the GUI:

Alex has a Parts window open with a list of all the parts that exist in work area 456.
He highlights the part brain.exe and then does the following:

1. Selects Build from the Selected pull-down menu.

2. Types normal in the Pool field. The other required fields are pre-filled with the
correct information.

3. Selects OK to start the build.

Figure 29. Freeze Work Areas window

76 User’s Guide

Command

From a command line, he issues the following command:
teamc part -build brain.exe -release robot_control -workarea 456 -pool normal

Results

Alex builds the application and tests the results. The modification seems to solve
the problem.

Note: For a detailed build example, see “Chapter 15. Building an application: an
example” on page 165.

Accepting fix records

Alex is satisfied that the changes are complete and the part is ready to be
integrated with other parts in the release. He does one of the following:

GUI

From the GUI, he:

1. Selects Records → Fix records → Complete from the Actions pull-down menu
on the Tasks window.

2. Types the following in the Complete Fix Records window, and then selects OK:

v 456 in the Work areas field

v robot_control in the Releases field

v optics in the Component field

Figure 30. Build Parts window

Chapter 6. Working with component and release processes 77

Command

From a command line, he issues the following command:
teamc fix -complete -workarea 456 -component optics -release robot_control

Results

The fix record moves to the complete state. Because only one fix record was
generated for this defect, the work area moves to the integrate state at the same
time. When more than one fix record exists, they all must be completed before the
work area moves to the integrate state.

Integrating changed parts into a release

The changes that Alex has made are now ready to be put into the next set of
changes scheduled to be integrated with the release. This set of changes is known
as a driver.

A driver named 0105 currently exists, and several driver members have already
been added to the driver. Therefore, the driver is in the integrate state.

Adding a driver member

Carol, the project lead, adds work area 456 as a driver member of driver 0105:

GUI

From the GUI, she:

1. Selects Drivers → Add driver members from the Actions pull-down menu on
the Tasks window.

2. Types the following:

v 0105 in the Driver field

v robot_control in the Release field

v 456 in the Work areas field

3. Selects OK.

Figure 31. Complete Fix Records window

78 User’s Guide

Command

From a command line, she issues the following command:
teamc driverMember -create -driver 0105 -workarea 456 -release robot_control

Results

Carol previously created a driver member for driver 0105 that included changes to
optics.c, so Carol is notified that collisions were detected. (Remember, the release
is in concurrent development mode.)

Carol deletes the driver member for work area 456. She then asks Alex to reconcile
the collisions.

Reconciling the differences

Before Alex can reconcile the differences, he needs to do the following:

1. Return the work area to the fix state

2. Reactivate the fix record

3. Refresh his work area

Returning the work area to the fix state

The first step in reconciling the differences is for Alex to return work area 456 to the
fix state. He does one of the following:

GUI

From the GUI, he:

1. Selects Work area → Fix from the Actions pull-down menu on the Tasks window.

2. Types 456 in the Work areas field and robot_control in the Releases field.

3. Selects OK.

Figure 32. Add Driver Members window

Chapter 6. Working with component and release processes 79

Command

From a command line, he issues the following command:
teamc workarea -fix 456 -release robot_control

Results

Work area 456 is in the fix state. After the fix record is reactivated, Alex will check
out optics.c from this work area to reconcile the differences.

Reactivating the fix record

Currently, the fix record for work area 456 is in the complete state. Alex must
reactivate the fix record to move it back to the active state so that he can make the
necessary changes to optics.c. He does one of the following:

GUI

From the GUI, he:

1. Selects Records → Fix records → Activate from the Actions pull-down menu on
the Tasks window.

2. Types 456 in the Work areas field and selects robot_control from the
Releases field and optics from the Component field.

3. Selects OK.

Command

From a command line, he issues the following command:
teamc fix -activate 456 -release robot_control -component optics

Results

The fix record returns to the active state.

Figure 33. Fix Work Areas window

Figure 34. Activate Fix Records window

80 User’s Guide

Refreshing the work area

Alex now needs to refresh his work area with the parts that are already in driver
0105. He does one of the following:

GUI

From the GUI, he:

1. Selects Work areas → Refresh from the Actions pull-down menu on the Tasks
window.

2. Types the following in the Refresh Work Areas window and selects OK:

v 456 in the Work areas field

v robot_control in the Releases field

v 0105 in the Source field

Command

From a command line, he issues the following command:
teamc workarea -refresh 456 -release robot_control -source 0105

Results

TeamConnection notifies Alex of the collision, so his next step is to reconcile the
differences. He follows the same procedure that is described on page 65.

Alex completes the fix record and then tells Carol that he has reconciled the part
differences and that she can now create the driver member. She creates the driver
member without any collisions this time.

Refreshing the driver

Carol is ready to integrate the changes in driver 0105 with the release. Because
other team leads have integrated changes as well, she wants to build her driver
with the most current release part versions. She does one of the following:

GUI

From the GUI, she:

1. Selects Drivers → Refresh from the Actions pull-down menu on the Tasks
window.

2. Types 0105 in the Drivers field and robot_control in the Release field.

3. Selects OK.

Figure 35. Refresh Work Areas window

Chapter 6. Working with component and release processes 81

Command

From a command line, she issues the following command:
teamc driver -refresh 0105 -release robot_control

Results

This command refreshes driver 0105 with any committed updates to the release.

Building the driver

Carol builds the application using the parts current to driver 0105. She does one of
the following:

GUI

From the GUI, she:

1. Selects Build from the Action pull-down menu on the Tasks window.

2. Types the following in the Build Parts window:

v brain.exe in the Path name field.

v robot_control in the Release field.

v 0105 in the Work area field.

v normal in the Pool field.

3. Selects OK to start the build.

Figure 36. Refresh Drivers window

Figure 37. Build Parts window

82 User’s Guide

Command

From a command line, she issues the following command:
teamc part -build brain.exe -release robot_control -workarea 0105 -pool normal

Results

Carol runs some simple regression tests to verify that the application built properly.
She is satisfied with the results, and is ready for the next step — committing the
driver changes to the release.

Restricting the driver

After all changes have been integrated with the release, Carol needs to make some
final changes before building the driver. To enable her to make these changes while
protecting the driver from access by anyone else, she needs to restrict access to it.
She does one of the following:

GUI

From the GUI, she:

1. Selects Drivers → Restrict from the Actions pull-down menu on the Tasks
window.

2. Types 0105 in the Drivers field and robot_control in the Release field.

3. Selects OK.

Command

From a command line, she issues the following command:
teamc driver -restrict 0105 -release robot_control

Results

This command restricts driver 0105 so that only Carol is able to make changes to it.
Carol is now ready to build the application.

Integrating the parts

Carol commits the changes in the driver to the release by doing one of the
following:

GUI

From the GUI, she:

Figure 38. Restrict Drivers window

Chapter 6. Working with component and release processes 83

1. Selects Drivers → Commit from the Actions pull-down menu on the Tasks
window.

2. Types 0105 in the Drivers field and robot_control in the Release field.

3. Selects OK.

Command

From a command line, she issues the following command:
teamc driver -commit 0105 -release robot_control

Results

TeamConnection moves the part versions associated with driver 0105 into the
release. Other members of the team can now view the changes. Committing a
driver commits all work areas designated as driver members and all parts changed
in reference to those work areas.

Completing the driver

The driver is ready for formal testing in the specified release’s environment list.
Testing is tracked using test records for each environment in which testing is to be
done. To create the test records, Carol must complete the driver.

GUI

From the GUI, she:

1. Selects Drivers → Complete from the Actions pull-down menu on the Tasks
window.

2. Types 0105 in the Drivers field, and selects robot_control from the Release
field.

3. Selects OK.

Command

Figure 39. Commit Drivers window

Figure 40. Complete Drivers window

84 User’s Guide

From a command line, she issues the following command:
teamc driver -complete 0105 -release robot_control

Results

All the work areas in the driver are changed to the test state, and test records are
created.

Testing the built application

Annmarie is the tester for the MVS version of the robot application. When she
receives notification that the test record is in the ready state, she tests the part
changes that were made within the release by Alex and several of his team
members. The tests complete successfully, so she accepts the test record by doing
one of the following:

GUI

From the GUI, she:

1. Selects Records → Test records → Accept from the Actions pull-down menu on
the Tasks window.

2. Types 456 in the Work areas field, and selects robot_control from the
Releases field and MVS from the Environments field.

3. Selects OK.

Command

From a command line, she issues the following command:
teamc test -accept -workarea 456 -release robot_control -env mvs

Results

Annmarie’s test record moves to the accept state. However, work area 456 will not
go to the complete state until Tim, who is the tester for the OS/2 environment,
marks his test record.

After all test records are moved from the ready state, the work area moves to the
complete state. Because the component process includes the verifyDefect
subprocess, defect 456 moves to the verify state. A verification record for the defect
is created in the ready state.

Figure 41. Accept Test Records window

Chapter 6. Working with component and release processes 85

Using a configured process

The scenarios in this chapter and the preceding chapter illustrate one release with
no process management enabled and another release with full process
management enabled. However, administrators can define a release that requires
users to work with some intermediate level of process management. That is, the
administrator can remove some of the subprocesses from the full-tracking scenario.

For example, the administrator might want to eliminate the driver subprocess. If the
driver subprocess is eliminated, the user cannot create driver members to associate
the changes in a work area with a driver. Likewise, users cannot commit drivers to
integrate several work areas with the release. Instead, users integrate the changes
for each work area by integrating the work area with the release.

To demonstrate how this works, assume that Carol and Alex are trying to fix the
robot’s dislike of striped wallpaper using a release without the driver subprocess
enabled. Initially, the scenario is not affected by the absence of the driver
subprocess. The defect is opened, and a work area is created. Alex, after receiving
notice that he needs to solve the problem, goes through the process of checking
out the faulty part, making fixes, checking the fixes into the work area, and
rebuilding. He can still freeze the work area whenever he wants to save its current
content.

The difference occurs when Alex is ready to integrate his changes with the release.
When the driver subprocess is not enabled, Alex issues the following command:
teamc workarea -integrate 456 -release robot_control

This command moves the part versions associated with work area 456 into the
release so they are visible to other developers. However, if collision records are
created, TeamConnection flags the concurrent changes and stops the integration
until the changes are reconciled and the corresponding collision records are
completed.

Retrieving a past version of a part

Versioning is an insurance policy for the developer. By freezing the work area, the
developer knows that the parts currently visible in the work area will be retained in
their current form.

For this example, assume that Alex just updated the optics.c module to add support
for a new zoom lens. Alex did a considerable amount of work on this task, and it
required a dozen check-out, check-in, and build cycles before he finished. Alex’s
work area now contains the following:
brain.c leg.c
brain.obj leg.obj
brain.exe (from Alex's build 12) foot.c
arm.c foot obj
arm.obj optics.c (modification 12)
hand.c optics.obj (from Alex's build 12)
hand.obj

Next Alex must update the brain.c part to set the appropriate conditions for
activating the new zoom capability. He does not yet want to integrate his changes
to optics.c for the zoom lens with the release because they are of little value without
his changes to brain.c. Also, he is not certain that he is completely done with

86 User’s Guide

optics.c until he completes the modifications to brain.c. Rather than integrate an
incomplete change, he freezes his work area by issuing the following command:
teamc workarea -freeze 1208 -release robot_control

This command takes a snapshot of the work area and its parts in their current state.

As Alex works on the brain.c module, he makes sweeping modifications to optics.c
to simplify the interface between brain.c and optics.c. Unfortunately, he realizes too
late that the simplification he is pursuing will not work. Rather than spend several
hours removing his updates to optics.c, he wants to start fresh from a copy of
optics.c that does not contain the changes for the simplification.

Alex has frozen his work area three times since beginning work on the zoom lens
integration. Also, he has done additional check-ins to his work area since his last
freeze. He cannot remember the particular version of his work area that contains
the copy of optics.c that he wants. So, he wants to see all the versions of his work
area that he has saved. He issues the following report command:
teamc report -view versionView -where "workAreaName='1208' and

releaseName='robot_control'" -stanza

This command returns a list of the versions frozen from work area 1208. The report
looks like this:
name 1208:1
workAreaName 1208
releaseName robot_control
predecessor robot_control:5
hasSuccessor yes
releaseVersion no
addDate 1995/01/11 14:30:26
freezeDate 1995/01/11 15:00:00

name 1208:2
workAreaName 1208
releaseName robot_control
predecessor 1208:1
hasSuccessor yes
releaseVersion no
addDate 1995/01/12 09:25:13
freezeDate 1995/01/12 17:15:58

name 1208:3
workAreaName 1208
releaseName robot_control
predecessor 1208:2
hasSuccessor yes
releaseVersion no
addDate 1995/01/14 11:13:25
freezeDate 1995/01/15 09:01:35

name 1208:4
workAreaName 1208
releaseName robot_control
predecessor 1208:3
hasSuccessor no
releaseVersion no
addDate 1995/01/16 08:10:15
freezeDate 1995/01/16 10:05:11

So what does it all mean?

v name is the name of the version in the work area.

v workAreaName is the name of the work area that owns the version.

Chapter 6. Working with component and release processes 87

v ReleaseName is the name of the release that owns the version.

v Predecessor is the name of the version that precedes, or is the parent of, this
version.

v hasSuccessor has a value of yes if the version has a successor, no if it does not.

v releaseVersion has a value of yes if the version is part of the release’s main
version history; the value is no if the version belongs to a work area.

v addDate is the date and time the version was created.

v freezeDate is the date the version was frozen.

This report seems erroneous. TeamConnection returned four versions in the report
even though Alex has executed the freeze command against his work area only
three times. The fourth version, 1208:4, is the unfrozen version in which Alex is
currently making his changes.

Another concern might be the predecessor of the first version returned in the report.
Why is its predecessor robot_control:5? At some point Alex began his work by
making modifications to the latest code in the release. The first version of Alex’s
changes is based on the release version robot_control:5.

After reviewing the report, Alex thinks that his last working copy of optics.c was
saved when he created version 1208:2. However, to make sure, he wants to see
the parts modified in version 1208:2. He issues the following command:
teamc report -view partView -version 1208:2 -release robot_control

-where "currentVersion='1208:2'" -stanza

This report returns a list of parts visible to version 1208:2 that have a
currentVersion (or version ID) of 1208:2. If a part has such a version ID, the part
was modified in the version 1208:2.

Note: If the -where clause were not specified, the report would return all of the
parts visible from version 1208:2.

The TeamConnection system returns the following report:
baseName optics.c
releaseName robot_control
compName robot_dev
versionSID 1208:2
addDate 02/02/94
lastUpdate 04/15/94
pathName smarts\eyes\optics.c
nuVersionSID 1208:2
nuAddDate
nuDropDate
nuPathName
userLogin alexm
fmode 0640

Because optics.c is the only part modified in version 1208:2, Alex assumes it is the
copy he wants. He extracts the part by issuing the following command:
teamc part -extract optics.c -version 1208:2 -workarea 1208 -release robot_control

This command extracts the desired copy of optics.c from the frozen version 1208:2.
Alex can then overlay the corrupted copy of optics.c that he has checked out with
the copy he just extracted, and he can start over fresh. He can also check in the
overlaid optics.c to his work area.

88 User’s Guide

This method works only for parts with a file type of TCPart. If your part has a type
of something other than TCPart, you can do one of the following to restore the part:

v Use the undo action if restoring to the previous version.

v Use the link action to link to a previous version.

In addition to the reporting features mentioned above, Alex can also obtain a list of
work areas by issuing the following command:
teamc report -view WorkAreaView -where "releaseName='robot_control'" -stanza

The report that is returned lists the work areas in the release robot_control. A user
can also see the parts changed for each work area by specifying the -long
parameter on this command.

Chapter 6. Working with component and release processes 89

90 User’s Guide

Part 3. Using TeamConnection Notes Integrated Databases

Chapter 7. Introduction to TeamConnection Integrated Notes Databases . 93
Getting started. 93
Prerequisites and dependencies 93
Using TeamConnection with Lotus Notes 94

Sources of user information 94
Database types . 95
Forms and subforms . 96
Views . 97
Reviews . 98
Document archiving . 98

Chapter 8. Creating and Maintaining Integrated Notes Databases 99
Initializing the original template and creating a database 100
Creating customized production databases 103
Performing reconciliation . 104
Database maintenance: refreshing design from a template 106
Making the database available on the web 107

Miscelaneous Hints and Tips 108

Chapter 9. Database Design Strategies and Advanced Customization . . . 111
Rules of thumb and general advice 111
Using the Customization setup facility 112

Notes Database Customization 113
Modify TeamConnection Access 114
Reconciliation of Notes and TeamConnection Data 114

Advanced customization . 115

This section is for anyone who will be responsible for accessing the Integrated
Notes Database code shipped with TeamConnection and customizing predefined
database templates to best serve your project’s needs.

© Copyright IBM Corp. 1992, 1999 91

92 User’s Guide

Chapter 7. Introduction to TeamConnection Integrated Notes
Databases

The VisualAge TeamConnection Integrated Notes Database feature provides a
documentation facility to support software development. A software development
group can use this database to communicate with TeamConnection objects from
within Lotus Notes documents. The TeamConnection Integrated Notes Database
links the technical documents to the TeamConnection objects involved in software
enhancement and maintenance.

A single database template is provided that you use to define the databases that
will assist you with all phases of your development process. From the template,
databases can be produced that can assist with requirements, design and
development documentation, and test case management, as well as other
purposes.

Getting started

This section of the User’s Guide describes how to prepare for, configure, and use
the Integrated Notes Database feature.

Before your team can access the databases provided by this feature, you need to
set up and customize the databases. Information regarding these tasks can be
found in “Chapter 8. Creating and Maintaining Integrated Notes Databases” on page
99 and “Chapter 9. Database Design Strategies and Advanced Customization” on
page 111. Chapter 8 describes post-installation tasks at a high level. If you have no
intention of performing advanced customization, Chapter 8 provides enough
information to activate and begin testing an integrated database.

It is recommended that you read “Chapter 9. Database Design Strategies and
Advanced Customization” on page 111 if you plan on customizing subforms, or if
you have no experience with Lotus Notes database design.

For an overview of database templates and the user interface, begin with “Using
TeamConnection with Lotus Notes” on page 94. The database itself contains the
most detailed user documentation, and is provided in the following forms:

v Database About document

v Database Using document

v Help (contextual)

Prerequisites and dependencies

Before you set up and administer the Lotus Notes Integration feature, make sure
the machine you are using to implement this feature (generically, the Notes server)
has the following software:

v Lotus Notes Release 4.5.3a or higher and a Version 3 TeamConnection client.

v The TeamConnection Web Client interface.

Note: There are no prerequisites or dependencies on the TeamConnection server.

© Copyright IBM Corp. 1992, 1999 93

Using TeamConnection with Lotus Notes

This section provides an overview of the Integrated Notes database template. This
template provides a documentation facility that supports software development.

The Integrated Notes database links technical documents to the TeamConnection
parts involved in software enhancement and maintenance. Your software
development team can use this database to communicate with TeamConnection
from within Lotus Notes documents. A reconciliation facility is provided that
synchronizes the data in the TeamConnection family with the Notes databases that
use it.

You can create software design documentation, project requirements documents,
and test cases using Lotus Notes. You can then use TeamConnection’s tracking
and change control functions to identify, organize, manage, and control software
parts as they change over time.

You can also:

v Associate Notes documents with existing defects and features within
TeamConnection and use the Notes default web browser to view additional
details of the TeamConnection defects and features.

v Access the TeamConnection client GUI from Notes.

Sources of user information

For more information about TeamConnection Integrated Notes databases, see the
About, Using, and contextual help information available from the database Help
menu. About and Using are available from the Navigator window Help menu. It is
advisable to examine these documents before entering your integrated database.

Note: The About document is also available from the Help choice on the
Navigator window.

The About document provides graphical previews for the Requirements,
Development, and Test database types. These previews provide a graphical
depiction of available documents and the document hierarchy for each database,
along with the default setup values available to an administrator.

The Using document provides detailed information that users will need to take
advantage of Notes Integrated Database functionality. For each database type,
Using documents the specific steps required to create and respond to the available
document types. In addition, Using provides a listing of each Notes element (form
or view), along with a brief description of the context in which it is appropriate.

As you navigate through the integrated database, you can access help in the
several ways:

For a view
Select the Help button in the action bar to look at help for the view.

For the document that you are editing
Select the Help button in the action bar to look at help for a document or
form.

For a field in a form
Click in the field and look at the bottom of the screen for a short description

94 User’s Guide

of the field. Look to the right of the field to see if there is descriptive text for
help in entering the correct format. Select the Help push button in the
action bar to get more detailed help on the field.

Database types

A single database template is provided that you use to define the databases that
will assist you with all phases of your development process. Using the different
databases you can create various documents, open TeamConnection features and
defects, associate, modify, or cancel existing TeamConnection features and defects,
and use the Web browser to view information on TeamConnection features and
defects.

The Notes database is linked to the TeamConnection database to integrate
information in Notes with information in TeamConnection. In this way,
TeamConnection defects and features are linked to Notes documents. The following
database types can assist you with the overall management your software project:

Requirements
The Requirements database assists with documenting and categorizing
Notes documents that describe requirements. TeamConnection features can
be opened for software design requirements as they move through the
formal phases of development. You can also associate Notes documents
with existing features in TeamConnection.

Software Design and Development
The Software Design and Development database assists with software
design and development, including change control to develop a complete
and comprehensive set of software design documentation. TeamConnection
features and defects can be opened to identify and track the
implementation of the design. Documents existing in Notes can be
associated with existing features and defects in TeamConnection.

Test Case Management and Tracking
The Test Case Management and Tracking database assists with test case
management and tracking. In this database, test case definitions and their
execution results are tracked. Defects can be opened for failing test cases
to track their progress.

Generic
A Generic database is available for other purposes that you choose and
also has access to TeamConnection.

User Defined
A User Defined database is also available. Advanced users can define a
database that utilizes the Notes documentation facility, combined with the
TeamConnection integration built into the template, with their own local
definitions of forms and views.

Each of the databases also allow you to capture and track information about
documents and link the documents to TeamConnection. With each of type of
database, you can add a document to the database, respond to a document,
respond to a response, flag a document as private, and route a document for
review to your team members.

Refer to the database Using document for a description of the forms, views, and
tasks associated with each of the database types available.

Chapter 7. Introduction to TeamConnection Integrated Notes Databases 95

Forms and subforms

Forms provide the structure and organization of elements in the documents used by
your database. The integrated database forms come preloaded with default values.
There are one or more subforms defined for all the forms that allow user-defined
subforms. This allows you to augment or replace the subform supplied by
TeamConnection. The TeamConnection-supplied database teamc.nsf has all of the
user subforms defined. See “Advanced customization” on page 115 for more details
on using user-defined subforms.

Table 1 provides a listing of all forms currently available to each database type.

Table 1. Integrated database forms by database type

Form Use for this form

Common

Basic Document Document basic information that would not be included in a requirements,
design, or test case document.

Response Document your response to a requirements, design, test case, or basic
document.

Response to Response Document your response to another’s response to a requirements, design,
test case, or basic document.

Requirements

Requirement Document and open a requirements document in the database.

TeamConnection Feature Open a TeamConnection feature against a requirement document to track
the implementation of the requirement.

Development

Design To open a design document in the database.

Enhancement description To document a small design issue or improvement (not associated with a
design document).

Lower level design To document information associated to a design document.

Design change description To document design change information.

TeamConnection Feature Open a TeamConnection feature against a design to track the
implementation of the design.

TeamConnection Defect Open a TeamConnection defect against part of a design to track a design
defect.

Test

Test case To document a test case that should be run against the design or specific
function of a software product, or TeamConnection defect.

Execution record To document information about test case execution.

TeamConnection Defect Open a TeamConnection defect to track a test case failure.

Generic

Basic Document Document basic information for future reference.

Response Document your response to a basic document.

Response to Response Document your response to a response of a basic document.

User Defined To define the documents within a User Defined database, you must modify
the forms and subforms that are provided. Modifying forms and subforms
requires knowledge of Notes Forms design and Designer authority on the
Notes database.

96 User’s Guide

Views

Views provide various ways to organize and access the documents in your
integrated database. By selecting a view, you can access and sort specific
categories of documents in the database. You can also navigate through the
database to search for a specific document title. By using buttons on the action bar,
you can choose to view the children documents of a parent document or category,
all active features, or all active defects.

Views are available through the Navigator and the View menu.

Table 2 provides a listing of all views currently available to database users.

Table 2. Integrated database views

View Documents accessed (purpose)

All documents To list all of the documents stored in the database.

My favorite documents Contains documents you have placed in the folder.

Administration

Document Control To list all of the documents by their document control number.

Documents

All To list all of the user documents stored in the database.

Archiving Allows you to archive the database.

By Author To list all of the user documents stored in the database organized by author.

Hierarchy To list the user documents in the database’s hierarchy.

Review Status To list the review status of user documents in the database.

State Summary To list the states of user documents in the database.

Development

Design Changes To list all of the design change documents in the database.

Enhancements To list all of the enhancement documents in the database.

Hierarchy To list all of the design documents in a hierarchy.

My Designs To list all of the current user’s documents.

State Summary To list the state of design documents in the database.

Requirements

Final Priority To list the final and originator priority of documents in the database.

Hierarchy To list the requirements and associated features in a hierarchy.

List To list all of the requirements documents in the database.

My Requirements To list all of the current user’s requirements documents.

Originator Priority To list the originator priority of documents in the database.

State Summary To list the state of requirements in the database.

Test

Execution Records To list all of the execution records in the database.

Hierarchy To list test case, execution records, and defects in a hierarchy.

My Execution Records To list all of the execution records that you have created in the database.

Testers To list the tester name(s) and a summary of their test case executions.

Test Case To list all of the test cases in the database.

Chapter 7. Introduction to TeamConnection Integrated Notes Databases 97

Table 2. Integrated database views (continued)

View Documents accessed (purpose)

TeamConnection

Defects To list all of the TeamConnection defects associated with the database.

Features To list all of the TeamConnection features associated with the database.

Reconcile Log Records To list a summary of the reconcile log results for the database.

Agents To list the agents configured by your administrator.

Reviews

You can make your design, development, requirements, and test case documents
available to your team for review through the Notes review function. The author of a
document can set up a document review cycle for a document. Documents can be
routed to the reviewers chosen by the author one at a time, in sequence, or all at
once. A reviewer log is automatically generated to show the state of the documents
and the names of the reviewers.

This application was designed with the intention that all users except the manager
should have Author access. If users have Editor access, the review cycle may not
function correctly.

See the database Using document for a description of the tasks associated with the
document review process.

Document archiving

To keep the document library current with only the latest topics, document authors
can choose to move documents from the current database and store them in a
different database. In addition, Notes databases can be checked into
TeamConnection.

Most of the Archiving activities take place from the Archiving view. You must switch
to this view in order to initiate archiving on a document library database.

See the database Using document for a description of the tasks associated with the
document archiving process.

98 User’s Guide

Chapter 8. Creating and Maintaining Integrated Notes
Databases

This chapter instructs you on how to customize predefined database templates and
to maintain your organizations’ production database.

Important notice to administrators
Certain administrative activities require teamc.nsf and fhcnotes.ntf. These files
are located on the TeamConnection server in the NLS\CFG\[LANG] path
($TC_HOME/NLS/CFG/[LANG] for UNIX platforms), where [LANG] specifies
the language directory for your version of the product (ENU or en_US, for
example).

As you work through the tasks described in this section, you might decide to assign
the role of database owner for various databases to specific team members. Who
you decide to assign these roles to will become more apparent as you complete the
installation and setup tasks and move on to tasks that involve design and
maintenance.

After you have installed TeamConnection and verified the items listed in
“Prerequisites and dependencies” on page 93, you can begin to perform the
administrative tasks necessary to activate this feature from a Notes standpoint. After
loading initial database templates, as described in “Initializing the original template
and creating a database” on page 100, you can begin the recursive process of
customization and tuning. While setup for the initialization stage is required, the
design strategies and advanced customization processes, described in detail in
“Chapter 9. Database Design Strategies and Advanced Customization” on page 111,
are not.

The primary administrative tasks discussed in this section are summarized in
Figure 42:

The flow presented in the figure applies to all potential user databases available
through the Notes Integrated Database feature.

Figure 42. Notes Integrated Database Creation and Staging

© Copyright IBM Corp. 1992, 1999 99

Initializing the original template and creating a database

To help you with developing Notes applications, a database master template is
included on the IBM VisualAge TeamConnection Enterprise Server installation
CD-ROM. The file, which serves as a single source for a number of database uses,
is placed on the TeamConnection server during installation and will stay there until
you move it to a Notes directory.

Note: Regular Notes databases have the .NSF extension. Notes templates have an
.NTF extension. You will use teamc.nsf database to create new integrated
notes databases. Use the database template fhcnotes.ntf to refresh the
design of existing databases. Although teamc.nsf and fhcnotes.ntf can be
accessed, you should never modify these databases directly.

To activate this function in Lotus Notes, perform the following steps:

1. Obtain a copy of teamc.nsf file from the server and set it up to meet your local
requirements in the following manner:

a. Copy teamc.nsf from the server to your local workstation into your local
notes data directory (something like x:\notes\data). Use the method of file
transfer of your choice, but be aware that teamc.nsf is sizable (more than 5
Mb).

b. You must create a copy of the teamc.nsf file that will act as your target
database. Create a copy of the empty teamc.nsf database on your Notes
workspace as follows:

1) Select the TeamConnection Database (teamc.nsf).

2) Select File->Database->New Copy . This displays the Copy Database
window.

3) The Server field should contain the Local value. You can supply the
Title of your choice.

4) Rename the file in the File Name field to match the naming conventions
of your organization. This copy of the template must keep the .nsf suffix.
For example: development.nsf.

5) Select the folder icon button, which will open the Choose a folder
window. Choose the directory on your local file system that will store the
database.

6) In the Copy field select the Database design only radio button, and
leave the Access Control List checkbox checked, so that the new
database will inherit those characteristics from the empty template
database.

7) Select OK.

c. Add yourself as an Administrator to the Access Control List for the new
database as follows:

1) Using mouse button 2, select the notes database icon on your Notes
workspace page.

2) Select Access Control .

3) From the Access Control List window select Add .

4) Enter your Full User Name, as it would appear in your Notes Address
Book.

5) Assign yourself the role of Administrator and Author by selecting them
in the Roles box of the panel.

100 User’s Guide

6) Assign a value of Person in the User type field and Manager in the
Access field.

7) Select OK.

d. Open the new empty database. The About overview window will display
showing what this Notes database is. When you read and exit (Escape) this
window, the main window for this database should display.

e. There are 3 choices on this window: Setup , Proceed to Database , and
Help . We suggest that you select Help to view the About document before
proceeding to Setup . About provides details about database and document
types that may be beneficial during the setup process.

f. Select Setup .

Note: If you are not defined with the role of Administrator in the Access
Control List, you will only be able to view the setup in read—only
mode.

g. From the Setup window follow the instructions on completing the
Initialization setup.

Note
Setup is a staging process that may require some planning. See
“Chapter 9. Database Design Strategies and Advanced Customization”
on page 111 for details on setup strategies and customization options.

You will need to decide what type of database you need: Requirements,
Design and Development, Test Case Management, Generic, or a User
Defined database.

Note: The Preview button enables you to view database forms and related
information to help determine which type of database is most suitable
for your group.

See “Using TeamConnection with Lotus Notes” on page 94 or the Notes
database documents for a description of each database type.

You will need to know your TeamConnection family and server port name to
complete the initialization portion of setup. You must also have authorization
to connect to and use the server. You should use a test family, initially, until
you have the details of your database design and customization stabilized
and tested before pointing the setup to a ″live″ TeamConnection family.

Note: You must identify your full TeamConnection family specification
(family@hostname@port) as an alias in your hosts and services files,
and supply only the family name in the *Family field. In addition, all
database users must have the same entry in their hosts and services
files.

Be sure to use the Test Connection and Test Web Client buttons to verify
that all necessary installation configurations are valid.

Select the Finish button to update the integration with TeamConnection and
complete the Initialization .

h. When the Initialization is complete, you can either begin the
Customization setup (see Creating customized production databases) or
return to the main window. If you want to begin working with the initialized

Chapter 8. Creating and Maintaining Integrated Notes Databases 101

database, select Proceed to Database . Your new, but empty database is
available. You can now test that it is working to your satisfaction.

In the most basic terms, testing would include the following activities:

v Create documents.

v Update documents. This should include testing the state system, which
would involve moving a document’s state to Approved.

v Reopen documents.

v Select Feature and Defect push buttons.

v Open Defects and/or Features.

v Examine views.

You should also add any users involved in the testing process to the access
list for this database. The default Access of Author is recommended.

i. When the database is working to your satisfaction (you can go back to the
setup several times to make changes and refine it), you are ready to make it
available to your user community.

Be sure to delete any documents you created during local testing and
evaluation.

Note: If document numbering is turned on, you may want to reset it when
the database goes into production. To reset document numbering,
perform the following steps:

1) Select the Notes Navigator .

2) Select Administration->Document Control .

3) Edit the document and set the number to 0 (zero).

4) Select File->Save .

2. If, after testing the current setup, you find that the default settings for the
database are adequate for the needs of your organization, proceed to the next
step. Otherwise, proceed to “Creating customized production databases” on
page 103 for further customization and testing of the database.

3. Put the database that you just setup on a Notes server using the normal Notes
process.

Note: To enhance performance for database users, it might be advisable to turn
replication on, using the standard Notes process.

4. Identify the users of the application and the access level each will need. List the
name of each user and user group in the Access Control List accordingly.
Database users must have Author access. The template has been set up so
that any database created with it will have the default access of Author.

Note: If users will create documents and documents are automatically
numbered (as defined in setup), then a Role of Author is also necessary.

You can also choose to assign the role of Project Leader. Certain document
states can be reserved for only the Project Leader to set (such as, ″Approved″).
This role allows a project leader permission to place a document into one of
these reserved states. The Administrator assigns these states during Setup.
One or more individuals can be defined as a Project Leader or an Administrator.

If you want to limit this database to only members of a certain user group, the
default user should have No Access, and members of the user group will need

102 User’s Guide

to be listed in the Access Control List as either individuals or groups with
Author access. At least one person needs to have the role of Administrator.

5. Arrange for adding the database icon to the Notes workspace on the
appropriate client machines, using the normal Notes process used by your
organization.

Creating customized production databases

Now that you have initialized the Integrated Notes Database feature and performed
a preliminary setup of the database template for your organization, you can proceed
to customize the initialized database.

See “Using the Customization setup facility” on page 112 for additional details on
the customization options.

Note: A Customization Wizard is available from the Setup window action bar to
assist you in customizing your database.

Perform the following steps to customize your database and make it available at a
production level:

1. From the main database window, select Setup .

2. Use the Customization setup facility to customize the database design. Using
Customization , you can modify the default values that are provided.

Note: If your customization will extend to subforms, you will need some
familiarity with the Lotus Notes environment.

You can adjust or refresh values are for the following:

v Notes document names, titles, and subtitles.

v Structure of the Notes document hierarchy.

v States each Notes document may progress through.

v TeamConnection family, component, and configurable field information.

v TeamConnection feature and defect attributes to store in Notes documents.

v Reconciliation of Notes and TeamConnection data. See “Performing
reconciliation” on page 104 for details.

Make any design changes that are necessary for your particular application and
organization’s workflow. This process is detailed in “Chapter 9. Database Design
Strategies and Advanced Customization” on page 111 and within the
Customization setup facility itself.

3. When the setup is complete, you will return to the main window. Select Proceed
to Database . Your new, but empty database is available. You can now test that
it is working to your satisfaction.

In the most basic terms, testing would include the following activities:

v Create documents.

v Update documents. This should include testing the state system, which would
involve moving a document’s state to Approved.

v Reopen documents.

v Select Feature and Defect push buttons.

v Open Defects and/or Features.

v Examine views.

Chapter 8. Creating and Maintaining Integrated Notes Databases 103

You should also add any users involved in the testing process to the access list
for this database. The default Access and Role of Author is recommended.

4. When the database is working to your satisfaction (you can go back to the
setup several times to make changes and refine it), you are ready to make it
available for to your user community.

Be sure to delete any documents you created during local testing and
evaluation.

Note: If document numbering is turned on, you may want to reset it when the
database goes into production. To reset document numbering, perform
the following steps:

a. Select the Notes Navigator .

b. Select Administration->Document Control .

c. Edit the document and set the number to 0 (zero).

d. Select File->Save .

5. Put the database that you just setup on a Notes server using the normal Notes
process.

Note: To enhance performance for database users, it might be advisable to turn
replication on, using the standard Notes process.

6. Identify the users of the application and the access level each will need. List the
name of each user and user group in the Access Control List accordingly.
Database users must have Author access. The template has been set up so
that any database created with it will have the default access of Author.

Note: If users will create documents and documents are automatically
numbered (as defined in setup), then a Role of Author is also necessary.

You can also choose to assign the role of Project Leader. Certain document
states can be reserved for only the Project Leader to set (such as, ″Approved″).
This role allows a project leader permission to place a document into one of
these reserved states. The Administrator assigns these states during Setup.

If you want to limit this database to only members of a certain user group, the
default user should have No Access, and members of the user group will need
to be listed in the Access Control List as either individuals or groups with
Author access. At least one person needs to have the role of Administrator.

7. Arrange for adding the database icon to the Notes workspace on the
appropriate client machines, using the normal Notes process used by your
organization.

Performing reconciliation

The Reconciliation facility synchronizes the data in the TeamConnection family and
the Notes databases that use it. The reconciliation facility is an agent that should be
run regularly. As a default, reconciliation is activated during Setup. It can be run on
an established schedule that you set up, or manually when needed. We suggest
that the reconciliation facility be set up to run after your regular TeamConnection
build completes.

To run reconciliation on a regular schedule, the scheduled reconcile agent needs to
run on either your Notes server or a Notes client using a replica of the server
database. In either case, the TeamConnection client must also be available to the

104 User’s Guide

server or the client where reconciliation is scheduled to run. Typically, an
administrator will set up this client to run automatically on his or her own
workstation.

You must be assigned the role of Administrator to activate the reconciliation facility.
In addition, for the Notes client that will run the agent, the local user preferences
(available from File->Tools->User Preferences) must have Enable local
scheduled agents checked.

To Activate Reconcile , verify that Yes, the default, is selected in the
Customization setup. To activate the reconciliation facility on a Notes client, do the
following:

1. Using standard Notes replication procedures, create a replica of the server
database on the desired Notes client.

2. Verify that the Notes user is enabled with a Role of Administrator.

3. Make sure replication is active between the local replica and the server.

4. Select the local replica database icon using mouse button 2 and select Go to
Agents from the pop-up menu.

5. Open the Reconcile Notes and TeamConnection option that has a trigger
value of Scheduled .

6. The Options button will provide details about the named reconciliation. Select
the Schedule button.

7. Supply values for the fields on the Schedule window that meets the needs of
your team, and then select OK.

8. Select File->Save .

9. Check the agent’s box. Provide a server name in the Choose Server To Run
On window. Use Local if you are running the agent on your Notes client.

10. Select the OK push button.

The result is that reconciliation will be performed between your local replica Notes
database and TeamConnection. Any changes to Feature or Defect documents will
be replicated to your server Notes database.

To activate the automatic reconciliation facility to run on the Notes Domino Server
do the following:

1. Update the server document, Agent Manager section. Add the name of the the
notes server to the field titled ″Run LotusScript/Java Unrestricted Agents″. Save
the server document.

Notes:

a. Most Notes servers do not grant access to allow unrestricted agents
because the agent has broad access to the server and theoretically could
inflict harm. Also the TeamConnection client must be installed on the Notes
Domino server. Most installations will setup the reconciliation to run on a
Notes client replica as explained above.

b. You can specify a different user than the server to have unrestricted agent
access. If so, specify that user in the subsequent steps where the id of the
server is specified.

2. Define the notes server to the access control list (ACL) of the TeamConnection
notes databases with the Roles of Administrator and Author and minimum
access level of Designer.

Chapter 8. Creating and Maintaining Integrated Notes Databases 105

3. Open the TeamConnection notes database on the server using the logon ID of
the server. Select View -> Agents to display the available agents. Select the
Reconcile Notes and TeamConnection option that has a Scheduled trigger.

a. The Options button will provide details about the named reconciliation.
Select the Schedule button.

b. Supply values for the fields on the Schedule window that meet the needs of
your team, and then select OK.

c. Select File->Save .

d. Enable the scheduled agent by clicking on the box to the left of the agent
name. When prompted for a server name, specify the name of the server.

e. You should observe the agent running on the select schedule. There will be
entries in the server log and reconcile documents will be available when you
view them from the Actions menu item: View Reconcile Logs .

4. Give the Domino server logon ID access to the TeamConnection. You should
also grant access via hostname instead of password. Otherwise you will need to
manually perform a tcLogin everytime the Domion server is restarted or the
TeamConnection family is restarted. This manual step would defeat the purpose
of an automatic process.

To enable and run the reconciliation facility manually, select Actions->Reconcile
Notes and TeamConnection from any database window.

Database maintenance: refreshing design from a template

In the course of using Notes Integrated databases, you may have occasion to
refresh current databases with a template. As you receive code updates from IBM
VisualAge TeamConnection Enterprise Server, it is likely that you will want your
current databases to reflect the most current template. In the course of maintaining
database consistency across your enterprise, you may want to refresh all active
databases from a common template. In either event, you should use caution. The
steps that follow will address this issue.

Note: After TeamConnection maintenance has been applied, obtain an updated
version of the fhcnotes.ntf template from the server and put it in your local
notes data directory (for example, x:\notes\data).

To refresh a database from a template, do the following:

1. Make a new copy of the database that you want to refresh, using the following
procedure:

a. Select the TeamConnection Database you want to refresh.

b. Select File->Database->New Copy . This displays the Copy Database
window.

c. The Server field should contain the Local value. You can supply the Title of
your choice.

d. Rename the file in the File Name field to match the naming conventions of
your organization. This copy of the template must keep the .nsf suffix. For
example: development.nsf.

e. Select the folder icon button, which will open the Choose a folder window.
Choose the directory on your local file system that will store the database.

f. In the Copy field select the Database design and documents radio button,
and leave the Access Control List checkbox checked, so that the new
database will inherit those characteristics from the empty template database.

106 User’s Guide

g. Select OK.

2. Select the local database copy that you have just created from your workspace.

3. From the File menu, select Database->Replace Design .

4. You will locate the template used to refresh the database, fhcnotes.ntf, in the
Replace Database Design window. If the template is not on your Local server,
which primes the list of template choices, you may have select the Template
Server button to locate the desired template.

Important notice to administrators:

Be sure that you select the right template. An inappropriate template may have
a destructive impact on your database! Select Replace .

5. Test the refreshed database copy extensively, including the following activities
(at a minimum):

v Create documents.

v Update documents. This should include testing the state system, which would
involve moving a document’s state to Approved.

v Reopen documents.

v Select Feature and Defect push buttons.

v Open Defects and/or Features.

v Examine views.

6. When you are satisfied that refreshing the local database copy was a successful
operation, select the production (original) database from your workspace and
repeat the refresh process, beginning with step 3.

Important notice to administrators:

Be sure that you select the right template. An inappropriate template may have
a destructive impact on your database!

7. You should test the refreshed database extensively before alerting users that it
is in production mode.

Making the database available on the web

The database can be made available to a web browser, thus making the documents
and views accessible from any machine with a web browser. With the appropriate
authority, the documents and views may be accessed from a web browser. Most of
the data in the documents and all data within the views will be available.
Documents cannot be created or modified from the web browser at this time.

Assuming that the database is already available from a Notes client, there are
several tasks that must be performed in order to make the database available from
a web browser. In general they are the same as those required to make any Notes
database available from a web browser. Information on this may be found in the
Domino User’s Guide and in the Domino Administration Help

1. The Domino server must be running.

2. If all databases are to be made available for browsing the security settings in
the Server document must be permit anonymous connection and HTTP client
access to databases. Even if the list of databases is not available to all users,
authorized users may still reach any database for which they are authorized via
a URL of the form http://server:port/directory/databaseName.nsf/?OpenDatabase
where server is the domino server name, port is the TCP/IP port used by the
server (optional if only one server is present), directory is the directory where
the database resides, and databaseName.nsf is the file name of the database.

Chapter 8. Creating and Maintaining Integrated Notes Databases 107

3. Depending on security requirements for the database, the ACL may need to be
adjusted. If access is to be restricted, then Default access, which effects both
Notes and web browser access, and Anonymous access, which effects only
web browser access, may be adjusted.

4. The agent named (ShowDocLinks) may need to be resaved on the Domino
server that the database resides. This agent is run whenever a document is
opened from a web browser. Your server document should allow restricted
LotusScript/Java agents to run. Normally a value of asterisk (*) is defined in the
field Run restricted LotusScript/Java agents in the Agent Manager section of the
server document.

5. The default launch for the database must be adjusted from the database
properties in Notes. The launch should be changed from ″Open Designated
Navigator in its own window″ to ″Restore as last viewed by user.″ This will allow
the Notes client users to select the navigator they wish and have it restored
when they return to the database. Web browser users will always see the
equivalent of the Notes navigator when they open the database. In Notes 4.6 a
separate launch may be specified for the web browser. This should be set to
″Use Notes launch option″ in the scheme above. Another option is to set it to
open the first document in a particular view.

6. A list of views is available at the end each document. This assists with general
navigation. The hierarchy views will show the subordinate documents.

Miscelaneous Hints and Tips

TeamConnection Login

There is no tclogin capability from Notes. You can either use the TeamConnection
command line or the client GUI. The client GUI can be opened from most views in
a TeamConnection Notes database.

AIX considerations

If you receive the message, ″Error in loading DLL″, perform the following steps:

1. Edit your .profile in your home directory.

2. Find the line containing the LIBPATH.

3. Add :/usr/lib to the LIBPATH.

4. Run your .profile.

Document review and archiving functions

Lotus Notes Integrated databases inherit their document review and document
archiving functions from the document libary template supplied by Lotus with Notes.
If there are problems with those functions, they may be inherent in the original
functionality supplied by Lotus.

Note: The database archive function is inherited function from the Document Library
template supplied by Lotus. It will archive main documents but not response
documents. Archiving documents that contain responses is NOT advisable. The
archive database is an empty copy of your source database. To access archived
documents, the Setup process must be run on the archive database.

Renamed defects and features

108 User’s Guide

Defects and features that are opened from a Notes database and subsequently
renamed can no longer be found by the Notes database. If a defect or feature is
renamed, you must do the following to allow access from Notes:

1. Delete the Notes document representing the feature or defect.

2. Use the ″associate defect/feature″ function to reestablish the defect/feature in
the Notes database.

Bypassing the main panel

If you want to bypass the main panel, open the database properties and go to the
Launch tab. In the field labeled On Database Open , set it to the value Restore as
last viewed by user.

Chapter 8. Creating and Maintaining Integrated Notes Databases 109

110 User’s Guide

Chapter 9. Database Design Strategies and Advanced
Customization

This section include some general strategies for setting up, testing, and tuning your
Notes Integrated Database implementation. The primary administrative functions are
described in “Chapter 8. Creating and Maintaining Integrated Notes Databases” on
page 99, but if you have limited experience with Lotus Notes database
administration, wish to familiarize yourself with terminology used by templates, or
expect to significantly modify the template database used to create your
organization’s integrated databases, it may be valuable to read this section of the
document.

Rules of thumb and general advice

There are some simple, general rules that will make your implementation of Notes
Integrated Databases:

v Always work on a copy of a database, rather than a server (common) version
when altering design. This guarantees that you will not overwrite your
customizations when performing maintenance.

v Stage database setup and implementation. You will always begin with an
Initialization setup and test phase. After the high-level verification of a Notes
Integrated Database template’s ″fitness″ for your organization, it is likely to
require customization

It is also likely that a staging scheme may involve changes in database
ownership, as increasing customization is necessary. Individual database
administrators may have more to say about the details of implementation, and
therefore control of databases has a tendency to become decentralized.

v In terms of customizability, document hierarchies are relatively static, as
compared to forms and views.

Note: The primary exception to the customizability of forms is the set of
subforms supplied by TeamConnection as they are currently named. It is
important to copy and rename any forms that you plan to customize, so
the template refreshes do not overwrite your customizations.

v Testing at every stage of refinement is crucial to successful implementation,
related to stability and improved mapping to your organizations needs.

v To enhance performance for database users, it might be advisable to turn
replication on, using the standard Notes process.

v Plan and monitor access control as needed.

To summarize the basic steps for moving from the originally installed
TeamConnection template database through opening a specific database to your
user base for production-level work:

1. Download the teamc.nsf template to your local machine and rename it to
something that makes sense for your organization.

2. Complete Initialization setup.

3. Assess and implement any access control/authorization schemes necessary at
this level of implementation.

4. Open the newly initialized database.

5. Create test documents for testing.

© Copyright IBM Corp. 1992, 1999 111

6. Open features and defects if your database addresses these elements.

7. Determine whether existing (TeamConnection—supplied) documents,
subdocuments, and forms can be mapped into your organization’s terminology,
workflow, hierarchies, and state system.

8. Perform Customization setup, iteratively, to enact structural changes required
by your implementation. Customization enables you to address structural
categories, such as menus, document names and hierarchies, and workflow
states.

See “Using the Customization setup facility” for a more detailed treatment of
this topic.

9. Assess and implement any access control/authorization schemes necessary at
this level of implementation.

10. Open the newly customized database.

11. Create test documents for testing.

12. Open features and defects if your database addresses these elements.

13. Validate as much as possible in your testing to determine the database’s
production readiness.

14. Delete all test documents, etc., and place the database in production status on
a Notes server. If you have used a test TeamConnection family to this point, it
will be necessary to specify the appropriate production family in the
Customization setup.

15. Make the ″live″ database available to the appropriate user base.

Using the Customization setup facility

Use the Customization setup facility to customize the database design. Using
Customization , you can modify the default values that are provided. This requires
familiarity with the Lotus Notes environment.

Note: A Customization Wizard is available from the Setup window action bar to
assist you in customizing your database.

You can adjust or refresh values are for the following:

v Notes document names, titles, and subtitles.

v Structure of the Notes document hierarchy.

v States each Notes document may progress through.

v TeamConnection components and configurable fields information (refresh only).

v TeamConnection feature and defect attributes to store in Notes documents.

v Reconciliation of Notes and TeamConnection data.

The Customization setup facility addresses the following areas of database
manipulation:

v Notes Database Customization

v Modify TeamConnection Access

v Reconciliation of Notes and TeamConnection Data

In order to perform the Customization setup, you must set your role to Administrator
in the Access Control List window.

112 User’s Guide

Notes Database Customization

The following areas of customization are described in detail in the Setup help.

Modify Database Optional Information
In the Modify Database Optional Information section, you can define
levels of categories and valid (default) attribute values for the database type
you have chosen.

Common Database Options
You can set permanent values that correspond to categories,
subcategories, and subsubcategories, which are used for organizing
documents within views. If you do not supply default categories,
users can supply them in the course of working in the database.
Administrators can set permanent values for category levels in any
of the database types.

Database-specific Options
Within categories and their children, you can assign a set of valid
attribute values. Each database type has a unique set of attributes
that are made available in the database forms. For a Test Case
Management or a Requirements database, the predefined attributes
have been tailored to suit the intent of the database type. You can
provide allowable values for each attribute provided.

Modify which documents your project will use
In the Modify which documents your project will use section, you can
select the Notes documents your project will use and provide the document
name, title and subtitle. The documents available for your database are
determined by the database type. The setup forms come preloaded with
default values, although you have the option to overtype existing field
values, and turn documents and IBM-supplied subforms and document
numbering on and off. See the database Previews (available through the
About document) for a description of documents available for each
database type.

Using this function, you can deactivate documents you don’t need now and
reactivate them at a later time if they are needed. For example, it is
possible to deactivate Design Change , until a later stage in the project
development cycle.

Modify the document hierarchy
In the Modify the document hierarchy section, you can identify valid
response documents for the base documents you defined in the Modify
which documents your project will use section. This level of
customization allows you to control how response documents can build
upon a base document and other response documents.

Modify the states for documents
In the Modify the states for documents section, you can integrate the
documents you defined in the Modify which documents your project will
use section with a state system that best reflects your organization’s
workflow process. For each document type, the setup provides default state
names that might be applicable to your integrated database. However, you
can change the order of the state names, or the names themselves, if it
provides a closer mapping to familiar terminology and processes.

Chapter 9. Database Design Strategies and Advanced Customization 113

Modify TeamConnection Access

The following areas of customization are described in detail in the Setup help.

Modify Family Information
The Modify Family Information section is very similar to the Initialization
setup, except that you are not provided an opportunity to change the
database type. The required fields will be primed with the current
TeamConnection family configuration values, which were either defined at
initialization or during a subsequent Customization . Whenever the family is
modified, the TeamConnection component and configurable field information
is automatically fetched from the current family server.

Refresh Components List
The Refresh Components List section enables you to retrieve a list of
TeamConnection components in the TeamConnection family currently
connected to your Notes Integrated Database. Select the Get or Refresh
push button to refresh the list of components in the TeamConnection family
linked to this database.

Refresh Feature Configurable Fields
The Refresh Feature Configurable Fields section enables you to retrieve
a list TeamConnection configurable fields for features in the
TeamConnection family currently connected to your Notes Integrated
Database, and modify the list of attributes stored in your Feature
documents.

Refresh Defect Configurable Fields
The Refresh Defect Configurable Fields section enables you to retrieve a
list TeamConnection configurable fields for defects in the TeamConnection
family currently connected to your Notes Integrated Database, and modify
the list of attributes stored in your Defect documents.

Reconciliation of Notes and TeamConnection Data

The following areas of customization are described in detail in the Setup help.

Activate Reconcile
The Notes Integrated Database feature provides a reconciliation facility that
synchronizes the data in the TeamConnection family and the Notes
databases that use it. The reconciliation facility is an agent that should be
run regularly. The reconciliation facility can be run on an established
schedule that you set or manually when needed. We suggest that the
reconciliation facility be set up to run after your regular TeamConnection
build completes, so that you will have the latest document states reflected.

Note: See “Performing reconciliation” on page 104 for additional
information about setting up and initiating the reconciliation facility.

Defects and Features
During reconciliation you can choose to have the TeamConnection defects
and features that are in the cancel state deleted from the Notes database.

Log Document Options
You can choose to have the log that is created during reconciliation mailed
to database users and/or stored in the database itself.

114 User’s Guide

Advanced customization

The template that integrates TeamConnection and Lotus Notes was designed for
maximum flexibility. The Setup document allows considerable database
customization without requiring any skills in Notes database design. For users that
wish to further customize their TeamConnection/Lotus Notes database to use
customized Forms (Forms define the layout of Notes documents), so their
documents are suited to the specific needs and requirements of their organization, it
is possible to do this and still retain all the base functionality of the template. At a
minimum this requires basic knowledge of Notes Forms design and Designer
authority on the Notes database.

The customizable forms in the TeamConnection/Notes databases are called
subforms. A subform is a form that is contained in a form. One or more subforms
might make up a complete form that defines the layout of document. A default
subform is supplied by IBM for each document that is supported. It is dynamically
loaded when the main form is loaded.

For example, in a requirements database, the main form known as Document A
loads a subform called fhcSm.A.Requirements. This subform has all the detail
definition of a requirement. Document A has base document definition that is
common to all documents.

Each document allows for several User subforms to be defined and used in addition
to or in place of the IBM subform. A user subform can be defined that specifies the
layout and content that more closely matches your organization than the
corresponding IBM subform. A user subform is automatically loaded. The IBM
subform is also loaded by default but this can be disabled using Setup. User
subforms exist for most primary forms and help forms.

There are one or more subforms defined for all the Forms that allow user-defined
subforms. This allows you to augment or replace the subform supplied by
TeamConnection. The TeamConnection-supplied database teamc.nsf has all of the
user subforms defined. All of them are empty. You should define your initial
database by copying teamc.nsf so that you have all the subforms available (This
process is described in “Initializing the original template and creating a database” on
page 100.)

These user subforms are not modified if you refresh or replace your design
database using the TeamConnection template fhcnotes.ntf, so you can be assured
that your subforms will remain intact if you update your database with a new
version of this template (as described in “Database maintenance: refreshing design
from a template” on page 106). User defined subforms follow a naming convention.
All begin with the a prefix of UserSm. followed by a suffix that indicates what Form
they are associated with. They are listed in the Subforms list of the Design section
of the database. You cannot create subforms. You must used the empty subforms
supplied.

You can see where these subforms are specified on the main Form by opening that
form and locating one of the lines that display [Computed Subform]. Select the line
and look in the bottom pane. The name of the user subform that is loaded at that
location in the form is listed.

Note: See the Advanced Customization help topic for a detailed listing of forms
and subforms available.

Chapter 9. Database Design Strategies and Advanced Customization 115

116 User’s Guide

Part 4. Using TeamConnection to build applications

Chapter 10. Basic build concepts 119
The physical structure of the build function 119
The build object model. 120
Parent-child relationships in a build tree 121
Working with a build tree . 123
Putting the pieces together . 124

Chapter 11. Installing, starting, and stopping build servers 127
Installing the build function . 127

Creating a build server on MVS 127
Creating a build server on MVS/OE 129

Starting build servers using teamcbld 129
Starting an MVS build server 131
Starting the MVS/OE build server. 132
Creating build startup files (for non-MVS environments) 133
Stopping the build servers . 134
Stopping an MVS build server 134

Chapter 12. Working with build scripts and builders 135
Creating a builder . 135
Writing a build script . 138

Passing parameters to a build script. 138
Writing a simple build script 140
Writing an executable file for a build script 140

Testing a build script . 141
Modifying the contents of a build script. 142
Putting a builder to work . 142
Removing a builder from a part 143

Working with VisualAge C++ and Templates 144

Chapter 13. Working with MVS build scripts and builders 145
Creating a builder for MVS builds. 145
Writing an MVS build script . 148

File name conversions for MVS 149
Passing parameters to an MVS build script 150
TeamConnection syntax for MVS build scripts 151
Supported JCL syntax . 151

EXEC statement . 152
DD STATEMENT. 152

Example of a build script for a C compile 153
Example of a build script for a COBOL compile 155
Example of a build script for a link 156

Chapter 14. Working with parsers 159
Creating a parser . 159
Writing a parser command file 161
Putting a parser to work . 162
Removing a parser from a part 163

Chapter 15. Building an application: an example 165
Starting the build servers . 166
Creating builders and parsers 167
Creating the build tree for the application 167

© Copyright IBM Corp. 1992, 1999 117

Starting the build on the client 171
Putting the build scripts to work 173
Finishing the job and reporting the results to the user 173
Monitoring the progress of a build 173
Running a build in spite of errors 174
Building all parts, regardless of build times 174
Finding out which parts will be built 175
Canceling a build. 175
More sample build trees . 176

Defining multiple outputs from a single build event 176
Synchronizing the build of unrelated parts 176

This section tells how to install and use the TeamConnection build function.

Though build administrators will be most interested in this section, anyone who
builds an application using TeamConnection will find the first and last chapters
helpful.

118 User’s Guide

Chapter 10. Basic build concepts

This chapter defines terms and briefly describes the TeamConnection pieces that
work together in building an application. For more details, continue to the other
chapters in this section.

The TeamConnection build function has numerous features:

v It builds applications for platforms in addition to those it runs on. Currently you
can build applications using TeamConnection on the following platforms: AIX,
HP-UX, Solaris, MVS, MVS/OE, OS/2, Windows NT, and Windows 95.

v Its graphical representation of the structure of an application makes it easier to
visualize and change.

v It lets you build an application using any number of machines working in parallel.

v Because it is fully integrated with TeamConnection’s version control system, it
ensures that the correct versions of parts are used in a build.

v It can work not only with parts that represent files, such as C source files, but
also with parts that represent objects, such as VisualAge Generator applications.

v It can manage other steps related to software packaging and distribution.

For more information, see “Part 5. Using TeamConnection to package products”
on page 179.

The physical structure of the build function

Figure 43 shows the structure of the TeamConnection build function:

Build servers are started by a TeamConnection administrator. For more information,
see “Chapter 11. Installing, starting, and stopping build servers” on page 127.

Figure 43. The physical structure of TeamConnection

© Copyright IBM Corp. 1992, 1999 119

The build object model

Figure 44 on page 122 shows the TeamConnection objects and events that
constitute the build function, as illustrated in a sample application named
msgcat.exe. This build object model is a conceptual model of the build function.
When you use TeamConnection to define a build, you work with a build tree (a
simplified graphical illustration of the build object model), which you can access
through the TeamConnection GUI. “Working with a build tree” on page 123 explains
build trees. This section explains the build objects and events represented in a build
tree.

In TeamConnection, the build function is always described and discussed in terms
of the final output of the build: the product or executable file that the build produces.
For the sample application shown in this illustration, msgcat.exe is the build output
and appears at the top of the build object model and as the top branch of the build
tree illustrated on page 122. When you want to actually build the product, you
request a build of msgcat.exe. TeamConnection uses the build tree that you define
for this product to determine which objects and build events it needs to generate
the final output. The objects and events that TeamConnection uses for a build
include the following:

TeamConnection part
An object produced or used during a build, containing any data produced or
used by the build. For example, a part called hello.c contains the source
code for the application called msgcat. A part might be a text or binary file,
or an object such as a VisualAge Generator generic collector.

Build event
An individual step in the build of an application, such as the compiling of
hello.c into hello.obj.

A specific build request typically contains many build events. For example, if
you start a build of an entire application, TeamConnection initiates build
events for each compile and link operation.

Build requests are processed in a round-robin fashion for each
TeamConnection family involved in a build. Build events are initiated in the
order that that they are received by each build machine involved in the build
request, sometimes in parallel.

Build event processing is internal to TeamConnection; you cannot interact
with these processes directly.

Builder
An object that can transform a build event’s input parts into output parts by
calling tools such as linkers or compilers. For example, one builder might
know how to transform the input part hello.c into the output part hello.obj. A
different builder might know how to transform hello.obj into msgcat.exe.
Builders are associated with the parent, or output part, rather than the child,
or input.

Build script
An object that a builder uses in transforming inputs to outputs; it is
essentially a binding between TeamConnection and a transformation tool,
such as a linker or compiler. In OS/2, Windows, UNIX, or MVS/OE
environments, a build script is usually a command file, but it can be a string
that calls the tool. In MVS, it is a file containing JCL-like instructions.

120 User’s Guide

Parser
A tool that can read a source file and report back a list of dependencies of
that source file. It frees a developer from knowing the dependencies one
part has on other parts to ensure a complete build is performed. For
example, a C parser can read a C source code file and report back a list of
the files included by the source file or by the included files.

TeamConnection will re-verify all parser dependencies:

1. When the user creates or checks in the part, TeamConnection will add
all parser dependencies that it can find.

2. During build, TeamConnection will again check all parser dependencies
and update as needed.

Parent-child relationships in a build tree

One relationship that is important to understand and distinguish is the relationship
between parent and child parts in a build tree.

Though parent-child relationships usually imply that the parent part generates the
child part, in a TeamConnection build it is the opposite. Because TeamConnection
places the build output at the top of the tree, it refers to the build output as the
parent and to the build input as the child.

A child part can be related to a parent part one of three ways: it can be an input
part, an output part, or a dependent part.

Input parts
A part used as direct input to your build. An example of this is a C language
source part. If you start a build and this part has changed, the changed part
will be part of the new build.

Output parts
A generated output from a build, such as an OBJ or EXE part, or a part
with no contents that serves as an organizer object. If you start a build and
this part has changed, the changed part will be included in the new build.

Dependent parts
A part needed for the build operation to complete but that is not passed
directly to the compiler. An example of this is an include part. If you start a
build and this part has changed, the changed part will be included in the
new build.

Though parent-child relationships usually imply that the parent part generates the
child part, in a TeamConnection build it is the opposite. Because TeamConnection
places the build output at the top of the tree, it refers to the build output as the
parent and to the build input as the child.

To understand how build output is generated, it may be easier to start at the bottom
of the build object model and work your way up. In Figure 44 on page 122, hello.h
and bye.h are C source files that are embedded in hello.c and bye.c, respectively.
The parser, parser1, is able to read hello.c and bye.c to determine files they embed.
This build object model contains three build events:

v The builder compiler1 compiles hello.c into hello.obj.

v The builder compiler1 compiles bye.c into bye.obj.

v The builder linker1 links hello.obj and bye.obj into msgcat.exe

Chapter 10. Basic build concepts 121

This build object model contains the following parent-child relationships:

v msgcat.exe is the parent of hello.obj and bye.obj.

v hello.obj is the parent of hello.c

v bye.obj is the parent of bye.c

You establish these parent-child relationships between parts when you create the
parts in TeamConnection.

Before you can build msgcat.exe, for example, you need to create a place-holder
part for it and designate linker1 as its builder. You then create place-holder parts for
hello.obj and bye.obj and designate compiler1 as their builder and msgcat.exe as
their parent.

“Creating the build tree for the application” on page 167 walks you through an
example of creating the build tree for this object model.

Figure 44. Sample build object model for msgcat.exe

122 User’s Guide

Working with a build tree

Software developers must provide the information by which TeamConnection
determines the build events that make up a build request. An application’s build tree
shows this information graphically.

A build tree is a simplified version of the build object model, showing the
dependencies that the parts in an application have on one another. If you change
the relationship of one part to another, the build tree changes accordingly. Figure 45
shows a build tree for the hello application:

In this simple application, hello.c is compiled to create hello.obj, which in turn is
linked to create hello.exe. The build tree shows that hello.exe is the parent of
hello.obj, which in turn is the parent of hello.c. To build the entire application, you
request to build hello.exe.

Just as the parts that make up an application are versioned, the relationships
between these parts are versioned. Thus, more than one version of the build tree
can exist. For example, Figure 46 on page 124 shows two different versions of the
same build tree:

Figure 45. The build tree for the hello application

Chapter 10. Basic build concepts 123

Putting the pieces together

The table that follows lists the tasks involved in preparing for building an application
and in actually building it. Usually an administrator does the preparation steps, but
anyone with the proper authority can do so.

For more information about this task, Go to this page.

Creating build startup files “Creating build startup files (for
non-MVS environments)” on
page 133

Starting build servers “Chapter 11. Installing, starting, and
stopping build servers” on page 127

Stopping build servers “Stopping the build servers” on
page 134

Writing a build script 138

Creating a builder 135

Creating a parser 159

Figure 46. Two versions of a build tree

124 User’s Guide

For more information about this task, Go to this page.

Defining a build tree 167

Starting a build 171

Stopping a build 175

Verifying the parts to be built 175

Chapter 10. Basic build concepts 125

126 User’s Guide

Chapter 11. Installing, starting, and stopping build servers

This chapter explains how to install, start, and stop a build server.

Installing the build function

Before installing build servers, you should be familiar with the build concepts found
in “Chapter 10. Basic build concepts” on page 119.

For hardware requirements for the build server machines, refer to the requirements
for your specific operating system in the Installation Guide.

When you install the various parts of TeamConnection, you can choose to group
them on a single server machine, or you can distribute them in various
combinations. For example, Figure 47 is a configuration that shows each
component on a different machine:

The TeamConnection installation programs allow you to select specific components
to install. You can use this program to install a build server, with or without other
TeamConnection components. For instructions on installing TeamConnection, refer
to the installation chapter for your platform in the Installation Guide.

Creating a build server on MVS

The code for an MVS build server is shipped with TeamConnection and installed on
your TeamConnection server when you install the product.

The following are software requirements for the MVS build server:

v TCP/IP Version 3.2 for MVS

v OS/390 R3 LE

To install the build server on MVS, you create MVS data sets and then upload the
TeamConnection files to these data sets. Follow these steps:

1. On your TeamConnection server, install the MVS build server component,
following the instructions in the Installation Guide.

2. On MVS, create data sets with the following characteristics:

Figure 47. TeamConnection components on separate machines

© Copyright IBM Corp. 1992, 1999 127

v An object data set [1] to contain object files: LRECL=80, RECFM=FB,
BLKSIZE=3120, DSORG=PO (Approximate size: 15 cylinders on a 3390.)

v A load module data set [2] to contain TEAMCBLD and DLLs:
LRECL=80,RECFM=U, BLKSIZE=3120, DSORG=PO (Approximate size: 15
cylinders on a 3390.)

v A data set to contain JCL for creating load modules [3]: LRECL=80,
RECFM=VB, BLKSIZE=3120, DSORG=PO

v A JCL data set for the MVS build scripts and samples [4]: LRECL=80,
RECFM=VB, BLKSIZE=3120, DSORG=PO

v An environment variable data set for the EDCENV DDname in runpgm.jcl
[5]:LRECL=80, RECFM=VB, BLKSIZE=3120, DSORG=PS (optional, needed
at runtime)

3. From the mvs subdirectory where TeamConnection is installed, do the following
to upload the files to MVS:

a. Type the following at a prompt and press Enter: ftp hostname. Specify your
name and password, if required.

b. Type the following, and press Enter after each:

v binary

v cd data set for object code [1]

v put fhccmnc.mvs fhccmnc

v put fhcrscli.mvs fhcrscli

v put teamcbld.mvs teamcbld

v Issue only one of the following commands according to the platform from
which you are transferring the MVS files:

From Intel platforms:
put \$LANG\fhbmsg.mvs fhbmsg

From UNIX platforms:
lcd $LANG

put FHBMSG.MVS fhbmsg

Note: For $LANG, substitute the name of the language subdirectory, for
example, enu for US English.

v put fhbtclnk.mvs fhbtclnk

v put getdsn.mvs getdsn

v ascii

v cd JCL data set for load module [3]

v put fhblink.jcl fhblink

v put runpgm.jcl runpgm

v put runpgmt.jcl runpgmt

v put fhbmenv.var environment variable data set [5]

v quit

c. This optional step installs the sample build scripts on MVS. It must be done
from a machine that has the TeamConnection client installed.

Note: The details in this step are subject to change. Please refer to updated
documentation when attempting this in the future.

If you are doing these steps from a different machine than in the previous
step, repeat step 3.a from the bin subdirectory where the client is installed

128 User’s Guide

|
|

|

|

|

|

|

|
|

|

on this machine. Otherwise, change to the bin subdirectory where the client
is installed. Then, type the following statements and press Enter after each:

v ascii

v cd 'data set for teamproc jcl' [4]

v put fhbmc.jcl fhbmc

v put edcc.jcl edcc

v put fhbmasm.jcl fhbmasm

v put fhbplked.jcl fhbplked

v put fhbcobm.jcl fhbcobm

v put fhbmpli.jcl fhbmpli

v put fhbtclnk.jcl fhbtclnk

v put fhbm370.jcl fhbm370

v put fhbmlink.jcl fhbmlink

v quit

d. From MVS, do the following:

1) Modify fhblink to customize the JCL to your MVS system.

2) Submit this JCL to create the required load modules.

When this JCL is executed successfully, the following modules are
created:

v TEAMCBLD (main executable)

v FHBMSG (national language-specific message catalog DLL)

v FHCCMNC (supporting DLL)

v FHCRSCLI (supporting DLL)

Note: All except for FHCCMNC are re-entrant.

3) The object dataset [1] can be deleted.

Creating a build server on MVS/OE

The steps that follow describe how to install a build server on MVS/OE.

1. Install the MVS/OE build server component.

2. From the oe subdirectory where TeamConnection is installed, use ftp to upload
the following files to MVS/OE, in binary.

v rename teamcbld.oe to teamcbld (main executable)

v rename fhccmnc.oe to fhccmnc (supporting DLL)

v rename fhcrscli.oe to fhcrscli (supporting DLL)

v teamcv3.cat (for required national language)

3. Using chmod in the OE shell, set the access flags for teamcbld, fhccmnc, and
fhcrscli so that they are executable.

Starting build servers using teamcbld

You can start the build servers using the following line command:
teamcbld [-c buildDir] [-e environment]

[-p pool] [-f family]
[-u userID] [-l login_password]
[-k local_codepage] [-r remote_codepage]
[-b become] [-s] [-n]

Chapter 11. Installing, starting, and stopping build servers 129

Where:

v buildDir specifies the directory teamcbld should be run in.

v environment specifies the environment that you are building for, such as OS/2 or
MVS. The value you specify here can be anything you like, but it must exactly
match the environment specified for a builder in order for the builder to use this
build agent. This value is case-sensitive. You can also set this value using the
TC_BUILDENVIRONMENT environment variable.

v pool is the name of the build pool. You can also set this value using the
TC_BUILDPOOL environment variable. This value is case sensitive, and should
match the parameter specified in the Part -build command.

v family is the name of the TeamConnection family. If a family is not specified, the
value of the TC_FAMILY environment variable is used as the default.

v userID is used only when the family server authentication level requires a
TeamConnection user ID and password. A password parameter is not necessary
when TC_LOGIN has been used.

v login_password is used only when the family server authentication level requires
a TeamConnection user password. A password parameter is not necessary when
the command line tclogin command has been used.

v local_codepage local machine’s code page used for translation, if not specified,
no codepage conversion will be done.

v remote_codepage family machine’s code page used for translation, if not
specified, no codepage conversion will be done.

v become is a user become value. The default is the value specified for the
TC_BECOME environment variable.

v -s sends log file messages to the screen.The build server generates a log file
called teamcbld.log. Build server log messages can be routed to the screen using
the -s parameter.

v -n writes files:

– writes the changed environment variables to a file called tcbldenv.lst instead
of setting them in program’s environment. The format of the file is
variable=value.

– writes the list of input files to a file called tcbldin.lst . One file per line, format
is pathName type.

– writes the list of output files to a file called tcbldout.lst . One file per line,
format is pathName type.

You can also set the -s and -n build options using the TC_BUILDOPTS
environment variable.

Two environment variables that directly affect build performance are:

v TC_BUILDMINWAIT - Minimum amount of time to wait (in seconds) between
queries for new jobs. Default setting is 5, minimum setting is 3.

v TC_BUILDMAXWAIT - Maximum amount of time to wait (in seconds) between
queries for new jobs. Default setting is 15, maximum setting is 300.

The command teamcbld will check the family for work to do every
TC_BUILDMINWAIT. If it is not busy it will slow down to the TC_BUILDMAXWAIT
time. The build administrator can adjust these variables to tune the frequency that
the build server will check the family.

130 User’s Guide

Starting an MVS build server

The MVS build server is a special client to the family server. It uses a user ID that
must be defined to the family server. Depending on the authentication level in
effect, a host list entry must be created for the user, and, if password authentication
is required, the -l parameter must be used to specify the password when starting
the build server.

The user ID used by the build server is the TSO user ID under which the build job
is started. The user ID must always be in uppercase and must be created in
uppercase on the family server. The user ID is not determined by the TC_USER
environment variable.

You can start the MVS build server program TEAMCBLD, in Batch or under TSO.
The RUNPGM JCL executes the MVS build server in batch. The RUNPGMT JCL
executes the MVS build server under a TSO environment.

The following summarizes the actions to run the build server on MVS:

Modify the RUNPGM JCL for your installation.

Modify the environment variable dataset as needed. Two environment variables
that directly affect build performance are:

– TC_BUILDMINWAIT - Minimum amount of time to wait (in seconds) between
queries for new jobs. Default setting is 5, minimum setting is 3.

– TC_BUILDMAXWAIT - Maximum amount of time to wait (in seconds)
between queries for new jobs. Default setting is 15, maximum setting is 300.

The teamcbld will check the family for work to do every TC_BUILDMINWAIT. If it
is not busy it will slow down to the TC_BUILDMAXWAIT time. The build
administrator can adjust these variables to tune the frequency that the build
server will check the family.

Submit the JCL.

To start an MVS build server, do the following to modify the RUNPGM JCL:

1. Add a job card.

2. Modify the STEPLIB DD statement to point to the data set that contains the
following load modules: TEAMCBLD, FHBMSG, FHCCMNC, and FHCRSCLI.

3. Modify the TEAMPROC DD statement to point to the data set that will contain
all your MVS build scripts.

Note: The TEAMPROC DD defines the dataset into which the build script from
TeamConenction family will be placed during the build. If the builder is of
type ’none’, then the build script does not exist in the family, but must
already be in this dataset. If the build script refers to other build scripts
(using the EXEC card), then those scripts are expected to be in this
dataset also. However an optional ddname, PROCLIBS, can be defined
which will be searched for the referred build scripts which are not found
in TEAMPROC.

4. Modify the EDCENV DD statement to point to the data set that contains the
environment variables.

5. Modify the following statement. For RUNPGMT, the statement is equivalent.
Parameters can be specified using the PARM field or, in some cases,
environment variables.

Chapter 11. Installing, starting, and stopping build servers 131

//RUNPGM EXEC PGM=TEAMCBLD,
// PARM='ENVAR("_CEE_ENVFILE=DD:EDCENV")/[-e environment]
// [-p pool] [-f family] [-u unit_name]
// [-l login_password] [-k local_codepage]
// [-r remote_codepage]'

Where:

v environment specifies the environment that you are building for, such as OS/2
or MVS. The value you specify here can be anything you like, but it must
exactly match the environment specified for a builder in order for the builder
to use this build agent. This value is case-sensitive. You can also set this
value using the TC_BUILDENVIRONMENT environment variable.

v pool is the name of the build pool. You can also set this value using the
TC_BUILDPOOL environment variable. This value is case sensitive, and
should match the parameter specified in the Part -build command.

v family is the name of the TeamConnection family. If a family is not specified,
the value of the TC_FAMILY environment variable is used as the default.

v unit_name indicates the default unit type for dynamic data set allocations.
VIO is the default.

v login_password is required only when the family server authentication level
requires a TeamConnection user password.

v local_codepage indicates the code set that text data is converted to for the
build. The default is IBM-1047.

v remote_codepage indicates the code set for data stored in TeamConnection.
The default is IBM-850.

Notes:

a. TEAMCBLD converts the text files between the two codepages using the
iconv codepage conversion functions, and therefore can support only those
codepages that have the iconv conversion tables installed on the MVS
system. If not specified, TEAMCBLD uses internal tables which correspond
to single-byte codepages IBM-1047 and IBM-850.

b. The -k (local_codepage) and the -r (remote_codepage) flags are also used
to convert any messages generated in the MVS environment which are sent
back to the workstation client.

6. Submit the job.

Starting the MVS/OE build server

Under MVS/OE, the build server program can be started with the following teamcbld
command:
teamcbld -e environment -p pool -f family [-l login_password] [-s] [-v] [-n]

[-k local_codepage] [-r remote_codepage]

Where:

v environment specifies the environment that you are building for, such as OS/2 or
MVS. The value you specify here can be anything you like, but it must exactly
match the environment specified for a builder in order for the builder to use this
build agent. This value is case-sensitive. You can also set this value using the
TC_BUILDENVIRONMENT environment variable.

v pool is the name of the build pool. You can also set this value using the
TC_BUILDPOOL environment variable. This value is case sensitive, and should
match the parameter specified in the Part -build command.

132 User’s Guide

v family is the name of the TeamConnection family. If a family is not specified, the
value of the TC_FAMILY environment variable is used as the default.

v -s sends log file messages to the screen.The build server generates a log file
called teamcbld.log. Build server log messages can be routed to the screen using
the -s parameter. -s must be lowercase. An uppercase -S turns it off.

v -v increases the level of messages written to the log. This option is equivalent to
the verbose option on TeamConnection teamc commands -v must be lowercase.
An uppercase -V reduces the level.

v login_password is used only when the family server authentication level requires
a TeamConnection user password. The user ID used by the build server is the
MVS/OE user ID under which the build job is started.

v local_codepage indicates the code set that text data is converted to for the build.
The default is IBM-1047.

v remote_codepage indicates the code set for data stored in TeamConnection. The
default is IBM-850.

Notes:

1. The command teamcbld converts the text files between the two codepages
using the iconv codepage conversion functions, and therefore can support only
those codepages that have the iconv conversion tables installed on the MVS
system. If not specified, teamcbld uses internal tables which correspond to
single-byte codepages IBM-1047 and IBM-850.

2. The -k (local_codepage) and the -r (remote_codepage) flags are also used to
convert any messages generated in the MVS environment which are sent back
to the workstation client.

TC_CATALOG, if specified, should be the pathname of the message catalog file.
For example, /xxx/enu/teamcv3.cat. If not specified, default (English) messages are
used. The file teamcbld must be included in the PATH environment variable. The
files fhcccmnc and fhcrscli must be included in LIBPATH.

Two environment variables that directly affect build performance are:

v TC_BUILDMINWAIT - Minimum amount of time to wait (in seconds) between
queries for new jobs. Default setting is 5, minimum setting is 3.

v TC_BUILDMAXWAIT - Maximum amount of time to wait (in seconds) between
queries for new jobs. Default setting is 15, maximum setting is 300.

The command teamcbld will check the family for work to do every
TC_BUILDMINWAIT. If it is not busy it will slow down to the TC_BUILDMAXWAIT
time. The build administrator can adjust these variables to tune the frequency that
the build server will check the family.

Creating build startup files (for non-MVS environments)

You can create startup files for concurrently starting build servers with the family
server using the teamcd command. This is the preferred method for starting build
servers. When starting the build servers in this manner, you need to create a
startup file.

Information about the build servers is put in a startup file and the name of the
startup file is specified in one of two ways:

v In the teamcd command, using the -b parameter.

v In the TC_BUILD_RSSBUILDS_FILE environment variable.

Chapter 11. Installing, starting, and stopping build servers 133

You can store the build startup files wherever you like, provided that you give the
full file path names for them in the -b parameters, or in the
TC_BUILD_RSSBUILDS_FILE environment variable.

Stopping the build servers

To stop a build server, do one of the following:

v Close the window in which the build server is running.

v Press Ctrl+C when the build server window has focus.

v Close the window in which the family server was started if the build server was
started with the teamcd command.

Stopping an MVS build server

To stop an MVS build server, cancel the RUNPGM job that was used to start it.

134 User’s Guide

Chapter 12. Working with build scripts and builders

A builder is an object that can transform one set of TeamConnection parts into
another by invoking tools such as compilers and linkers. For example, one builder
might transform a COBOL source file into an object file. Another might transform a
set of object files into an executable file. Builders use build scripts to invoke the
tools that actually transform TeamConnection parts.

Usually a build administrator creates build scripts and builders, but anyone with the
proper authority can do so.

This chapter tells how to create and maintain build scripts and builders. It assumes
that you have read “Chapter 10. Basic build concepts” on page 119. The following
table directs you to the tasks to be done:

For more information about this task, Go to this
page.

Creating a builder 135

Writing a build script 138

Testing a build script 141

Updating a builder 142

Putting a builder to work 142

Removing a builder from a part 143

Creating a builder

As with most other TeamConnection operations, there are two ways you can create
a builder: using the graphical user interface (GUI) or the command line interface.

To create a builder using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Builders → Create .

2. On the Create Builder window, type the requested information.

© Copyright IBM Corp. 1992, 1999 135

To create a builder using the command line:

From a command line, type the teamc builder -create command and press
Enter. The complete command syntax is the following:
teamc builder -create name -condition RC_expression

-environment name
-from script_filespec
-script name
-value RC_value -release name
-family name
[-text | -binary | -none]
[-parameters Parameters]
[-timeout number] [-become user_name]
[-verbose]

No matter which way you create a builder, you must specify a number of attributes
for it. Together with the contents of the build script and the tools you use (the
compilers, linkers, and so on), the following attributes define how a transformation
takes place.

Builder
The name of the builder must be unique within a release. It can be anything
you want; we recommend you establish and follow a meaningful naming
convention. An example of a builder name is c_set_2.

Release
This is the name of the release that contains the builder. Builders are
release-specific objects. They are not versioned within a release; therefore
you can have only one version of a builder at any time in a release.

To use the builder from a previous release, you can link to a part that uses
it in that release. This action copies the builder to the new release.
Otherwise, you must create the builder again in the new release.

Script, File type, and Source file
These fields work together to define the build script that the builder invokes
to accomplish the transformation. (The File type field on the GUI
corresponds to -text, -binary, and -none in the command. The Source file
field on the GUI corresponds to the -from attribute.)

Figure 48. Create Builder window

136 User’s Guide

v If the build script is simple enough to be expressed in one line, you can
specify it in the Script attribute when you create the builder, and specify
a file type of none. At minimum, the script must specify the name of the
transformation tool. For example, to invoke the C Set/2 compiler, you
might specify these values:

– File type - none

– Script - icc

See “Writing a simple build script” on page 140 for more information.

v If the build script is more complex, you must first create a separate file
containing it; see “Writing an executable file for a build script” on
page 140 for more information about how to write it. Specify the fully
qualified path name of your file as the source file, and specify the file
type as text or binary. TeamConnection can also detect the file type and
store it in the proper format.

When the builder is created, this source file is stored as part of the
builder in the TeamConnection database; during a build, the build server
creates and runs a local version of this file. Specify the name you want
for this local file in the Script field. For example, you might specify these
values:

– File type - text

– Script - c_compile.cmd

– Source file - c:\src\c_compile.cmd

When this builder is created, the contents of c:\src\c_compile.cmd are
stored in the builder. When this builder is invoked, TeamConnection
creates a file named c_compile.cmd, writes the build script into this file,
and then runs it.

v If the builder is being used to only collect a set of build objects (for
example, the ALL: rule in makefiles), specify these values:

– File type - none

– Script - null

This prevents the build process from extracting input and output parts.
See “Synchronizing the build of unrelated parts” on page 176 for an
example.

Environment
This is the name of the environment supported by the builder, such as
OS/2, Windows, AIX, HP-UX, Solaris, or MVS. The value that you specify
here can be anything you like, but it must exactly match the environment
value specified in the command used to start the build server. (See
“Chapter 11. Installing, starting, and stopping build servers” on page 127 for
more information.) It is recommended that you follow a naming convention
for this attribute, using values such as os2 and mvs.

Comparison operator and RC value
Together, these two attributes make up a Boolean expression that defines
the criteria used to decide whether a specific build event was successfully
accomplished, when evaluated against the value returned by the build
script. (The Comparison operator and RC value fields on the GUI
correspond to the -condition and -value attributes in the command.)

The values allowed for Comparison operator are as follows:

Chapter 12. Working with build scripts and builders 137

v EQ or == - Equals

v LT or < - Less than

v LE or <= - Less than or equals

v GT or > - Greater than

v GE or >= - Greater than or equals

v NE or != - Not equal to

RC value can be any positive integer. An example of a Boolean expression
formed from these two attributes is return_value LE 4, meaning that the
build event is considered a success if the build script returns a value less
than or equal to four.

Parameters
This is a string passed to the build script as its argument. If the string
includes blanks, enclose the string in double quotes. For example, for a
builder used for VisualAge C++ compiling, you might specify a parameter
string of "/Ss /Ge-". If the string includes a double quote, precede the
double quote with a backslash (\). If the string includes a dash (-), precede
the dash with a blank space, otherwise the string is interpreted as the start
of a TeamConnection action flag.

Timeout
This attribute specifies the number of minutes that a build server will be
allowed to complete a build event after it receives the build job from the
TeamConnection family server. The default is 1440 minutes (24 hours). If
the build event does not complete within this time, the build event fails.

Writing a build script

When you create a builder, you must specify a build script. The build script actually
invokes the transformation tool and passes it parameters defined in the Parameters
attribute of the builder.

Passing parameters to a build script

There are three places where parameters can be specified that affect the outcome
of a build.

As attributes of a builder
Builder parameters are passed to the build script, after variable substitution
is performed. Variables are substituted based upon the following syntax:
$(variable_name)

To pass parameters to your build script, specify them in the Parameters
attribute of the builder. TeamConnection sets these variables before
invoking the build script.

Note: If the command teamcbld included the -n flag, then the build script
will process the tcbldenv.lst, tcbldin.lst, and the tcbldout.lst files
instead of the variables set by the Parameters attribute.

In UNIX environments, you need to include an escape character before the
$ character, for example: \$(TC_INPUT).

You can use the following TeamConnection environment variables:

138 User’s Guide

TC_BUILD_USER
The user ID of the TeamConnection user who submitted the build.

TC_FAMILY
The TeamConnection family.

TC_RELEASE
The release of the parts that are being built.

TC_LOCATION
The current directory where the build script runs.

TC_INPUT
A list of the TeamConnection parts that are input to the object being
built.

TC_INPUTTYPE
Identifies each input type.

Note: There is a one-to-one relationship between each object in
the TC_INPUT list and this list of types (TCPart, for
example).

TC_OUTPUT
A list of the parts that are being built in this build event.

TC_OUTPUTTYPE
Identifies each output type. The default is file.

Note: There is a one-to-one relationship between each object in
the TC_OUTPUT list and this list of types (TCPart, for
example).

TC_WORKAREA
The name of the work area in which the build is being performed.

You can define other variables. These can be set when you start the build
by specifying a value for parameters in the part -build command (from the
command line or through the GUI). These variables are set in the
parameters string passed to the build script.

These variables are also used to set environment variables before the build
script is invoked.

As attributes of a part in the build tree
Parameters that are unique to a particular part are specified on the part
-create and part -modify commands. Like the builder parameters, these
parameters allow variable substitution.

When parameters are specified for a part, these parameters are used in
place of the parameters specified for the builder. In other words, if both
builder and part parameters are specified, the part parameters take
precedence.

In addition, whenever parameters are specified for any part that is an output
of a build event, they apply to all the outputs of that build event. For
example, if a build event has two outputs, msg.exe and msg.map, then
changing the part parameters to ″/Debug″ for either of the two parts has the
same result. The next time the build event is processed, the ″/Debug″
parameter is used when invoking the build script that produces both
msg.exe and msg.map.

Chapter 12. Working with build scripts and builders 139

You can also substitute the builder parameters into the file parameters by
using the variable $(BUILDERPARMS). For example, you might use the
following command:
teamc part -build myfile.c -parameters "/Ti+ $(TC_BUILDERPARMS)" ...

At build time, the parameters specified in the builder for myfile.c are
substituted for $(TC_BUILDERPARMS).

As parameters of the part -build command
The part -build command parameters are not used the same way as the
other two parameters. Instead, these parameters are used to set the values
of environment variables that can be used for substitution into either the
builder or part parameters. They are also set in the environment so they
can be retrieved by the build script. In other words, they set up the
environment used by the builder.

For example, if you issue a part -build command for msg.exe, you can
specify -parameters DEBUG=YES and, inside of both the compile and link
build scripts, retrieve the value of this variable from the environment, setting
compiler or linker flags accordingly.

Writing a simple build script

This kind of build script is written into the Script attribute of the builder. When you
create or modify the builder, you specify in this attribute the name of the
transformation tool to be invoked.

For example, suppose you want to create a builder that compiles a C source file
into a .exe file using IBM’s VisualAge C++ compiler. You specify the following
attributes for the builder:

Build script
icc

Parameters
"$(TC_INPUT) /Fe$(TC_OUTPUT)"

You can create this builder using the following command:
teamc builder -create c_builder -env OS2 -script icc -none
-parameters "$(TC_INPUT) /Fe$(TC_OUTPUT)"

If you use this builder to create hello.exe from hello.c, the command actually issued
during the build process is the following:
"icc hello.c /Fehello.exe"

Writing an executable file for a build script

Suppose you need to build a C application and you want to specify at build time
whether to use debug information. To do this, you define in the builder parameters a
variable called debug and set the variable when you start the build. In this case,
you need a build script that is a separate executable file to pass the debug
parameter after the variable substitution.

For a build script of this form, you first write a program or command file; this file is
stored in the TeamConnection database when you create the builder. When a build

140 User’s Guide

is performed, this build script file is extracted from the database and run. It
interprets the parameters passed to it and then invokes the actual transformation
tool, such as the compiler.

Our earlier example describes a builder that compiles a C source file into a .obj file
using IBM’s VisualAge C++ compiler. Using this builder, you can specify at build
time whether to use debug information. Here is the complete build script for such a
builder, written in IBM’s REXX language (it could just as easily have been written in
C or COBOL).
/* sample C Build Script using debug flag */

parse arg parms

environ = 'OS2ENVIRONMENT'
input = VALUE('TC_INPUT',,environ)
output = VALUE('TC_OUTPUT',,environ)
debug = VALUE('DEBUG',,environ)

if debug = 'YES' then
do
parms = parms || '/Ti+'

end
icc parms '/Fo'||output input

exit result

Windows NT and 95 build scripts must be able to return a value for a
return code. Because *.bat command files provide little support for
programming logic and cannot return a value, use a compiled executable
for your build script. TeamConnection provides two sample Windows
build scripts and their source files. These samples, fhbwcomp.exe and
fhbwlink.exe, are C programs for the Microsoft Visual C++ compiler and
linker, respectively. Because these samples are C programs, they can
also be used with the OS/2 build server with only slight modifications.

You can create the builder that invokes this build script using the following
command:
teamc builder -create c_builder2 -script c_compile.cmd -parameters "/c"

-from d:\teamc\c_compile.cmd

Where d:\teamc\c_compile.cmd is the file to be stored in the TeamConnection
database and c_compile.cmd is the name of the local file that the build process
creates and runs during a build.

To build hello.obj using the debug option, you use the following command:
teamc part -build hello.obj -parameters "debug=YES" -pool os2pool

The command issued by the build server is the following:
c_compile.cmd /c

In turn, the build script inspects the contents of the parameters it received in its
argument list and from the environment, and it forms this command:
"icc /c /Ti+ /Fohello.obj hello.c"

Testing a build script

The easiest way to test a build script is to write a simple driver program that sets
the environment variables that the build script will expect and then runs the script
against local files.

Chapter 12. Working with build scripts and builders 141

For example, to test the example build script in “Writing an executable file for a
build script” on page 140, write a program that sets the TC_INPUT, TC_OUTPUT,
and DEBUG parameters, and then runs the command file against a local copy of
hello.c. If the test is successful, the script correctly builds hello.obj in the current
directory, and DEBUG is interpreted correctly.

Modifying the contents of a build script

Sometimes you need to modify the contents of a build script. Remember that a
build script is stored as part of the builder itself. Because builders are not
versioned, you do not check them out as you would most TeamConnection parts.
Instead, follow these steps:

1. Extract the builder (in which the build script is stored) from the TeamConnection
database.

2. Make your changes at your workstation.

3. Store the contents back into the TeamConnection database by using the builder
-modify command.

For example, to modify the build script in “Writing an executable file for a build
script” on page 140, you first issue the following command:
teamc builder -extract c_builder2 -to d:\build\c_builder2

Then, you use an editor to update d:\build\c_builder2. To move the updated build
script back into TeamConnection, you issue the following command:
teamc builder -modify c_builder2 -from d:\build\c_builder2

The builder is an implied dependency for any part that uses it. Therefore, the next
time you build the application that uses the modified builder, all the parts that use it
get rebuilt.

Putting a builder to work

For an application to use a builder, the builder must be attached to the
TeamConnection parts that it will build.

For an existing part, do one of the following:

v GUI: From the Actions menu of the TeamConnection Tasks Window, select
Parts → Modify → Properties . On the Modify Part Properties window, type the
name of the builder in the Builder field.

142 User’s Guide

v From a command line, type the following and press Enter.
teamc part -modify name -Builder name

where the part name is the name of the output file to be created by this builder
and the builder name is the name of the builder itself.

The complete syntax for this command is described in the TeamConnection
Commands Reference.

You can also attach a builder to an output file when the part is created.

After you attach a builder to a part, the builder is ready for action. When the part is
built, the builder invokes the build script, which in turn invokes a tool to transform
the inputs of the part into the output.

For more information about attaching builders to the build tree, refer to “Creating
the build tree for the application” on page 167.

Removing a builder from a part

If you no longer want to use a builder for a part, do one of the following:

v From the GUI, select Parts → Modify → Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
null in the Builder field.

Figure 49. Modify Part Properties window

Chapter 12. Working with build scripts and builders 143

v From a command line, type the following:
teamc part -modify name -builder null -release name -family name

Working with VisualAge C ++ and Templates

When using VisualAge C++ and templates, template-include objects are saved in a
subdirectory of the current directory called TEMPINC, so that subsequent builds can
use them. When you start a build from TeamConnection, you need to specify the
/Ft(dir) parameter with your builder or use PRAGMA statements to update the
template-include objects for subsequent builds. This parameter suppresses
resolution of files and imbeds them within the object file.

You can specify the /Ft(dir) parameter with a builder as follows:
teamc builder -create c_builder -script icc -parameters "/FtE:\template"

Figure 50. Modify Part Properties window

144 User’s Guide

Chapter 13. Working with MVS build scripts and builders

A builder is an object that can transform one set of TeamConnection parts into
another by invoking tools such as compilers and linkers. For example, one builder
might transform a COBOL source file into an object file. Another might transform a
set of object files into an executable file. Builders use build scripts to invoke the
tools that actually transform TeamConnection parts.

For MVS, a build script is a text file that contains JCL-like statements with additional
TeamConnection syntax and substitutable variables. TeamConnection parses these
statements and does the necessary allocations and program calls for a build.

Note: The builder type cannot be binary.

Usually a build administrator creates build scripts and builders, but anyone with the
proper authority can do so.

This chapter tells how to create MVS build scripts and builders. It assumes that you
have read “Chapter 10. Basic build concepts” on page 119. The following table
directs you to the tasks to be done. In some cases, if the instructions are the same
for OS/2 and MVS, the table refers you to topics in “Chapter 12. Working with build
scripts and builders” on page 135.

For more information about this task, Go to this
page.

Creating a builder for MVS builds 145

Writing an MVS build script 148

Testing a build script 141

Updating a builder 142

Putting a builder to work 142

Removing a builder from a part 143

Creating a builder for MVS builds

As with most other TeamConnection operations, there are two ways you can create
a builder: using the graphical user interface (GUI) or the command line interface.

To create a builder using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Builders → Create .

2. On the Create Builders window, type the requested information.

© Copyright IBM Corp. 1992, 1999 145

To create a builder using the command line:

From an OS/2 command line, type the builder -create command and press
Enter. The complete command syntax is the following:
teamc builder -create name -condition RC_expression

-environment name
-from script_filespec
-script name
-value RC_value -release name
-family nName
[-text | -binary | -none]
[-parameters parameters]
[-timeout number] [-become user_name]
[-verbose]

No matter which way you create a builder, you must specify a number of attributes
for it. Together with the contents of the build script and the tools you use (the
compilers, linkers, and so on), the following attributes define how a transformation
takes place.

Builder
The name of the builder must be unique within a release. It can be anything
you want; we recommend you establish and follow a meaningful naming
convention. An example of a builder name is c370.

Release
This is the name of the release that contains the builder. Builders are
release-specific objects. They are not versioned within a release; therefore
you can have only one version of a builder at any time in a release.

To use the builder from a previous release, you can link to a part that uses
it in the previous release. This action copies the builder to the new release.
Otherwise, you must create it again in the new release.

Script, File type, and Source file
These fields work together to define the build script that the builder invokes
to accomplish the transformation. (The File type field on the GUI
corresponds to -text, -binary, and -none in the command. The Source file
field on the GUI corresponds to the -from attribute in the command.)

Figure 51. Create Builder window

146 User’s Guide

You must first create a separate file containing the build script. All MVS
build scripts must be written using JCL statements and the TeamConnection
syntax described in “Writing an MVS build script” on page 148. You can
store the build script one of two ways:

v To store the build script as part of the builder: specify the fully
qualified path name of your build script file as the source file, and specify
the file type as text. When the builder is created, this source file is
stored as part of it in the TeamConnection database.

During a build, the build server creates and runs a local version of this
file. Specify the name you want for this local file in the Script field. For
example, you might specify these values:

File type
text

Script fhbc

Source file
C:\build\script\fhbc.jcl

When this builder is created, the contents of C:\build\script\fhbc.jcl are
stored in the builder. When this builder is invoked, TeamConnection
creates a file named FHBC in the data set referenced by the
TEAMPROC ddname, writes the build script into this file, and then runs
it.

v To store the build script on MVS: create the build script file and place
it in the data set allocated to the TEAMPROC ddname in the RUNPGM
JCL file. When you do this, specify the following attributes:

File type
none

Script fhbc

Do not specify a source file.

v If the builder is being used to only collect a set of build objects (for
example, a VisualAge Generator collector part), specify these values:

File type
none

Script null

See “Synchronizing the build of unrelated parts” on page 176 for an
example.

Environment
This is the name of the environment supported by the builder, such as
MVS.

The value that you specify here can be anything you like, but it must
exactly match the environment value specified in the command used to
start the build server.

It is recommended that you follow a naming convention for this attribute,
using values such as os2 and mvs.

Comparison operator and RC value
Together, these two attributes make up a Boolean expression that defines

Chapter 13. Working with MVS build scripts and builders 147

the criteria used to decide whether a specific build event was successfully
accomplished, when evaluated against the value returned by the build
script.

The Comparison operator and RC value fields on the GUI correspond to
the -condition and -value attributes in the command.

The values allowed for these operators:

v Comparison operator are as follows:

– EQ or == - Equals

– LT or < - Less than

– LE or <= - Less than or equals

– GT or > - Greater than

– GE or >= - Greater than or equals

– NE or != - Not equal to

v RC value can be any positive integer.

An example of a Boolean expression formed from these two attributes is
return_value LE 4.

This expression means that the build event is considered a success if the
build script returns a value less than or equal to four.

Parameters
This is a string passed to the build script as its argument.

For example, for a builder used for linking load modules, you might specify
a parameter string of list,test.

Timeout
This attribute specifies the number of minutes that a build server will wait
for an invoked build script to return before concluding an error has occurred
and stopping the build event.

If the timeout value is reached, the build event fails.

Because MVS builds are processed in batch mode but the build is
submitted to the build server in real time, consider writing a user exit to
check the time of day before allowing a build request to be submitted.
Another approach to handling the timing of MVS builds is to start the MVS
build server only at night and ensure that the MVS builders do not have
short timeout values.

Writing an MVS build script

The best starting point for an MVS build script is an existing JCL fragment that is
used for transforming inputs into outputs. For example, suppose you want to create
a builder that compiles a C source file into an OBJECT file using IBM’s C/370
compiler. You probably already have JCL that can be submitted as a batch job that
does this.

When you create a build script for the MVS environment, you specify JCL
statements with additional TeamConnection syntax. This build script is parsed by
the build server. From the parsed results, TeamConnection allocates the specified
ddnames and data sets; it then determines and executes the programs dynamically.
The MVS build server uses the specialized TeamConnection syntax in the JCL to
determine where to store the parts involved in an MVS build.

148 User’s Guide

All statements in the MVS build script except for comments and inline data stream
must start with two forward slashes (//).

Before you start writing your build script, refer to the manuals for the compiler,
linker, or other transformation program to determine the data set requirements. Pay
particular attention to the DCB attributes for LRECL, BLKSIZE, and RECFM.

Sample build scripts shipped with TeamConnection can be installed on MVS. Page
266 lists the sample build scripts. For instructions on installing these samples, refer
to the Administrator’s Guide

If you are debugging a build script, these manuals are also the first place to look for
problems.

For more information about JCL syntax, refer to the JCL User’s Guide and JCL
Reference for your version of MVS. (These are listed in the bibliography at the back
of this book.)

The following sample MVS build scripts are shipped with TeamConnection:

fhbmasm.jcl
Calls the MVS assembler

fhbcobm.jcl
Calls the MVS COBOL compiler

fhbmpli.jcl
Calls the PL/1 MVS compiler

File name conversions for MVS

TeamConnection file names are modified by the MVS build server according to the
following rules:

v The directory path of a file name is not used. All characters of a file name up to
and including the rightmost slash (/ or \) are thrown away.

v Lowercase characters are converted to uppercase characters.

v The file extensions are stripped from the right, up to and including the leftmost
period. The extension, minus the period, is used by the MVS build tool to direct
the file to particular data sets according to user-specified syntax in the MVS build
scripts.

v The remaining name is truncated from the left, to a maximum of 8 characters.

v Names must contain characters that are valid in MVS. MVS allows the following
characters:
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

However, the name must begin with an alphabetic character.

v Underscore characters (_) in a base name are converted to at signs (@).

The following are examples of how a TeamConnection name is converted:

v A TeamConnection file name of src\build\fhbldobj.C is converted to FHBLDOBJ
on MVS.

v A TeamConnection file name of src/build/fhbtruncate.c is converted to
FHBTRUNC on MVS.

Chapter 13. Working with MVS build scripts and builders 149

In both of these examples, the .C or .c is split away. The MVS build server uses the
resulting extension to resolve and possibly allocate the MVS data sets needed for
the build process. The extensions are required for parts that participate in an MVS
build.

A TeamConnection file name of src\build\fhbtest.c.old is converted to FHBTEST, and
c.old becomes the extension.

Passing parameters to an MVS build script

To pass parameters to your build script, specify them in the Parameters attribute of
the builder. These are passed to MVS through the combination of the PARM
keyword parameter on an EXEC card and the &TCPARM variable.

Note: Take extra care to use no single or double quotes in the Parameters
attribute of the MVS builder definition. This rule follows standard JCL syntax
for parameter substitution in the PARM keyword parameter of an EXEC
statement.

You can use the &TCPARM variable in your MVS build scripts. This variable is
substituted with any parameters that were specified using the -parameter attribute
of the builder command or the Parameters field on the Create Builder window
when the builder was created.

You can also use the following TeamConnection variables in writing MVS build
scripts:

&TCBLDUSR
On MVS, can be used in JCL scripts, which will be substituted with the
userID before processing the script.

&TCINPUT
This variable is used for in-stream data. For each build input, the line where
&TCINPUT appears is duplicated and the variable &TCINPUT substituted
with the input name.

&TCOUTPUT
This variable is used for in-stream data. For each build output, the line
where &TCOUTPUT appears is duplicated and the variable &TCOUTPUT
substituted with the output name.

&TCWKAREA
The name of the work area in which the build is being performed.

&TCRELEAS
The name of the release in which the build is being performed.

Note: The &TCINPUT and &TCOUTPUT substitutable variables have limited scope
in the MVS build scripts and should be used only within the in-stream data.

You can define other variables. You can set them by specifying a value for
Parameters when you start a build. These variables are set in the parameters
string passed to the build script.

Further, these variables can be used for variable substitution within MVS build
scripts. Variable substitution works similarly to JCL variable substitution.

150 User’s Guide

TeamConnection syntax for MVS build scripts

TeamConnection has extended the existing JCL syntax. The extended syntax tells
the TeamConnection build server where to put the inputs, where to get the outputs,
and where to get messages from the translators after an MVS build.

To direct inputs, outputs, and messages, add TCEXT=xxx to the data set attributes
defined to a ddname, where xxx is one of the following:

v The base name extension from the TeamConnection part — for example,
TCEXT=H, where H is the extension from A.H.

v One or more base name extensions from TeamConnection parts, surrounded by
parentheses — for example, TCEXT=(H,HPP), where H is an extension from A.H or
HPP is an extension from A.HPP.

v The string TCOUT, which declares that the contents of the data set assigned to the
ddname will be sent back to TeamConnection. Users can view this information in
one of these ways:

– From a command line prompt, typing teamc part name -viewmsg and pressing
Enter

– Selecting Part → View → View build message from the Actions pull-down
menu on the Tasks window

Note: More than one ddname can specify TCOUT; the results are concatenated in
the order of appearance.

When you add the TCEXT attribute for a ddname specification, you must also
specify other attributes to allocate the data set through dynamic allocations:

v SPACE

v UNIT

v DCB, which includes the LRECL, BLKSIZE, and RECFM attributes

The UNIT attribute defaults to VIO unless the -U parameter is specified when the
MVS build server is started.

For translation messages, you can allocate a data set to the ddname TC$LIST and
specify the attributes yourself. Otherwise, the build server allocates this data set
with the following attributes by default:
//TC$LIST DD DCB=(RECFM=VB,LRECL=255,BLKSIZE=32640),
// SPACE=(CYL,(2,1)),DISP=(NEW,DELETE),UNIT=VIO

Supported JCL syntax

The TeamConnection MVS build server supports only a subset of the available JCL
syntax.

The following are not supported:

v A JOBSTEP statement

v DISP=(..,PASS)...

JCL procedures can be used on an EXEC statement. However, you must verify that
any procedure called by the build script uses syntax that TeamConnection supports.

The following list indicates the positional and keyword parameters that are
supported. You can verify the syntax in the JCL Reference.

Chapter 13. Working with MVS build scripts and builders 151

EXEC statement
//label EXEC positional_parameter,keyword_parameter

The following parameters are supported.

Positional parameters:

v PGM=program_name, where program_name is an executable load module

v PROC=procedure_name, where procedure_name is an existing JCL procedure

v procedure_name, where procedure_name is an existing JCL procedure

Keyword parameters:

v PARM='information', where information is the parameter string passed to the
load module.

v COND=(code,operator [,stepname])

– code is the value to test against the return code from a previous step

– operator is the comparison to be made between the value for code and the
return code

– stepname is the step issuing the return code

All other keyword parameters are ignored and not used.

DD STATEMENT
//label DD keyword parameter

Positional parameters

The only supported positional parameter is [*], which begins an in-stream data set
containing no JCL.

Keyword parameters

The following keywords are supported.

v DSN=data_set_name or DSNAME=data_set_name

v DISP=status or DISP=([status] [,normal-termination-disp]
[,abnormal-termination-disp])

– Valid values for status are NEW, OLD, SHR, or MOD.

– Valid values for normal_termination_disp or abnormal_termination_disp are
DELETE, KEEP, CATLG or UNCATLG.

v UNIT=unit_type, where unit_type is any value allowed in JCL. The default is VIO
unless a different default is set when the MVS build server is started.

v SPACE=(allocation_type,(primary[, secondary] [,directory])[,RLSE]
[,CONTIG])

– Valid values for allocation_type are TRK, CYL, or the block size.

– primary is the primary number of the allocation type.

– secondary is the secondary number of the allocation type.

– directory is the number of directory blocks for a partitioned data set.

v DCB=(LRECL=record_length,BLKSIZE=block_size,RECFM=record_format)

Valid values for record_format are F, FB, V, VB, or U).

v DSORG=data_set_organization

Valid values for organization are the following:

152 User’s Guide

– PO for a partitioned data set

– PS for a sequential data set

v DDNAME=label, where label is the later ddname label reference. This parameter is
supported only for simple cases.

v SYSOUT=class

This will always be allocated as a DUMMY DSN.

All other keyword parameters are ignored and not used.

Example of a build script fo r a C compile

The following JCL can be submitted as a batch job to do the following:

v Compile the source file member in the data set WELLSK.TEAMC.C

v Produce an object file member in the data set WELLSK.TEAMC.OBJ

v Produce a listing of the source file in the file member in the data set
WELLSK.TEAMC.LISTING

v List the compiler messages in the file member in the data set
WELLSK.TEAMC.ERROR

The first step in converting the JCL fragment is to recognize the intent for each of
the data sets and ddnames. For this C/370 compiler example, the SYSIN ddname
needs to be associated with the source file, the SYSPUNCH ddname needs to be
associated with the object file, and so on.

//COMPILE EXEC PGM=EDCCOMP,
// PARM='LO,SSCOMM,NOSEQ,NOMAR,LIS,FL(I),SO,DECK,TEST',
// REGION=1536K
//STEPLIB DD DSN=SYS1.EDC.SEDCCOMP,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SYSMSGS DD DSN=SYS1.EDC.SEDCDMSG(EDCMSGE),DISP=SHR
//SYSIN DD DSN=WELLSK.TEAMC.C(MEMBER),DISP=SHR
//USERLIB DD DSN=WELLSK.TEAMC.H,DISP=SHR
//SYSLIB DD DSN=SYS1.EDC.SEDCHDRS,DISP=SHR
//SYSPUNCH DD DSN=WELLSK.TEAMC.OBJ(MEMBER),DISP=SHR
//SYSLIN DD SYSOUT=*
//SYSPRINT DD DSN=WELLSK.TEAMC.ERROR(MEMBER),DISP=SHR
//SYSCPRT DD DSN=WELLSK.TEAMC.LISTING(MEMBER),DISP=SHR
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//

Figure 52. A JCL fragment for an MVS compile

Chapter 13. Working with MVS build scripts and builders 153

In each of these cases, the build script must tell the TeamConnection build server
where to put or pick up the parts before and after the execution of the specified
program (PGM=EDCCOMP).

Assume that your source files in TeamConnection have the extension .c, your object
files have .obj, and your include files .h or .hpp. You allocate a data set to the
SYSIN ddname to contain a source file with a .c extension. You specify the DCB,
UNIT, DISP, and SPACE attributes to dynamically create this data set every time
this build script is invoked. Notice that the attribute SPACE=(TRK,(10,5)) indicates a
sequential data set organization.

You specify the output messages that will be returned to TeamConnection by using
the TCOUT attribute. This attribute tells the MVS build server to return the
information in the data set associated with the TCEXT=TCOUT attribute.

Note: The STEPLIB is renamed by the MVS build server to STEPLIBB for data set
lookup of the program specified by the PGM parameter on an EXEC
statement.

The following MVS build script is the result of converting the JCL fragment by
adding the TeamConnection MVS JCL syntax.

154 User’s Guide

Example of a build script for a COBOL compile

TeamConnection provides a sample build script program for compiling MVS COBOL
programs. This sample is called fhbcobm.jcl. It invokes a JCL procedure called
IGYWC, which needs to be in the system PROCLIB concatenation or in the data
set identified by the TEAMPROC DD statement in the MVS build job. You may need
to adjust the default parameters for the system. The following JCL should work with
any IBM COBOL/II type of compiler such as the IBM COBOL/II compiler
IGYCRCTL:
//*--
//* PROGRAM: cobolcmp.jcl
//* IBM COBOL for MVS
//* Compile Only
//*
//*--
//COBOLCMP EXEC PGM=IGYCRCTL,PARM='&TCPARM'
//*
//* INPUT FILES WITH EXTENSION CBL

//COMPILE EXEC PGM=EDCCOMP,
// PARM='LO,SSCOMM,NOSEQ,NOMAR,LIS,FL(I),SO,DECK,&TCPARM',
// REGION=1536K
//STEPLIB DD DSN=SYS1.EDC.SEDCCOMP,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SYSMSGS DD DSN=SYS1.EDC.SEDCDMSG(EDCMSGE),DISP=SHR
//SYSIN DD TCEXT=(C,CPP),DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=(RECFM=VB,LRECL=150,BLKSIZE=3200)
//USERLIB DD TCEXT=(H,HPP),DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(5,10,10)),
// DCB=(RECFM=VB,LRECL=50,BLKSIZE=3200)
//SYSLIB DD DSN=SYS1.EDC.SEDCHDRS,DISP=SHR
//SYSPUNCH DD TCEXT=OBJ,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(10,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIN DD SYSOUT=*
//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),UNIT=VIO,
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSCPRT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),UNIT=VIO,
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=*
//

Figure 53. A JCL fragment converted to a build script

Chapter 13. Working with MVS build scripts and builders 155

//*
//SYSIN DD TCEXT=CBL,DISP=(NEW,DELETE),
// SPACE=(32000,(30,10)),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*
//* COPY FILES WITH EXTENSION CPY
//*
//SYSLIB DD TCEXT=CPY,DISP=(NEW,KEEP),
// SPACE=(32000,(30,30,30)),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*
//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// SPACE=(32000,(30,30)),UNIT=SYSDA,
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3990)
//SYSLIN DD TCEXT=OBJ,UNIT=SYSDA,
// DISP=(NEW,DELETE),SPACE=(32000,(30,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//

Example of a build script for a link

Because MVS load modules are not easily transferable, TeamConnection provides
a sample build script program that reads linkage editor SYSLIN control statements.
This script produces a single file that can be returned from MVS and loaded into
TeamConnection. You can later extract the file and transport it to MVS, where it can
be link edited to produce an executable load module.

The next example shows this sample build script, named fhbtclnk.jcl, which is
shipped with the TeamConnection client.

You can use either of the following for an INCLUDE control statement for the
FHBTCLNK program:

v INCLUDE DDNAME(MEMBER)

v INCLUDE DDNAME

This syntax is a subset of the linkage editor INCLUDE card.

If the card is an INCLUDE ddname(MEMBER) control statement, the object code is
copied into a sequential data set associated with the SYSMOD ddname. Otherwise,
the control card is embedded in the data set associated with the SYSMOD ddname.
This data set can be returned as the output from this build script.
//FHBTCLNK EXEC PGM=FHBTCLNK,
// PARM='SIZE=(768K,192K),LIST,MAP,AMODE(31),RMODE(24),LET,XREF'
//STEPLIB DD DSN=userid.teamc.LOADLIB,DISP=SHR
//SYSMOD DD TCEXT=LOAD,DISP=(NEW,DELETE),
// SPACE=(32000,(30,10)),UNIT=VIO,
// DCB=(RECFM=U,LRE10CL=80,BLKSIZE=3200)
//OBJ DD TCEXT=(OBJ,PRE),DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(32000,(30,10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD TCEXT=TCOUT,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(30,10)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

156 User’s Guide

//SYSLIN DD *
INCLUDE OBJ(&TCINPUT)
ENTRY CEESTART

//

TCEXT attributes have been added to the following DD statements:

Data set Purpose

SYSMOD Return the output to check in to TeamConnection

OBJ Receive the object files transported to MVS from TeamConnection

SYSPRINT Return any FHBTCLNK messages to TeamConnection

In the SYSLIN data stream, the statement INCLUDE OBJ(&TCINPUT) will be duplicated
for all of the inputs to this build. The &TCINPUT variable will be replaced with the
base name of the input without the extension.

To use the output of this build script as an MVS executable, do the following:

1. Extract the output from TeamConnection.

2. Transfer the output as a binary file from your workstation to MVS (for example,
using FTP).

3. Link edit this output into a load module. Possible SYSLIN control statements for
the link step include the following:

//SYSLIN DD *
INCLUDE OBJECT(OUTPUT)
NAME module(R)

//

The output specified in INCLUDE OBJECT(OUTPUT) contains embedded control
statements specified from the build script FHBTCLNK. The linkage editor
recognizes these embedded statements and produces an executable load module
from the output file. The NAME control statement cannot be embedded in the
output data set.

Chapter 13. Working with MVS build scripts and builders 157

158 User’s Guide

Chapter 14. Working with parsers

This chapter describes how to create a parser. It assumes that you have read
“Chapter 10. Basic build concepts” on page 119.

Consider the task of defining and maintaining a build tree. One of the more
time-consuming, and error-prone, portions of this task is defining the dependencies
that one TeamConnection part has on others.

For example, if hello.c includes hello.h, you need to define hello.h as a dependency
of hello.c in the build tree. That sounds simple enough, but imagine a real
application in which there are hundreds of dependencies and the dependencies
have dependencies. Defining such a tree becomes very difficult; maintaining it, even
more so.

To solve this problem and automate some of the work of defining and maintaining a
build tree, you can instead use a parser object. The task of a parser is to inspect
source code to determine dependencies. TeamConnection verifies all parser
dependencies when the user creates or checks in the part and again during build.
TeamConnection will add all parser dependencies that it can find and, for build,
update them as needed. In the previous example, a parser can inspect hello.c,
recognize that it has a dependency on hello.h, and create that dependency in the
TeamConnection build tree.

Because parsers are language-dependent, you probably need a different parser for
each language you use in a particular release. For example, you might have both a
COBOL parser and a C parser in a release. Many parts in the release can use the
same parser.

Usually a TeamConnection administrator defines parsers, but anyone with the
proper authority can do so.

Creating a parser

As with most other TeamConnection operations, there are two ways you can create
a parser: using the graphical user interface (GUI) or the command line interface.

To create a parser using the GUI:

1. From the Actions pull-down menu on the Tasks window, select
Parsers → Create .

2. On the Create Parser window, type the requested information.

© Copyright IBM Corp. 1992, 1999 159

From a command line, type the parser -create command and press Enter. The
complete command syntax looks like the following:
teamc parser -create name -command name -release name -family name

[-include paths]
[-become user_name] [-verbose]

No matter which way you create a parser, you must specify a number of attributes
for it. Together with the contents of the parser command file, the following attributes
define how a parser determines the dependencies for a TeamConnection part.

Parser
The name of the parser must be unique within a release. It can be anything
you want, but for best results, establish and follow a meaningful naming
convention. An example of a parser name is c_parser.

Release
This is the name of the release that contains the parser. Parsers are
release-specific objects. They are not versioned within a release; therefore
you can have only one version of a parser at any time in a release.

To use the parser from a previous release, you can link to a part that uses
it in that release. This action copies the parser to the new release.
Otherwise, you must create the parser again in the new release.

Command
This is the name of the command file that the parser invokes to determine
the dependencies. It can be any file name that exists in the execution path
of the family server at the time a build is performed. The parser command
is run as a subprocess on the machine where the family server is located.

The task of the command file is to inspect the source file and return a list of
dependencies. The syntax for invoking this command is discussed in
“Writing a parser command file” on page 161.

Include
This is a concatenated set of paths that define where the parser looks for
parts when processing the set of dependencies returned from the command
file. These dependencies come in two types:

v A dependency in which the file is stored in the TeamConnection
database. For example, hello.c includes hello.h, and both files are stored
in the TeamConnection database. During a build, these dependencies
must be extracted to a path accessible by the build server. Because a
build extracts parts from TeamConnection, anyone requesting a build
needs to have PartExtract authority to all parts involved in the build.

Figure 54. Create Parser window

160 User’s Guide

v A dependency on a file that is not stored in the TeamConnection
database. An example of such a dependency is stdio.h, which is typically
stored in a compiler’s include path and not in the TeamConnection
database.

Each path named in Include is queried in the TeamConnection database to
see if it contains a part matching the dependency name. For example,
suppose you define a parser named c_parser with an include path as
follows:
src\include;src\package;.;src\comm\include;

One of the parts to which this parser is attached, src\example.cpp, contains
the statement #include "example.hpp". Thus the command file for c_parser
reports example.hpp as a dependency of src\example.cpp. The parser
concatenates each path listed in c_parser’s include path with the name
example.hpp, then inspects the contents of the TeamConnection database
to see if a part with that name exists. So the TeamConnection database is
queried first to find src\include\example.hpp, then src\package\example.hpp.

The period (.) in the include path tells TeamConnection to concatenate the
path of the part to which the file is a dependent with the dependent’s file
name. In this example, that means the TeamConnection database is
queried to find a part named src\example.hpp.

Writing a parser command file

A parser command file accepts two parameters as input:

v source file—the name of the file that contains the source to be parsed.

v dependency list file—the name of a file into which the names of the dependent
files should be written, one per line. For example, the contents of the file might
look like this:
hello.h
stdio.h

v family—the family that contains the source to be passed.

v release—the release that contains the source to be passed.

v workarea—the workarea that contains the source to be passed.

Both the source file and the dependency list file are created by the TeamConnection
family server. They are erased after the parse is complete.

To write a command file, write a program, in any language, that does the following:

1. Reads the source file

2. Determines which other files are used by it

3. Writes out the list of such files into the dependency list file

For example, for a C source file, the program could report a list of all the files
included by the source file (using #include statements). For a COBOL program,
COPY statements would be the cue. TeamConnection ships a sample of a command
file named fhbopars.cmd. It is written in REXX.

Chapter 14. Working with parsers 161

Putting a parser to work

For an application to use a parser, the parser must be attached to the
TeamConnection parts that it will check for dependencies. Unlike a builder, a parser
is attached to the input part rather than the output.

To attach a parser to a part, do one of the following:

v From the GUI, select Parts → Modify → Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
the name of the parser.

v At a command prompt, type the following and press Enter:
teamc part -modify part -parser name -release name
-family name

The complete syntax for this command is described in the Commands
Reference.

You can also attach a parser to a part when the part is created.

After you attach a parser to a part, it is ready for action. The next time the part is
checked in, when a part is created, or when the parser is attached, the parser will
invoke its command file, which will report back a list of dependencies.

Using a parser does not keep you from defining dependencies manually by using
the GUI or the part -connect command. If you explicitly define a dependency in this
way, the dependency is not deleted unless you delete it, regardless of whether the
parser would recognize it as such.

For more information about attaching parsers to the build tree, refer to “Creating the
build tree for the application” on page 167.

Figure 55. Modify Part Properties window

162 User’s Guide

Removing a parser from a part

If you no longer want to use a parser to determine dependencies for a part, do one
of the following:

v From the GUI, select Parts → Modify → Properties from the Actions menu of
the TeamConnection Tasks window. On the Modify Part Properties window, type
null in the Parser field.

v From a command line, type the following:
teamc part -modify name -parser null

-release name -family name

Figure 56. Modify Part Properties window

Chapter 14. Working with parsers 163

164 User’s Guide

Chapter 15. Building an application: an example

This chapter uses an extended example to describe in more detail how each of the
components of the build function work together. All commands used in this example
are described in detail elsewhere in this publication. This example walks through
the control flow for a sample application, explaining what happens at each step.

These are the tasks involved in building our sample application, msgcat.exe:

Task Page

Starting build servers 166

Creating builders and parsers 167

Creating the application build tree 167

Starting the build 171

Monitoring the build 173

Building in spite of errors 174

Forcing a build of all parts 174

Finding out which parts will be built 175

Canceling a build 175

We will use a simple example build tree that looks like the following:

For more examples of build trees, see “More sample build trees” on page 176.

In terms of the build object model, the objects that make up this tree look like this:

Figure 57. Sample build tree

© Copyright IBM Corp. 1992, 1999 165

Starting the build servers

The software development team in our example is building large applications using
a family named testfam, so they set TC_FAMILY to testfam. They plan to spread
the work across several build servers, taking advantage of TeamConnection’s ability
to perform multiple build events simultaneously.

Mark, the build administrator, has installed a number of build servers on the team’s
machines, for building OS/2 and MVS applications. As he starts them (in pairs), he
groups them into pools, according to the work he expects to use them for.

Mark plans for the following pools:

mvspool
For MVS builds

pool1 For normal OS/2 builds

pool2 For fast, high-priority OS/2 builds

Figure 58. Sample build object model for msgcat.exe

166 User’s Guide

Each pool is formed as Mark starts build servers and assigns them to it. He starts
the following build server (bldserv2):
teamcbld -b bldserv2 -p pool1 -e os2

The parameters specify the following:

-p The build server is assigned to the pool named pool1.

-e The environment is os2.

Use the teamcbld command to start the build server when the family server has
already been started. To start the family server along with the build server, you can
use the teamcd command.

Creating builders and parsers

For the parts of the application that are written in C language, Mark creates the
following:

v A builder named c_compiler, to do the compiles

v A builder named c_linker, to do the links

v A parser named c_parser, to check for dependencies

For both builders Mark specifies os2 as the Environment , the same as that of the
build server (bldserv2) started earlier. Build events that use these builders
(c_compiler and c_linker) can take place on this build server.

After he creates the builders and parsers for the applications, Mark spreads the
following information to the programmers who will be using them:

v The names of the build pools

v The names and purposes of the builders and parsers

Creating the build tree for the application

At this point, Greg begins defining the build tree for his portion of the application, as
shown in Figure 57 on page 165. He has already created the files hello.c, hello.h,
bye.c, and bye.h in the TeamConnectiondatabase. Now he does the following:

1. Creates a place-holder part for the output of the link step. This file, msgcat.exe,
is the target for the entire build, the output of linking hello.obj and bye.obj using
the builder c_linker, and the parent of hello.obj and bye.obj. Because the file
has no contents initially, he selects No source (or specifies -empty on the
command line), to identify it as a place holder.

Using the GUI, he can create this file by selecting Create from the
Actions → Parts menu of the Tasks window, and completing the fields as
shown in the following illustration:

Chapter 15. Building an application: an example 167

Using the command-line interface, he can create the part by issuing the
following command:
teamc part -create msgcat.exe -builder c_linker -binary -empty
-release 9503 -workarea 223 -component comp1

2. Creates two place-holder parts for the output of compiling the .c files. These
parts are the output of the compile step; c_compiler, the builder that manages
that step, is attached to both of them. He indicates that they are input to their
parent file, msgcat.exe.

Using the GUI, he can create these files by selecting Create from the
Actions → Parts menu of the Tasks window, and completing the fields as
shown in the following illustration:

Figure 59. Create Parts window

168 User’s Guide

Using the command-line interface, he can create the parts by issuing the
following command:
teamc part -create hello.obj bye.obj -builder c_compiler -binary -empty
-release 9503 -workarea 223 -component comp1 -parent msgcat.exe -input

teamc part -create hello.h bye.h -release 9503 -workarea 223

3. Attaches the parser c_parser to the .c files.

Using the GUI, he can attach the parser to these files by selecting
Modify → Properties from the Actions → Parts menu of the Tasks window,
and completing the fields as shown in the following illustration:

Figure 60. Create Parts window

Chapter 15. Building an application: an example 169

Using the command-line interface, he can attach the parser to these parts by
issuing the following command:
teamc part -modify hello.c bye.c -parser c_parser -release 9503
-workarea 223

Remember, the parser is attached to an input file. The part’s contents will be
parsed and dependency information will be stored.

4. Connects the .c files into the build tree.

Using the GUI, he can connect these files by selecting Connect from the
Actions → Parts menu of the Tasks window, and completing the fields as
shown in the following illustration. He needs to execute this function twice: once
to connect hello.c to hello.obj and once to connect bye.c to bye.obj.
Using the command-line interface, he can connect these parts by issuing the

following commands:
teamc part -connect hello.c -parent hello.obj -input -release 9503
-workarea 223

teamc part -connect bye.c -parent bye.obj -input -release 9503
-workarea 223

Figure 61. Modify Part Properties window

Figure 62. Connect Parts window

170 User’s Guide

The .h parts are not connected because he expects the parser on hello.c and
bye.c to find the correct dependencies.

5. Now, Greg can see the build tree in the GUI. From the Objects pull-down menu
on the Tasks window, he selects Parts → View build tree . The BuildView Filter
window is displayed; from here he can bring up the build tree.

Starting the build on the client

After much hard work on his source code, Greg is ready to start building his
application.

Using the GUI, he can start the build by selecting build from the Actions → Parts
menu of the Tasks window, and completing the fields as shown in the following
illustration:

Figure 63. The build tree display

Figure 64. Build Parts window

Chapter 15. Building an application: an example 171

Using the command-line interface, he can start the build by issuing the following
command:
teamc part -build msgcat.exe -release 9503 -workarea 223
-pool pool1 -normal -detail msgcat.det

This command specifies the following:

Build target
The name of the part at the top of the build tree, msgcat.exe, which is the
final output of this build. TeamConnection uses the build target to determine
the scope of the build.

Work area
The version of the TeamConnection parts and build tree to be used when
performing this build. This version is completely specified by naming the
family, release, and work area: in this case, -release 9503 -workarea 223.
The output of the build is placed in this work area.

Build pool
The set of build servers that should be used to process the build request,
as defined when the build servers are started. The pool pool1 includes the
build server started in “Starting the build servers” on page 166.

Build mode
How the build takes place. Possible values for this build option include the
following:

Normal
Builds only the parts that are out-of-date. Processing stops after the
first error is returned.

Force Builds all parts, even if they are not out-of-date. Processing stops
after the first error is returned.

Unconditional
Builds only parts that are out-of-date but continues processing even
if errors are returned. Note that outputs are not rebuilt for inputs
that have failed.

Report
Gives a preview of what would be built if you invoked a build. The
report identifies what steps would occur without any translations
taking place.

In our example, Greg specifies -normal, which is the default. In this mode,
only the parts that are stale with respect to their inputs are rebuilt. In other
words, only the minimum amount of work to bring everything up-to-date is
performed. “Running a build in spite of errors” on page 174 and following
sections provide examples of using the other build modes.

In normal mode, the build is halted if an error is found. Any remaining build
events in the build scope are canceled, but any build events already
performed are not undone.

Detail file name
The name of an output file in which TeamConnection stores the collected
stdout and stderr of the build scripts.

When Greg starts the build, the information from the command is passed to the
testfam family server over TCP/IP. At this point, Greg’s TeamConnection client waits

172 User’s Guide

to receive confirmation from the family server that the build request was received
and is being processed. Included in this processing; the family server does the
second phase of parsing, where the validation of dependency information is done,
and then it determines what needs to be rebuilt and adds this to the job queue.

Note: Only one build is allowed in a work area at one time (though the build events
that make up the build might be distributed to different build agents on a
number of machines). So if Greg is sharing work area 223 with Barbara, she
cannot issue a part -build command in that same work area until Greg’s build
is complete.

TeamConnection handles the next parts of the build process automatically.

Putting the build scripts to work

At this point, the build server looks at the description of the event it has been asked
to perform, then checks its cache for each part and the build script it needs. If it
does not find the parts there, or if the cached parts are out of date, it invokes the
build script, passing to it the names of the input and output parts and the
parameters specified on the builder. The parts created by the build script and the
return code generated by it are sent back to the build server, which then updates
the contents of the TeamConnection database.

In our example, each of the build servers receives a compile event to perform. Each
extracts the .c source files it needs from the TeamConnection database and the
contents of the build script for the c_compiler builder. The build servers then run
their build scripts.

The results (the .obj files and the return code) are sent back to the build servers.
After updating the TeamConnection database, the build servers re-enter the polling
loop to see if any more build events await their attention.

Because the compile steps are performed in parallel, Greg can build this application
a little more quickly than if they had happened in serial mode. In this simple
example, the difference is hardly noticeable; but in a large build of hundreds of
parts, with multiple build servers available on a local area network, the performance
improvement can be enormous.

Finishing the job and reporting the results to the user

The processing described by the previous two steps is repeated until there are no
more build events remaining. The results of the build are displayed in the Build
Progress window or in stdout. At this point the build is complete.

To complete our example, the previous two steps are repeated to complete the link
step, using either of the build servers in pool1. Greg now can extract the resulting
executable from TeamConnection, using the part -extract msgcat.exe command,
and run it.

Monitoring the progress of a build

During the course of a build, you can monitor its progress in several ways:

Chapter 15. Building an application: an example 173

v If the build was started from the command line, by issuing the report -view
partview command against the work area in which you are building. From this
report, you can determine the states of the parts. Use the part -viewmsg
command to see the build messages issued because of a failed build. For
complete syntax of these commands, refer to the Commands Reference

v If the build was started from the GUI, in the Build Progress window. You can find
the same information by looking at stdout.

Greg can see how the build is progressing by checking the Build Progress window.
For example, he might see these messages:
6021-700 Number of distinct build events for this build: 3.
Build of 'hello.obj' started at '15:33:47 1995-08-10'
via a build agent on the host 'OCTOFVT'.
Build of 'hello.obj' successfully completed at '15:34:45 1995-08-10'.
Completed Jobs: 1
Remaining Jobs: 2
Build of 'bye.obj' started at '15:34:49 1995-08-10'
via a build agent on the host 'OCTOFVT'.
Build of 'bye.obj' successfully completed at '15:35:22 1995-08-10'.
Completed Jobs: 2
Remaining Jobs: 1
Build of 'msgcat.exe' started at '15:35:26 1995-08-10'
via a build agent on the host 'OCTOFVT'.
Build of 'msgcat.exe' successfully completed at '15:35:56 1995-08-10'.
Completed Jobs: 3
Remaining Jobs: 0
Processing Completed for 'msgcat.exe'.

To see the commands that TeamConnection issued during the build, you can look at
the detail file specified in the part -build command.

Running a build in spite of errors

If you find that a build is stopping because of errors, you can check the build detail
file or the Build Progress window for the cause. If the error is minor, you might
decide to run the build despite the errors — for example, when you are debugging.
To do this, specify that you want the build to complete unconditionally.

In our example, when Greg builds msgcat.exe for the first time, he wants to find
and correct any errors that occur during the build, so he uses the following
command:
teamc part -build msgcat.exe -release 9503 -workarea 223 -unconditional

As in normal mode, only the parts that are stale with respect to their inputs are
rebuilt; only the minimum amount of work to bring everything up-to-date is
performed.

However, even if an error is found, the build continues if possible. As with normal
mode, if the build is halted, any build events remaining are canceled. Any build
events already performed are not undone.

Building all parts, regardless of build times

To make sure that all parts in the build tree get built, whether or not they are stale,
you specify the -force parameter on the part -build command.

In this mode, all parts that are descendants of the build target are rebuilt.

174 User’s Guide

In our example, Greg can force TeamConnection to build all parts in the msgcat.exe
build tree using the following command:
teamc part -build msgcat.exe -release 9503 -workarea 223 -force -pool pool1

If an error occurs, the build is halted. Any remaining build events are canceled, but
any build events already performed are not undone.

Finding out which parts will be built

Before running a build of a large application, you might want to find out exactly
which parts will be built. If you specify that you want to run in report mode,
TeamConnection determines what will be built in a normal build and produces a
report showing the results.

If Greg really wants to see which parts of msgcat.exe will be built before he runs
the actual build, he can issue the following command:
teamc part -build msgcat.exe -release 9503 -workarea d410 -report -pool pool1

He sees the following report:
6021-700 Number of distinct build events for this build: 3.
6021-407 The builder c_compiler will be invoked.
6021-406 The builder parameters consist of:

command: compC.cmd
input: hello.c
output: hello.obj
dependent: hello.h

6021-407 The builder c_compiler will be invoked.
6021-406 The builder parameters consist of:

command: compC.cmd
input: bye.c
output: bye.obj
dependent: bye.h

6021-407 The builder c_linker will be invoked.
6021-406 The builder parameters consist of:

command: linkC.cmd
input: hello.obj bye.obj
output: msgcat.exe
dependent:

The report shows that bye.obj and msgcat.exe must be rebuilt.

Canceling a build

To cancel a build that is in progress, do one of the following:

v If the build was started from the GUI, on the Build Progress window select the
Cancel Build push button.

v If the build was started from the command line, type the following command and
press Enter:
teamc part -build name -cancel

Where name is the part that you are building. Be sure to specify the same part
name that you specified when starting the build, rather than a part that is lower in
the build tree.

This command will stop all queued and in_progress builds. Any build events already
performed for that build are not undone.

Chapter 15. Building an application: an example 175

For example, if Greg cancels the build of msgcat.exe when the compile steps have
been completed, then the link step is not performed. However, the newly compiled
hello.obj and bye.obj are left in the database, with their build times updated.

More sample build trees

The msgcat.exe example is just one possible build tree. Here are some others.

Defining multiple outputs from a single build event

Figure 65 shows part of the build tree for robot.dll:

Because the build tree shows the relationships between parts hierarchically,
robot.map is a child of robot.dll, even though it is actually built from the same input
part, robot.cpp. But robot.map is defined as an output of robot.dll. Here are the
commands to set up this relationship.

First come the commands to create the parts:
teamc part -create robot.dll -builder dll_builder -binary -empty
-release 9503 -component robot

teamc part -create robot.cpp -release 9503 -component robot

teamc part -create robot.map -builder dll_builder -binary -empty
-release 9503 -component robot

Next are the commands to connect the parts into the build tree:
teamc part -connect robot.cpp -parent robot.dll -input -release 9503
teamc part -connect robot.map -parent robot.dll -output -release 9503

You might use this command to start the build:
teamc part -build robot.dll -workarea 915 -release 9503

The output of this build would be both robot.dll and robot.map. Any parameters
specified in the teamc part -build robot.dll command would also apply to the
build of robot.map.

Synchronizing the build of unrelated parts

An entire application can require multiple separate builds. For example, in the robot
application, there might be one build to create the .dll parts, another to create the
.exe parts, and so on. To ensure that the entire application gets built together, you
can create a part that acts as a collector, with the .dll and .exe parts as input to it.

Figure 65. The build tree for robot.dll

176 User’s Guide

For example, Tim creates this build tree for the robot application:

Assuming he already has the build trees for robot.dll and robot.exe set up, here is
how he sets up the collector part:

1. He creates a null builder with no contents:
teamc builder -create nullBuilder -script null -none -environment os2
-condition == -value 0

2. He creates the collector part:
teamc part -create robot.app -builder nullBuilder -none -release 9503

-component robot

The -none flag identifies this as a part that will never have any contents.

3. Tim connects the other parts to the collector:
teamc part -connect robot.dll robot.exe -parent robot.app -input

-release 9503

When Tim builds robot.app, the result is a build of both robot.dll and robot.exe.

Figure 66. The build tree for robot.app

Chapter 15. Building an application: an example 177

178 User’s Guide

Part 5. Using TeamConnection to package products

Chapter 16. Using TeamConnection to package a product 181
Setting up your build tree for packaging 181

Setting up a build tree for the gather tool 182

Chapter 17. Using the Gather tool 185
Using the teamcpak command for the Gather tool. 185

Command line flags. 186
Examples of the teamcpak gather command 187

Writing a package file for the Gather tool 188
Syntax rules for a Gather package file 188

Keywords for a Gather package file 188
Using exit keywords in the DATA clause 191
Using exit keywords in the RULE clause 191
Using exit keywords: an example 192

Chapter 18. Using the Tivoli Software Distribution packaging tool 193
Using the teamcpak command with Tivoli Software Distribution 193

Command line flags. 194
Example of the teamcpak softdist command 194

Writing a package file for Tivoli Software Distribution. 195
Syntax rules for a Tivoli Software Distribution package file 195
Keywords for a Tivoli Software Distribution package file 195

Problem determination for the Tivoli Software Distribution tool 198
Sample package file . 198

This section describes how to use the TeamConnection packaging function, which
helps you automate the packaging and distribution of your applications. This section
is written for the person in your organization who is responsible for software
distribution.

© Copyright IBM Corp. 1992, 1999 179

180 User’s Guide

Chapter 16. Using TeamConnection to package a product

After you have built an application to your satisfaction, it is time to distribute it to
users. This chapter describes how you can use TeamConnection to help automate
the packaging and distribution steps.

TeamConnection provides the following:

v Two electronic software distribution tools:

– Gather , which moves an application’s parts into a single directory in
preparation for distribution.

– Tivoli Software Distribution , a bridge tool that automates the installation and
distribution of software or data using Tivoli software distribution tools as the
distribution vehicle.

v Two sample build scripts for connecting the Gather and Tivoli Software
Distribution tools with TeamConnection user-defined builders.

– Gather - gather.cmd which specifies the teamcpak gather command.

– Tivoli - softdist (on UNIX platforms) or softdist.exe (on Windows NT) which
specifies the teamcpak softdist command.

To use TeamConnection in packaging a product, you might do any of the following
tasks:

Task Page

Setting up your application’s build tree for packaging 181

Using the teamcpak gather command 185

Writing a package file for the gather tool 188

Using the teamcpak softdist command “Using the
teamcpak
command with
Tivoli Software
Distribution” on
page 193

Writing a package file for the Tivoli Software Distribution tool “Writing a
package file for
Tivoli Software
Distribution” on
page 195

Setting up your build tree for packaging

When TeamConnection builds an application, the application’s build tree identifies
the parts to be built and the tools to use in building it. Similarly, when you use
TeamConnection for packaging the application, the build tree can define the parts to
be packaged and the tools to do it.

The output of a packaging step might be any of the following:

v The application’s parts gathered into a new directory structure

v The distribution of the application using NVBridge

v The distribution of the application using some other distribution tool

© Copyright IBM Corp. 1992, 1999 181

Setting up a build tree for the gather tool

To gather the parts of your application into a single directory for distribution, you
create an output part whose builder calls the gather tool, and you make this output
part the top level of the build tree.

For example, for the robot control application, robot.app, the build tree might look in
part like this:

After the application is built, the programming team needs to get it to the test team.
They could extract the application, but doing a simple extract would preserve the
existing structure, with parts contained in directories according to their application
component. A better structure might be to place all of the .dll files in one directory,
all of the .exe files in another, and so on. To move the parts into this structure, the
test team does a different kind of build, using the gather tool.

To make this happen, Annmarie does the following:

1. She creates the top-level part for the new build tree. The name of this part is
the same as the directory in which the gathered parts are to be placed. In this
example, e:\robot is the output file from the gather step. Annmarie uses the
following command:
teamc part -create e:\robot -none -builder gather1 -family octo

-release 9503 -workarea 410

2. She writes a package file that contains instructions for the gather tool and
creates this file as a TeamConnection part:
teamc part -create robot.pkf -text -parent e:\robot -input -family octo

-release 9503 -workarea 410

For more information, see “Writing a package file for the Gather tool” on
page 188.

3. She creates a builder, gather1, that calls the gather tool:

Figure 67. Part of the build tree for robot.app

182 User’s Guide

teamc builder -create gather1 -script gather.cmd
-parameters "-o -x" -release 9503
-environment os2 -condition == -value 0 -family octo

gather.cmd is a sample build script that is shipped with TeamConnection. It
specifies the teamcpak gather command.

4. She connects robot.exe and robot.dll to e:\robot as inputs:
teamc part -connect robot.exe -parent e:\robot -family octo

-release 9503 -workarea 410

teamc part -connect robot.dll -parent e:\robot -family octo
-release 9503 -workarea 410

5. She also connects a readme file for the application:
teamc part -connect read.me -parent e:\robot -family octo

-release 9503 -workarea 410

As a result of Annmarie’s work, the build tree for e:\robot looks like this:

The package file, robot.pkf, specifies the directories into which the robot files are
gathered, with e:\robot as the target root directory. When Annmarie builds e:\robot,
the .dll files are placed in e:\robot\dll; the .bin files are placed in e:\robot\bin. Instead
of extracting the built application from TeamConnection, the test team can pull the
application from e:\robot.

If Annmarie wants to gather the same files into a different target directory, all she
needs to do is write a different package file and connect the parts to a different
parent.

Figure 68. Adding the gather step to the build tree

Chapter 16. Using TeamConnection to package a product 183

184 User’s Guide

Chapter 17. Using the Gather tool

The Gather tool automates the movement of software and data from one directory
to another on the same machine to prepare a package for electronic distribution. It
can copy or erase files; it can create or delete directories.

This tool takes a list of input files and moves them into a directory structure as
directed by a package specification file. You specify the target root directory path in
this file, along with a collection of rules that instruct which files to copy to which
directories. How these files and directories are actually handled is controlled via
option flags.

By writing different package specification files, you can take the same input files
and transfer them into different target directory structures.

Take the robot application as an example. We previously showed one possible
directory structure, with each subdirectory containing files with the same extension:

By writing a different package file, you might put both .dll and .exe files in the same
target directory:

You can build both target directories concurrently.

Using the teamcpak command for the Gather tool

To start the Gather tool, use the teamcpak command. This command is found in the
directory where the TeamConnection family server is installed. If it is started from a
build script, it does not need to be in the execution path of the machine from which
the build is started.

The complete command syntax for teamcpak gather looks like the following; you
must supply a value for the words that start with a capital letter, such as String. You
must specify the command parameters in the order shown.
teamcpak [-i] [-o "String"] gather Input_file...

Where

-i Specifies that only one Input_file is specified in the command: an include
file containing the list of input files. This parameter is optional.

If you specify -i, it must precede the gather flag.

e:\robot
\dll

hand.dll
optics.dll

\exe
hand.exe
optics.exe

f:\robot
\bin
hand.dll
optics.dll
hand.exe
optics.exe

© Copyright IBM Corp. 1992, 1999 185

-o " String"
Specifies that the string listed in quotes be passed to the Gather tool. The
opening quote must be followed by a blank. For a list of possible flags to be
passed, see “Command line flags”.

This parameter is optional. If you do not specify -o, the default settings for
the tool are used.

If you specify -o, it must precede the gather flag.

gather
Specifies the tool to be invoked. If you specify -i or -o, they must precede
this value.

Input_files
Specifies the files to be copied and the name of the package specification
file. You can specify this parameter in these ways:

v Specify the name of an include file, whose contents is a list of input files.
One of these input files must be a package specification file with the
extension .pkf. In this case, you must also specify the -i parameter.

v Specify a list of two or more files. One of the files must be a package
specification file with the extension .pkf.

v Specify the directory from which the files are to be copied and the name
of the package specification file.

If more than one package file is listed, the first package file on the
command line or in the include file is used, and the others are treated as
ordinary files.

Command line flags

You can specify the following flags in the teamcpak command, using the -o
parameter. All of these flags are optional. If you do not specify a flag, the teamcpak
command runs using defaults.

-a Assume that the target tree structure might not exist. If a required directory
does not exist, create it and continue processing.

This flag cannot be specified if the -t flag is specified.

If neither -a nor -t is specified, the default is to assume that the desired
tree structure already exists. No verification is performed to confirm that the
directories exist. If they do not, the condition is detected while the package
file rules are being processed. If you stop the teamcpak command, some
target directories might contain updated files.

-f Force deletion from the root: if this is used in combination with -t or -c and
TARGETROOT is a root directory (for example, e:\, \, /).

-t Ensure that the target tree is exactly the tree specified in the package file. If
a directory of the same name exists, the Gather tool does the following:

v Erases the entire contents of the directory and all of its subdirectories

v Destroys the directory and all subdirectories

v Performs a mkdir command to create the entire tree structure again as
specified in the package file

This flag cannot be specified if the -a flag is specified.

186 User’s Guide

If an rmdir command fails during processing, the teamcpak command stops.

If neither -a nor -t is specified, the default is to assume that the desired
tree structure already exists. No verification is performed to confirm that the
directories exist. If they do not, the condition is detected while the package
file rules are being processed. If you stop the teamcpak command, some
target directories might contain updated files.

-m Accept missing source files.

If this flag is not specified, the default is to ensure that at least one file
matches each source specification in the package file. If a match is not
found, the Gather tool stops processing.

-d Accept duplicate files. If a file is found on the target directory that matches
the source file specification, it is overwritten by the source file.

If this flag is not specified, the default is to ensure that no files on the target
match the source file specification. For example, if the source specification
is g*.c, and greg.c is found on the target, the Gather tool stops processing.

-c Clean up the target directories. Erase all files on all target directories that
existed before writing source files to these directories. No confirmation
messages are issued, and permission errors are ignored.

If this flag is not specified, the default is to write the source files into the
target directories without erasing existing files.

-e End with delete. This action removes all source files and directories after
the Gather tool successfully completes.

If this flag is not specified, the default is to end without deleting source files
and directories.

-x Abort without recovery. If the program does not end successfully, no attempt
is made to restore the file system.

If this flag is not specified, the Gather tool attempts to restore the file
system if the program does not end successfully. To do this, the tool first
backs up the file system. The backup directory is the value of the TMP
environment variable.

Examples of the teamcpak gather command

The following are examples of the teamcpak gather command.
teamcpak gather d:\demoapp demoapp.pkf
teamcpak gather a.exe b.exe \help*.hlp demoapp.pkf

In the first example, an input source directory is specified. In the second example, a
list of files is specified. In both cases, the files are to be copied into target
directories as specified in the demoapp.pkf file.
teamcpak -i -o " -t -m -x" gather myfiles.lst

The file myfiles.lst contains a list of files to be transformed by the Gather tool, and
the name of the package file to be used in the gather. The -o "-t -m -x"
parameter passes three flags to the Gather tool:

v -t specifies that, if the target directories already exist, they be destroyed and
recreated.

v -m specifies that processing continues even if a source file cannot be found.

Chapter 17. Using the Gather tool 187

v -x specifies that, if the program does not end successfully, the file system is left
as is, with no attempt to restore it.

Writing a package file for the Gather tool

Use the package file to specify the target directories and the rules for copying files
for a gather operation. You can also specify user exit programs to run before,
during, or after the gather operation.

A sample package file named gather.pkf is shipped with TeamConnection. You can
customize it for your own gather operations.

Syntax rules for a Gather package file

Follow these syntax rules when you write a package file:

v Package files are free format. Text is not positional, and many statements can
exist on the same line.

v Comments can appear anywhere within the file. Use the characters #| and |# as
delimiters, as shown in the following example:
#| This is a comment |#

v Package file keywords must be prefixed with a left parenthesis and must have a
corresponding balanced right parenthesis to end the scope of the keyword.

v If the value for a keyword is a string that contains blanks or parentheses, enclose
the string in double quotes.

The following shows the syntax of a package file for the Gather tool. Keywords
must appear in the order shown. The first letter of an argument is capitalized; you
must supply these values.
(DATA
(PACKAGEFORMAT gather)
(TARGETROOT Filename)
(RULE
(SOURCE Filename...)
(TARGET Path)
[(EXITPRIOR String... | EXITREPLACE String... | EXITPOST String...)])
)
.
.

[(EXITPRIOR String...)]
[(EXITPOST String...)]

)

Keywords for a Gather package file

DATA This keyword is required. It must be the first keyword in the package file,
and it can be specified only once.

All other keywords are nested within the DATA clause.

PACKAGEFORMAT gather
This keyword is required. It can be specified only once. It tells the teamcpak
command that this package file is for Gather.

TARGETROOT target_root_path
This keyword is required. It can be specified only once.

188 User’s Guide

Use this keyword to identify the target root directory. Source files are copied
to this directory as specified by the RULE statements.

Follow these guidelines when you select your TARGETROOT values:

v Include the drive letter along with the target directory.

v Specify a directory that contains few if any subdirectories that are
unrelated to the data you are moving.

v If you specify a drive’s root directory (drive:\), run the teamcpak
command using the defaults or only the -x or -x -a flags.

v Do not set the value of TARGETROOT to drive:\ under the following
circumstances:

– The TARGETROOT drive is the same as the drive from which the
teamcpak command is run, and you have recovery set (that is, you
have not specified -o "-x").

– The logical drive for the TARGETROOT has less than 50% free
space, and you have recovery set (that is, you have not specified -o
"-x").

RULE This keyword is required. You can use one or more RULE keywords within
a Gather package file.

Each RULE clause represents a set of Gather operations targeted for one
target subdirectory. A RULE clause must contain one SOURCE and one
TARGET keyword. The files in the SOURCE directory are copied to the
TARGET path. The target path is derived by concatenating the value of
TARGETROOT with a backslash (\), followed by the value of the TARGET
keyword specified in the RULE clause.

A RULE clause can also contain one user exit clause: EXITPRIOR,
EXITPOST, or EXITREPLACE. For a description of the exit keywords, go to
page 191.

The following example copies all *.exe, *.cmd, and *.hlp files to target
directory f:\demoapp\bin.
(DATA

.

.
(TARGETROOT f:\demoapp)
.
.
(RULE

(SOURCE *.exe *.cmd *.hlp)
(TARGET bin)

)
.
.

)

SOURCE <list of file specifications>
This keyword is required once for each RULE clause. It must be the first
keyword within the RULE clause.

This keyword specifies the files to be copied to the path specified by the
TARGET keyword. Specify a list of file specifications separated by blanks.
You can use the wildcard characters supported by OS/2 or Windows NT.

The directory from which these files are copied depends on how the input
files are specified in the teamcpak command:

v If the teamcpak command specifies a source directory, the files specified
in the SOURCE keyword come from that directory or subdirectories of it.

Chapter 17. Using the Gather tool 189

The full path of the source files is constructed by concatenating the
directory from the teamcpak command with a backslash (\), followed by
the file specifications found in the SOURCE keyword. You can specify
subdirectories in the SOURCE file specifications.

v If the teamcpak command specifies a list of files, these files are first
copied to a temporary directory, then copied from there to the TARGET
directories. In this case, you can use OS/2 or Windows NT wildcards to
specify multiple file names in the SOURCE file specifications, but you
cannot specify subdirectories.

In the following example, directory d:\demoapp is specified on the teamcpak
command:
teamcpak -o "-x -t -m" gather d:\demoapp demoga.pkf

The resulting source path is the concatenation of d:\demoapp with the
SOURCE file specifications. Therefore, all of the .exe files in the directory
d:\demoapp\bin are copied to the target directory e:\demoapp\bin.
(DATA

(TARGETROOT e:\demoapp)
.
.
(RULE

(SOURCE bin*.exe)
(TARGET bin)

)
.
.

)

In the following example, a list of input files is specified on the teamcpak
command:
teamcpak -o "-x -m" gather c:\a.exe c:\b.exe d:\rexx*.cmd demoga.pkf

The resulting source path for the files in the SOURCE clause is the
concatenation of the teamcpak temporary directory with the SOURCE file
specifications. Therefore, the source for the *.exe files is
d:\teamcpak.@@@*.exe. The input files d:\teamcpak.@@@\a.exe and
d:\teamcpak.@@@\b.exe are copied to the directory e:\demoapp.
(DATA

(TARGETROOT e:\demoapp)
.
.
(RULE

(SOURCE *.exe)
(TARGET targetroot)

)
.
.

)

TARGET Target_path
This keyword is required one time in each RULE clause. It must follow the
SOURCE keyword.

The value specified by this keyword is used to construct the target path into
which the files specified by the SOURCE keyword are copied. The value of
the TARGETROOT keyword is concatenated with a backslash (\), followed
by the value of the TARGET keyword.

190 User’s Guide

If you specify targetroot as the value, files are copied directly to the target
root directory, not to a subdirectory.

In the first RULE clause of this example, files are copied to the target
directory f:\demoapp\bin\files. In the second RULE clause, the target
directory is f:\demoapp.
(DATA

(TARGETROOT f:\demoapp)
.
.
(RULE

(SOURCE *.bin *.dll)
(TARGET bin\files)

)
(RULE

(SOURCE *.hlp)
(TARGET targetroot)

)
.
.

)

EXITPRIOR, EXITPOST, and EXITREPLACE String...
These keywords are optional. They specify a user exit program to run as
part of the gather operation.

To specify an exit that is global to the Gather operation, specify EXITPRIOR
or EXITPOST in the DATA clause. You can specify each of these keywords
only once in the DATA clause. These keywords must come after all of the
RULE clauses. EXITREPLACE cannot be used in the DATA clause.

You can also specify an exit that is specific to one RULE clause. Only one
exit keyword is allowed in each RULE clause.

These keywords accept a list of strings separated by spaces. The first string
is the name of the program to execute. The strings that follow are its
parameters.

Using exit keywords in the DATA clause

When used within a DATA clause, these keywords identify a program or command
to be executed within a command shell. EXITPRIOR executes before all RULE
statements have been processed; EXITPOST, after all RULE statements.

The exit keywords accept any executable file or command. The exit program must
return an integer return value, with zero meaning the exit was successful.

Using exit keywords in the RULE clause

EXITPRIOR, EXITPOST, and EXITREPLACE are optional within a RULE clause.
Only one can be specified in any given RULE clause.

When used within a RULE clause, these keywords identify a program or command
to be executed within a command shell before, after, or in place of processing of
each Gather copy operation. The exit program is called once for each SOURCE
specification entry within the SOURCE clause. Parameters are separated by spaces
and passed to the exit in this order:

v Any parameters included in the invocation string

v The resolved SOURCE file specifications

v The resolved TARGET specification

Chapter 17. Using the Gather tool 191

The exit keyword accepts any executable file or command. The exit program must
return an integer return value, zero meaning successful; it must also accept or
ignore the additional Gather parameters added to the end of the invocation string.

When used in the context of the RULE clause, exit keywords must follow the
TARGET keyword.

Using exit keywords: an example

In the following example, the first EXITPRIOR statement relates to the DATA clause
and specifies a user backup exit program, which executes before performing Gather
copy operations. This backup exit is passed two flags. The command stream
executed in an OS/2 shell is:
"e:\util\backup.cmd \i \t"

The second occurrence of the keyword illustrates how to use it in the context of a
RULE clause. In this example, an encryption program will run against each source
file specification. The exit program is passed the \k:347867 key option, the value for
the source specification, and the value for the target specification. In this example,
the command stream executed in an OS/2 shell is:
"encrypt \k:347867 d:\demoapp\a.exe f:\demoapp\bin":

The package file looks like this:
(DATA

(PACKAGEFORMAT gather)
(TARGETROOT d:\tcws)
(RULE

(SOURCE *.exe *.cmd)
(TARGET exe)
#|this program will be run for each source file|#
(EXITPRIOR encrypt \k:347867)

)
(EXITPRIOR "e:\util\backup.cmd \i \t")

)

192 User’s Guide

Chapter 18. Using the Tivoli Software Distribution packaging
tool

The Tivoli Software Distribution packaging tool supports automated distribution
between a single Tivoli Software Distribution server and its TCP/IP-connected
clients. The Tivoli Software Distribution tool works either by itself or in conjunction
with TeamConnection’s Gather tool to enable you to distribute files through Tivoli
Software Distribution. Use of this tool requires you to be familiar with Tivoli
configuration and system administration so that TeamConnection can start Tivoli
Software Distribution to distribute file packages.

The Tivoli Software Distribution distribution tool must be run on a Tivoli managed
node running on any of TeamConnection’s UNIX platforms or Windows NT.

The Tivoli Software Distribution distribution tool includes a sample build script
named softdist (on UNIX platforms) or softdist.exe (on Windows NT). It can be run
from within a TeamConnection builder. This build script maps TeamConnection build
parameters to the command line syntax for the Tivoli Software Distribution tool
through the teamcpak command line interface.

You can use Tivoli Software Distribution as a builder for packaging in two ways:

v Integrate it with the gather step, so that the Gather tool leaves the package files
in a directory from which Tivoli Software Distribution picks them up.

v Use it without the gather step. In this case, the build script for Tivoli Software
Distribution must set up the directory and move files into it to interface correctly
with the teamcpak command.

To simplify the interface, the Tivoli Software Distribution tool uses a select set of
options. If you want to take full advantage of Tivoli Software Distribution features,
you can import a Tivoli Software Distribution package specification. Importing a
package specification provides you access to all Tivoli Software Distribution
functions.

The Tivoli Software Distribution tool produces a Tivoli File Package, which is used
for distribution.

Using the teamcpak command with Tivoli Software Distribution

To start the Tivoli Software Distribution tool, use the teamcpak command. This
command is found in the directory where the TeamConnection family server is
installed. If it is started from a build script, it needs to be in the execution path of
the build server.

The complete syntax of the teamcpak softdist command follows. You must specify
the command parameters in the order shown.
teamcpak [-i] [-o "string"] softdist inputFile

-i Specifies that only one inputFile is specified in the command: an include file
containing the list of input files. This parameter is optional.

-o "string"
Specifies that the string listed in quotes be passed to the Tivoli Software
Distribution tool. For a list of possible flags to be passed, see “Command
line flags” on page 194.

© Copyright IBM Corp. 1992, 1999 193

inputFile
Specifies the files to be copied and the name of the package specification
file. You can specify this parameter in these ways:

v Specify the name of an include file, whose contents is a list of input files.
One of these input files must be a package specification file with the
extension .pkf. In this case, you must also specify the -i parameter.

v Specify a list of two or more files. One of the files must be a package
specification file with the extension .pkf.

v Specify the directory from which the files are to be copied and the name
of the package specification file.

If more than one package file is listed, the first package file on the
command line or in the include file is used, and the others are treated as
ordinary files.

The following are examples of specifying input files.
teamcpak -i softdist myInputFile
teamcpak softdist d:\inputDir\myPkfFile.pkf inputFile1 inputFile2 . . .

Command line flags

You can specify the following flags in the teamcpak command, using the -o
parameter. All of these flags are optional.

-a Create directories on the target.

-c Clear the target (delete all specified files and directories) before the apply. If
you use this option, do not use the -x option.

-t Overwrite existing files (delete specified files on the target prior to
distribution).

-m Accept input errors, such as missing files and directories from the SOURCE
keyword.

-n Send no notices to Tivoli. If you want to post Tivoli notices, you must
configure Tivoli Notices before using this packaging tool.

-p Preview only; do not actually distribute files.

-r Reboot the target after distribution.

-x If an error occurs, leave any distributed files on the target; do not clean up.
If you use this option, do not use the -c option.

-k Keep the Tivoli file package. To enable the Tivoli Software Distribution tool
to perform more efficiently, the Tivoli Software Distribution package file is
created when the package part is created and then destroyed and
recreated whenever the part is modified. Use the -k option to prevent the
package file from being destroyed.

Example of the teamcpak softdist command

The following is an example of the teamcpak softdist command.
teamcpak -i -o "-a -n -t" softdist Client.lst

The -i parameter specifies that the input file Client.lst is to be used. The -o
parameter passes the following options to Tivoli Software Distribution:

v -a creates directories on the target.

194 User’s Guide

v -n indicates that no error notices are to be sent to Tivoli Software Distribution.

v -t indicates that any existing files on the target are to be overwritten.

Writing a package file for Tivoli Software Distribution

This section describes the Tivoli Software Distribution package file keywords and
their effect on normal processing behavior.

A sample package file named client.pkf is shipped with TeamConnection. You can
customize it for your own use.

Syntax rules for a Tivoli Software Distribution package file

Follow these syntax rules when you write a package file:

v Package file keywords must appear in the order shown below.

v Package file keywords must be prefixed with a left parenthesis and must have a
corresponding balanced right parenthesis to end the scope of the keyword.

v If the value for a keyword is a string that contains blanks or parentheses, enclose
the string in double quotes.

v Default options are supplied for all Tivoli Software Distribution required Tivoli
Software Distribution options. Specific options can be set in your
TeamConnection package file.

v Comments can appear anywhere within the file. Use the characters #| and |# as
delimiters, as shown in the following example:
#| This is a comment |#

The following shows the syntax of a package file for Tivoli Software Distribution.
The keywords must appear in the order shown here. You must supply the values for
the strings that are shown in italics.
(DATA
(PACKAGEFORMAT softdist)
(TARGETROOT filename)
(MANAGER ProfileManager)
(NODES "ManagedNode... PCManagedNode...")
(IMPORT filename |

[(DISTRIBUTE [FULL | CHANGED])
[(INSTALLPGM filename)]
[(LOGNODE ManagedNode)]
[(LOGFILE directory)]

)
)

Keywords for a Tivoli Software Distribution package file
DATA This keyword is required. It must be the first keyword in the package file,

and it can be specified only once.

All other keywords are nested within the DATA clause.

Example:
(DATA

.

.
other keywords go here
.
.

)

Chapter 18. Using the Tivoli Software Distribution packaging tool 195

PACKAGEFORMAT softdist
This required keyword must be the first keyword within the DATA clause. It
can be specified only once. It tells the teamcpak command that this
package file is for Tivoli Software Distribution.

Example:
(DATA

.

.
(PACKAGEFORMAT softdist)
.
.

TARGETROOT
This keyword specifies the directory path to which files are to be distributed
on the target systems. You can specify only one target root. All target
systems use identical target roots.

Example:
(DATA

.

.
(TARGETROOT /usr/local/teamc/images)
.
.

MANAGER
This keyword specifies a Tivoli Software Distribution profile manager that
you have already created in the Tivoli Software Distribution system.

Example:
(DATA

.

.
(MANAGER Distrib1)
.
.

NODES
This keyword specifies the nodes to which the files are to be distributed.
These must already have been defined to the profile manager as subscriber
ManagedNodes or PCManagedNodes. To distribute files to non-subscribers,
you need to use Tivoli Software Distribution options set in an import file
package definition.

Example:
(DATA

.

.
(NODES "tcaix01 tcaix02")
.
.

IMPORT
Use this keyword to select Tivoli Software Distribution options not supported
in the -o parameter of the teamcpak softdist command. The filename
parameter is the name of a Tivoli Software Distribution import file package
definition. You can generate an import file using the Tivoli Software
Distribution user interface. If you use the IMPORT keyword, then instead of
calling the standard Tivoli Software Distribution packaging command the
Tivoli Software Distribution tool will call wimprtfp to get all of the Tivoli
Software Distribution configuration options. Using the IMPORT keyword
disables other options and causes errors if they are specified.

196 User’s Guide

If you specify the IMPORT keyword, do not specify the DISTRIBUTE,
INSTALLPGM, LOGNODE, or LOGFILE keywords.

If you use the INCLUDE option in an import file, it is overridden by the list
of files provided to the teamcpak command.

Example:
(DATA

.

.
(IMPORT importFile)
.
.

DISTRIBUTE
Specify FULL to distribute all files or CHANGED to distribute only those
changed since the last distribution. The default is FULL.

Example:
(DATA

.

.
(DISTRIBUTE CHANGED)
.
.

INSTALLPGM
Use this keyword to specify an installation script to be run during
distribution on each node that receives files. Specify the full file path name
of the script.

Example:
(DATA

.

.
(INSTALLPGM /tivoli/fpTeamcAIX/tcinstl.ksh)
.
.

LOGNODE
This keyword specifies the system on which the log file is located. The node
name you specify must be a managed node. The default is the current build
machine or a machine running teamcpak.

Example:
(DATA

.

.
(LOGNODE tcaix04)
.
.

LOGFILE
This keyword specifies the directory path and file name of the log file on the
log node. If you use the LOGNODE keyword, this keyword is required.

Example:
(DATA

.

.
(LOGFILE /tmp/softdist.log)
.
.

Chapter 18. Using the Tivoli Software Distribution packaging tool 197

Problem determination for the Tivoli Software Distribution tool

If you are having trouble distributing files using the Tivoli Software Distribution
distribution tool, you can use the following tools or teamcpak options to determine
what the problem is:

Log file
Check the file name you specified in the LOGFILE keyword for error
messages.

Mail Check Tivoli mail messages generated during the distribution.

-k option
Run the teamcpak command with the -k option to keep the package file
after the distribution has been run. This allows you to reprocess a
distribution from the Tivoli GUI and test variations.

-x option
Run the teamcpak command with the -x option to leave any distributed files
on the target.

Trace facility
Run teamcpak with the trace facility. Use this facility only under guidance of
an IBM service representative. See the Administrator’s Guide for more
information.

The following message displays when a Tivoli Software Distribution command fails
during a distribution.
6022-303 Tivoli/Software Distribution %s command failed with return code: RC.
To correct problem use:
- package file parameters LOGNODE and LOGFILE to record Tivoli output,
- packaging option "-k" to keep Tivoli File Package and teamcpak log file
or "-m" to ignore input errors,

- packaging option "-x" to not clean up files that are distributed,
- TeamConnection Trace facility (see TeamConnection Administration Guide)
- or Tivoli Trace facility (see Tivoli documentation)

Sample package file

The following is an example of scripts and items required to automatically execute
packaging, distribution, and installation of files in a AIX-based system.

v The teamcpak command syntax that will execute subcommands or scripts for
the package, distribute, and install functions.
teamcpak -i -o "-a -n -t" softdist Client.lst

v The Client.pkf file you create containing keywords and parameters for
distributing and packaging functions.
(DATA

(PACKAGEFORMAT softdist)
(TARGETROOT /user/local/teamc/images)
(MANAGER Distribi)
(NODES perlovrs tcaix02)
(INSTALLPGM /tivoli/fpTeamcAIX/tcinstall.ksh)
(LOGNODE tcaix00)
(LOGFILE /tmp/fpTeamcAIX.log)

)

198 User’s Guide

v The Client.lst file you create containing the list of files passed to teamcpak . The
first line contains the package file by convention. The example also contains
customized installation files (tcinstall.ksh), TeamConnection tar files, and an
installation script (tcinst.ksh).
/usr/teamc/tivoli/Client.pkf
/usr/teamc/tivoli/tcinstall.ksh
/tcinstall/v208/fullpak/aix4/tar/client.tar
/tcinstall/v208/fullpak/aix4/tar/msgen_us.tar
/tcinstall/v208/fullpak/tcinst.ksh

The following presents an example of a Tivoli installation script (tcinstall.ksh) that
is copied to the target along with the tar files and the TeamConnection installation
script (tcinst.ksh), then executed on each NODES entry.
#!/bin/ksh
Clear existing log
#
You can easily update these.....
#
INST_DIR=/usr/local/teamc
INST_TMP=${INST_DIR}/tcinstl.tmp
INST_OUT=${INST_DIR}/tcinstl.out
INST_ERR=${INST_DIR}/tcinstl.err
INST_LOG=${INST_DIR}/tcinstl.log
IMAGE_DIR=${INST_DIR}/images

rm -f $INST_ERR $INST_OUT $INST_LOG $INST_TMP >/dev/null 2>&1
mkdir -p ${IMAGE_DIR}

exec 1>${INST_ERR}
exec 2>&1
exec 3>${INST_LOG}

Install VisualAge TeamConnection using responsefile
print -u3 Starting VisualAge TeamConnection installation at ′date′
print -u3 User id= ′id′
print -u3 Input: $*

Set up installation environment
- assumes bourne or korn shell
grep DB2_ROOTDIR '/.profile'
if (($? != 0))
then

print -u3 Updating /.profile
exec 4>>/.profile
cd /
print -u3 'DB2 and TeamConnection settings'
print -u4 'DB2_ROOTDIR=/usr/lpp/ODI/DB24.0'
print -u4 'export DB2_ROOTDIR'
print -u4 'PATH=$PATH:$DB2_ROOTDIR/cset/bin'
print -u4 'export PATH'
print -u4 'LIBPATH=$LIBPATH:$DB2_ROOTDIR/common/lib'
print -u4 'export LIBPATH'
. /.profile

else
print -u3 /.profile already updated

fi

Set up error logging
- if *.warning is in file (preceeded by spaces and tabs only
grep "|[]**.warning" /etc/syslog.conf
if (($? != 0))
then

print -u3 'Updating /etc/syslog.conf'
touch /var/spool/syslog
chmod 666 /var/spool/syslog

Chapter 18. Using the Tivoli Software Distribution packaging tool 199

exec 4>> /etc/syslog.conf
print -u4 '*.warning /var/spool/syslog'
stopsrc -s syslog
startsrc -s syslog

else
print -u3 /etc/syslog.conf already updated

fi

Update services file for tcocto family
grep "tcocto" /etc/services
if (($? != 0))
then

print -u3 Updating /etc/services
exec 4>> /etc/services
print -u4 'tcocto 8888/tcp'

else
print -u3 /etc/services already updated

fi

Generate response file
###
You can change to use enviroment variables!!
###
print -u5 '1'
print -u5 '5'
print -u5 '/usr/local/teamc/images'
print -u5 '/usr/local/teamc'
print -u5 '/usr/local/teamc/nls'
print -u5 'en_US'
print -u5 '/usr/local/teamc/X11'
print -u5 ''
print -u5 'i'

Run provided TeamC install script
ls -laR ${IMAGE_DIR} >> ${INST_TMP} 2>&1
cd ${IMAGE_DIR}
${IMAGE_DIR}/tcinst.ksh < ${IMAGE_DIR}/tcinstl.response
if (($? != 0))
then

Failed installation
print -u3 TeamC installation failed
exit 1

else
Clean up installation directory after listing contents
print -u3 We have successfully copied TeamC installation files
print -u3 Installation directory contents:
ls -laR ${INST_DIR} >> ${INST_TMP} 2>&1

fi

cd /
Remove installation stuff
print -u3 TeamC cleaning up temporary installation directory
rm -rf ${IMAGE_DIR}
cat ${INST_TMP} >> ${INST_LOG}
rm -rf ${INST_TMP}
exit 0

end of file

200 User’s Guide

Part 6. Appendixes

© Copyright IBM Corp. 1992, 1999 201

202 User’s Guide

Appendix A. Environment Variables

You can set environment variables to describe the TeamConnection environment in
which you are working. You are not required to set your TC_FAMILY environment
variable for the TeamConnection client command line interface. However, if the
TC_FAMILY environment variable is not set, the -family must be specified for every
client command. See “Setting environment variables” on page 208 for more
information about setting environment variables.

The names of the TeamConnection environment variables, the purpose they serve,
the equivalent TeamConnection flag, the equivalent Settings notebook field, and the
TeamConnection component that uses the environment variable are listed in the
following table.

You can override the value you set for an environment variable by using the
corresponding flag in a TeamConnection command. When an environment variable
has a Settings notebook equivalent, TeamConnection uses the two as follows:

v The environment variable controls the command line interface.

v The Settings notebook controls the graphical user interface.

If there is no Settings notebook equivalent for the environment variable, then the
environment variable takes effect regardless of the interface you are using.

To see some of your client settings, you can issue the following command from a
command prompt:
teamc report -testServer

This command returns information like the following:
Connect to Family Name: ptest
Server TCP/IP Name: amachine.company.com
Server IP Address: 9.1.23.45
Server TCP/IP Port Number: 9999

Server Specific Information ----------------------------------
Product Version: 3.0.0
Operating System: AIX
Message catalog language: English
Server Mode: non-maintenance
Authentication Level: HOST_ONLY

Table 3. TeamConnection environment variables

Environment variable Purpose Flag Setting Used by

LANG Specifies the language-specific
message catalog.

Client, family
server

NLSPATH Specifies the search path for
locating message files.

NLS path Client, family
server

PATH Specifies where tcadmin is to
search for the family create
utilities.

Client, build server,
family server

© Copyright IBM Corp. 1992, 1999 203

Table 3. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BACKUP Controls whether or not the
following commands create
backup files. If this
environment variable is set to
off or OFF, the commands do
not create backup files.

v builder -extract

v part -checkout

v part -extract

v part -merge

v part -reconcile

Family server

TC_BECOME Identifies the user ID you want
to issue TeamConnection
commands from, if the user ID
differs from your login. You
assume the access authority of
the user ID you specify.

-become Become
user

Client, build server
(except mvs)

TC_BUILDENVIRONMENT Specifies the build environment
name, such as OS/2 or MVS.
The value you specify here can
be anything you like, but it
must exactly match the
environment specified for a
builder in order for the builder
to use this build agent. This
value is case-sensitive.

-e Build server

TC_BUILDMINWAIT Minimum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 5, minimum setting is
3.

Build server

TC_BUILDMAXWAIT Maximum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 15, maximum setting
is 300.

Build server

204 User’s Guide

Table 3. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BUILDOPTS Specifies build options for
sending build log file messages
to the screen, and setting the
logging level. If you do not
specify any of these options,
then the build server writes
build messages to the build log
file (teamcbld.log), and writes a
minimum level of messages to
the log file. Some possible
values are:

v TOSCREEN (-s) sends the
teamcbld.log file to the
screen in addition to sending
it to a file.

v USEENVFILE (-n)

– writes the changed
environment variables to
a file called tcbldenv.lst
instead of setting them in
program’s environment.
The format of the file is
variable=value.

– writes the list of input
files to a file called
tcbldin.lst . One file per
line, format is pathName
type.

– writes the list of output
files to a file called
tcbldout.lst . One file per
line, format is pathName
type.

-s, -n Build server

TC_BUILDPOOL Specifies the build pool name. -p Pool Build server

TC_BUILD_RSSBUILDS_FILE Specifies the name of startup
files to be used to provide
information about build servers
to the build process.

Build server

TC_CASESENSE Changes the case of the
arguments in commands, not in
queries.

Case Client

Appendix A. Environment Variables 205

Table 3. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_CATALOG Specifies a specific file for the
TeamConnection message
catalog. Sometimes, depending
upon the operating system
environment, the catalog open
command will only look in a
particular directory for the
catalog. If the host is running
multiple versions of
TeamConnection, this variable
may be used. To set this
environment variable, specify
the file path name of the
message catalog as in the
following example:

TC_CATALOG=
"/family/msgcat/teamc.cat"

Family server, oe
build server

TC_COMPONENT Specifies the default
component.

-component Component Client, make
import tool

TC_DBPATH Specifies the database
directory path. Family specific
database files reside here.

Family server

TC_FAMILY Identifies the TeamConnection
family you work with.

-family Family Build server, client,
family server,
make import tool

TC_MAKEIMPORTRULES Specifies the name of the rules
file that TeamConnection uses
when importing the makefile
data into TeamConnection. If
you set this environment
variable, then you do not have
to use the /u option with the
fhomigmk command. Specify
the full path name of the rules
file. If neither this environment
variable nor the /u option is
used, TeamConnection uses
default rules.

Make import tool

TC_MAKEIMPORTTOP Strips off the leading part of
the directory name when
importing parts into
TeamConnection. For example,
you have parts with the
following directory structure:
g:\octo\src\inc\. To create these
parts without the g:\octo
structure, you can set
TC_MAKEIMPORTTOP=g:\octo
before you invoke the make
import tool. The parts created
in TeamConnection have the
directory structure of src\inc\.

Make import tool

TC_MAKEIMPORTVERBOSE Causes the -verbose flag to be
added to part commands
created by fhomigmk.

Make import tool

206 User’s Guide

Table 3. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MIGRATERULES Specifies the name of a file
containing the rules to be
applied for migration of
makefiles if the name is not
supplied on the fhomigmk
command line as a parameter.

Client

TC_MODPERM Controls whether or not the
read-only attribute is set after a
part is created, checked in or
unlocked in TeamConnection.
To cause the read-only
attribute to be set, specify
TC_MODPERM=ON. To
prevent the read-only attribute
from being set, specify
TC_MODPERM=OFF. The
default is TC_MODPERM=ON.

Client

TC_NOTIFY_DAEMON An alternate way of starting
notifyd with the teamcd
command. If you set this
environment variable, then you
do not have to use the -n
option with the teamcd
command. Specify the full path
name of the mail exit to use
with notifyd.

Family server

TC_RELEASE Specifies a release. -release Release Client, make
import tool

TC_TOP Specifies the source directory. -top Top Client

TC_TRACE Specifies the variable that lets
the user designate which parts
should be traced. You should
modify this only when directed
to do so by an IBM service
person. Otherwise it is set to
null. To trace all parts, specify
TC_TRACE=*.

Client, family
server, build server

TC_TRACEFILE Specifies the output (part path
and name) of the trace that the
user designates using
TC_TRACE. The default trace
file name is tctrace. For the
MVS build server, the default
trace file is stdout.

Client, family
server, build server

TC_TRACESIZE Specifies the maximum size of
the trace file in bytes. If the
maximum is reached, wrapping
occurs. The default is one
million bytes.

Client, family
server, build server

Appendix A. Environment Variables 207

Table 3. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_USER Specifies the user login ID for
single-user environments OS/2
and Windows 95 (if not using
the login facility). This
environment variable is not
used in multiuser environments
AIX, HP-UX, Solaris, MVS,
MVS/OE, and Windows NT. If a
user is using the Windows 95
login facility, this environment
variable is not used.

User ID Client, build server

TC_WORKAREA Specifies the default work area
name.

-workarea Work area Client, make
import tool

TC_WWWPATH Specifies the path for the
HTML helps and image files for
Web client.

Client, family
server

TC_WWWDISABLED Disables the Web client. Family server

The following environment variables are dynamically set by the teamcbld command
processing before the build script is invoked:

Table 4. TeamConnection dynamically set build environment variables

Environment variable Purpose Flag Setting Used by

TC_BUILD_USER Login of user who initiated the
part -build command.

Build server

TC_INPUT List of input files (separated by
spaces).

Build server

TC_INPUTTYPE List of input file types (such as
TCPart).

Build server

TC_OUTPUT List of output files. Build server

TC_OUTPUTTYPE List of output file types. Build server

TC_LOCATION Directory where build script is
invoked.

Build server
(except MVS build
server)

Setting environment variables

For methods of setting your environment variables, refer to your operating system
documentation. For example, you can use the following command to set the
TC_FAMILY environment variable:

v OS/2 - SET TC_FAMILY=familyName@hostname@portnumber

v UNIX - export TC_FAMILY=familyName@hostName@portNumber

208 User’s Guide

Appendix B. Importing makefile information into
TeamConnection

TeamConnection provides a command to help you import makefile information into
the TeamConnection database. The fhomigmk command reads a makefile and
creates the parts in it. Build tree connections are created based on a rules file. The
command syntax of the fhomigmk command is:

fhomigmk /m [makefile]
/f [family]
/r [release]
/w [work area]
/c [command file]
/u [rules file]
/x
/s
/k

You can precede the parameter with either a slash (/) or a dash (-).

The parameters are defined as follows:

/m [makefile]
The name of the makefile you want to import into TeamConnection. If you
do not specify this parameter, TeamConnection uses makefile.

/f [family]
The name of the TeamConnection family into which the makefile data will
be imported. If not specified, TeamConnection uses the value of the
TC_FAMILY environment variable. If the value of TC_FAMILY is not defined,
the value none is used.

/r [release]
The name of the TeamConnection release into which the makefile data will
be imported. If not specified, TeamConnection uses the value of the
TC_RELEASE environment variable. If the value of TC_RELEASE is not
defined, the value none is used.

/w [work area]
The name of the TeamConnection work area into which the makefile data
will be imported. If not specified, TeamConnection uses the value of the
TC_WORKAREA environment variable. If the value of TC_WORKAREA is
not defined, the value none is used.

/c [command file]
The name of the command file that will be produced and saved. If this file
already exists, commands created by the specified makefile are appended
to the existing contents.

/u [rules file]
The name of the rules file that TeamConnection will use when importing the
makefile data into TeamConnection. If not specified, TeamConnection uses
the value of the TC_MAKEIMPORTRULES environment variable. If no rules
file is found, TeamConnection uses default rules. “Creating a rules file” on
page 210 explains the rules, the format of this file, and the default rules.

/x Specifies that you want to run the command file that was produced by the
/c parameter.

© Copyright IBM Corp. 1992, 1999 209

/s Specifies that the build tree is to be displayed after the command is issued.
If specified, the command file is run even if the /x parameter is not
specified.

/k Specifies that you want TeamConnection not to erase the intermediate files
it uses to process this command. This might be useful in debugging
problems that arise during the import. However, in general, you will not
specify this parameter. When specified, the following intermediate files are
saved:

modified makefile
A modified form of the imported makefile. The command invocations
(of things like linkers and compilers) are replaced by calls to a
TeamConnection command that captures dependency data. To find
the cause of import errors, type the following command at an OS/2
command line:
nmake -f mod_make

create file
A list of all the objects referenced by the makefile that should be
created in the TeamConnection database.

connect file
A list of all the objects referenced by the makefile that should be
connected to other objects in the TeamConnection database. Each
line contains one dependency relationship in the format <child>
<parent>.

TeamConnection provides an environment variable, TC_MAKEIMPORTTOP, that
when set strips off the leading part of the directory name. For example, you have
parts with the following directory structure: g:\octo\src\inc\. Because you want the
parts created without the g:\octo structure, you set TC_MAKEIMPORTTOP=g:\octo
before you invoke the make import tool. The parts created in TeamConnection have
the directory structure of src\inc\.

Another environment variable provided by TeamConnection,
TC_MAKEIMPORTVERBOSE, when set causes the -verbose flag to be added to
part commands.

The following is an example of invoking the make import tool:
fhomigmk /m Mymak /w mywork /s /u myrules

In this example, the makefile called mymak is used to create a temporary command
file containing TeamConnection commands. The commands are formed based on
the rules defined in the file myrules. The family and release used in the commands
are those specified in the environment variables TC_FAMILY and TC_RELEASE.
The work area used in the commands is mywork. After the commands are issued,
the resulting build tree is shown using the TeamConnection GUI.

Creating a rules file

The import rules file is a text file that describes how you want TeamConnection to
create and connect parts. In this file you supply a set of rules, one per line, using
the following syntax:

210 User’s Guide

file mask
The mask specifying the names of the files to which this rule applies. The *
and ? wildcards are supported. For example, you could specify file names
such as *.cbl, abc*.cpp, or foo\src*.obj.

type The type of contents of the files to which the rule applies when they are
stored in TeamConnection as a part. Allowed values are binary, text, none,
or ignore. If you specify ignore as the file type, then all files that match the
file mask are bypassed.

builder
The name of the TeamConnection builder to be associated with the part.
The builder is not created for you. If you specify a builder, it must exist in
TeamConnection before you run fhomigmk. A value of none means that no
builder will be associated with the part.

parser
The name of the TeamConnection parser to be associated with the part.
The parser is not created for you. If you specify a parser, it must exist in
TeamConnection before you run fhomigmk. A value of none means that no
parser will be associated with the part.

connect
How the part will be connected to other parts in TeamConnection. The
following values are allowed:

v input

v output

v dependent

v none

When none is specified, the part is not connected to another part even
though a dependency was found for the part in the make file. For example,
when you indicate none for a file mask of *.h files, the *.h files are created
in TeamConnection, but not connected to the files that include them. The
value you will use most often is input.

content
Where the initial content of the part can be found:

v none indicates that the part is initially created as empty.

v directory\ indicates to concatenate with the name of the file in the
makefile. This is where the contents are expected to be found.

v * indicates to use the name in the makefile, relative to the current
working directory.

For example, if a makefile specifies a file src\abc.cbl and the makefile
specifies f:\mysrc\, the content is expected in f:\mysrc\src\abc.cbl. For a file
of *.cbl, the content is expected in src\abc.cbl relative to the current working
directory.

parameters
The build parameters to be attached to the part. Enclose the parameter in
double quotes if it has spaces. Use the value none to indicate no
parameters.

component
The TeamConnection component that will contain the part. If none is
specified, the value of the TC_COMPONENT environment variable is used.

Appendix B. Importing makefile information into TeamConnection 211

As TeamConnection processes each part referenced in the makefile, it looks for a
rule that matches the part name. If a match is found, the rule is used. The rules are
searched from top to bottom. The first matching rule is used.

Comments are denoted by a pound sign (#) in the first column.

Columns are separated by spaces.

A sample rules file, called fhomigmk.rul, is supplied with TeamConnection. Use this
file to help you create a rules file that is appropriate for your development
environment.

The following is a simple example of an import rules file:
<top of file>
#---
file mask type builder parser connect content parameters component
#---

*.exe binary linker none input none /Debug ship
*.obj binary icc none input none /Ti+ objects
*.cpp text none cplus input * none source
.h text none cplus none * none source

<end of file>

If you do not specify a rules file in the /u parameter of the fhomigmk command,
TeamConnection uses the value of the TC_MAKEIMPORTRULES environment
variable. If no rules file is found, TeamConnection uses the following default rules:
<top of file>
#---
file mask type builder parser connect content parameters component
#---

. text none none none none none root

212 User’s Guide

Appendix C. TeamConnection Merge

The TeamConnection VisualMerge provides a way for you to merge two or three
selected files together to make one single file. You can select options for viewing
differences and collisions, as well as view the composite output of the merged files.
Both a command line (tcmerge) and a graphical user interface are provided. The
figure below describes the merge of three files into a single file. Items one through
six represent the main stream of development for a particular part or file. Item 2
represents the base or common file from which two streams proceed. At the time of
the merge, the most recent version in the two streams are items 4 and 2.3. In this
scenario, the user selects the base or common file, item 2, as input 1. The user
also uses item 4, the latest version in development, as input 2. The latest version in
the branch is represented as item 2.3, or input 3. Item 5 represents the outcome of
the merge. Once the merge is complete a window appears with the three original
files and the final merged file.

The following is the command line syntax for TeamConnection VisualMerge with the
parameter abbreviations shown. The first set of brackets encloses the abbreviation
that may be used; the remainder shows the full parameter name. For example,
[-re[place]] indicates that -re is the abbreviation for the replace parameter.

tcmerge <file1|directory1> <file2|directory2> [<file3|directory3>]
[-ti[tles] <titlenames>] [-out <file|directory>]
[-prime[out] <file|directory>] [-re[place]]
[-ignoreco[lumns] <list of ranges to ignore>]
[-ignoreb[lanks] <l|t|a|lt>] [-ignoreca[se]
[-ignoreu[nique] <file|directory>]
[-ignoreb[lanklines]] [-auto[merge]] [-nologo]

If you do not specify input parameters at the command prompt, a Merge Files GUI
is presented to assist you in entering required and optional parameters. If only input
and output files or directories are provided, the following command defaults will be
in effect:

v The output file or directory is not primed with one of the input files or directories.

v No columns will be ignored in difference calculation.

v No blanks will be ignored in difference calculation.

The following lists the parameters which may be used with the tcmerge command.

Parameter Description
<file1|directory1> First file or directory to merge. A combination of filenames

and directory names is not valid.
<file2|directory2> Second file or directory to merge.
[<file3|directory3>] Third file or directory to merge. (Optional)

© Copyright IBM Corp. 1992, 1999 213

Parameter Description
[-ti[tles] <titlenames>] Names of files or directories being merged.
[-out <file|directory>] The file or directory into which the merged differences will

be written. This flag is optional.
[-prime[out]
<file|directory>]

Primes the specified input file or directory to the output
window.

[-re[place]] The filename with the -out flag will be replaced. If not
specified, and the filename specified with the -out flag
exists, the -replace flag must be specified.

[-ignoreco[lumns] <list of
ranges to ignore>]

List of column ranges to ignore during the compare. Entries
must use the format <startColumn,endColumn> with no
blanks within an entry. Specify one column <Column>
where start and end would be the same number.

[-ignoreb[lanks] <l|t|a|lt>] Specifies blanks to ignore. Specify one: l (leading), t
(trailing), lt (leading trailing), or a (all blanks). Specify: l for
blanks at the beginning of a line; t for blanks at the end of
a line; lt for blanks at the beginning and end of the line; a
for all blanks on a line.

[-ignoreca[se]] Case of the characters is ignored. For example, there is no
difference when an uppercase ″C″ and a lowercase ″c″ are
compared.

[-ignoreb[lanklines]] Any blank lines are ignored during the compare.
[-ignoreu[nique]
<file|directory>]

An input file or directory is ignored during the compare.

[-auto[merge]] Automatically merge differences between files or
directories. When conflicts found, a GUI is invoked for you
to resolve the conflict. Use this with the -out parameter to
keep input source files unchanged.
Note: Using this parameter is equivalent to using the
TeamConnection automrg command. See the Commands
Reference for additional information.

[-nologo] Hides the TeamConnection logo.

214 User’s Guide

Appendix D. Enabling an OS/2 Workframe project for
TeamConnection

TeamConnection lets you create a Workframe version 3 project that has
TeamConnection options as well as a set of TeamConnection actions. For each
project, you specify on the Project Options window the values for these options. By
doing this, you logically connect a Workframe project with a set of TeamConnection
parts. This makes it easier for you to perform TeamConnection actions, such as
checking parts in and out, directly from the Workframe.

Creating a TeamConnection-enabled Workframe project

Follow these steps to create a Workframe project that is enabled for
TeamConnection.

1. On an OS/2 command line, type the following command and press Enter:
fhotcini.cmd

This command creates a TeamConnection Project Smarts catalog on your
desktop. (If you have already created this catalog, there is no need to perform
this step again for additional projects.)

2. Open the TeamConnection Project Smarts catalog. Select the TeamConnection
project, and select the Create pushbutton.

3. Specify the location for the TeamConnection project you want to create; then
select OK.

When the action completes, you will see a TeamConnection Project on your
desktop.

Setting up your project options

Options are provided so that you can set up each TeamConnection Workframe
project. To set the options, do the following:

1. Select Tools Setup from the project’s Views pull-down menu.

2. Select the Project Options or File Options menu from any of the
TeamConnection actions.

The following options are provided:

Family
The TeamConnection family.

Release
The TeamConnection release.

Work area
The TeamConnection work area in which you will perform TeamConnection
actions.

Query mask
Any valid TeamConnection -where clause for parts. Leave blank to see all
parts. (This is used in the project’s Show Parts action.)

Show filter
Check this if you want to display the PartFull Filter window instead of using
the query mask in the Show Parts action.

© Copyright IBM Corp. 1992, 1999 215

Profile
Names the rules file to use for the Import Make action. Specify the fully
qualified name unless you are sure it will be found in your path correctly.
Select the Find push button if you need help.

Using your TeamConnection Workframe project

You can perform a set of TeamConnection actions from within your project:

v “Project actions” lists the actions you can perform without selecting a part.

v “Part actions” on page 217 lists the actions you can perform against a selected
TeamConnection part.

Project actions

OS/2 has three project actions. They are:

1. Invoke the TeamConnection GUI

2. Show all parts from current context

3. Build All (build project target)

Extract part
Displays an unprimed Extract Parts window.

Checkout part
Displays an unprimed Check Out Parts window.

Checkin part
Displays an unprimed Check In Parts window.

Unlock part
Displays an unprimed Unlock Parts window.

Lock part
Displays an unprimed Lock Parts window.

Create part
Displays an unprimed Create Parts window.

Build part
Displays an unprimed Build Parts window.

View part contents
Displays an unprimed View Part Contents window.

View part information
Displays an unprimed View Part Information window.

Edit part
Displays an unprimed Edit Part window.

Show parts
If the project attribute Show filter is not set, issues a query based on the
project attribute’s query mask. If the project attribute Show filter is set,
displays the PartFull Filter window.

216 User’s Guide

Part actions
Extract part

Displays the TeamConnection Extract Parts window to extract the selected
part.

Checkout part
Displays the TeamConnection Check Out Parts window to check out the
selected part to the work area specified in the project options.

Checkin part
Displays the TeamConnection Check In Parts window to check in the
selected part to the work area specified in the project options.

Unlock part
Displays the TeamConnection Unlock Parts window to unlock the selected
part.

Lock part
Displays the TeamConnection Lock Parts window to lock the selected part.

Create part
Displays the unprimed TeamConnection Create Parts window.

Build part
Displays the TeamConnection Build Parts window to start a build of the
selected part.

View part contents
Displays the TeamConnection View Part Contents window for the selected
part.

View part information
Displays the TeamConnection View Part Information window for the
selected part.

Edit part
Displays the TeamConnection Edit Part window for the selected part.

Import makefile
Imports the information contained in the selected makefile into the
TeamConnection database.

The Import makefile action is restricted to files with the extension .mak. The other
actions in this list apply to files of all types.

Using your project: a simple scenario

Suppose you are working on a defect in the family FAMILY1, release REL1_1. You
have created a TeamConnection work area called SANDBOX to work in. You want
to use the Workframe to access your TeamConnection parts. Here is what you
might do.

1. Create a TeamConnection Workframe project called DefectABC.

2. Open the project. Select Tools setup from the View pull-down menu.

3. Select any of the actions. Press mouse button 2 to display the context menu;
then select Project options or File options from the context menu. The result
is a window in which you can specify the TeamConnection information about
the project.

Appendix D. Enabling an OS/2 Workframe project for TeamConnection 217

4. Specify the family FAMILY1, the release REL1_1, and the work area
SANDBOX. Check the Show filter check box. Select OK.

5. Specify the general Workframe attributes of the project using the project’s
Settings notebook. These attributes include information such as the location of
the OS/2 files for the project. For example, in this scenario, you specify that
you want this project to contain all files in the directory c:\defect_abc, which is
initially empty.

6. Select TeamConnection → Show files from the Project context menu. The
PartFull Filter window is displayed. Specify the filter criteria; then select OK.
For example, specify that you want to see all the parts with extensions .cpp,
.exe, and .hpp. The Parts window is displayed.

7. Select the parts client.exe, server, client.cpp, client.hpp, server.cpp, and
server.hpp. Select Extract from the context menu.

8. On the Extract Parts window, type c:\defect_abc in the Target directory field
and select OK. Now you can interact with these parts directly from the
Workframe project.

9. In the Workframe project, run the ipmd.exe debugger until you determine the
cause of the problem. Suppose you find the bug is in client.cpp.

10. Go back to the Parts window. Select client.cpp from the list of parts, and
select TeamConnection → Checkout part from the context menu for the
object. The part is checked out to the SANDBOX work area.

11. Edit the file to fix the problem; then select TeamConnection → Checkin part to
check the part back into SANDBOX, the TeamConnection work area from
which it was checked out.

12. Build the part by selecting TeamConnection → Build part on the context menu
for the file client.exe.

13. When the build completes, extract the resulting executable by selecting
TeamConnection → Extract part from the file’s context menu.

14. Run the executable to verify that the problem has been fixed.

218 User’s Guide

Appendix E. Enabling a Workframe/NT project for
TeamConnection

TeamConnection lets you create a Workframe/NT project that has TeamConnection
options as well as a set of TeamConnection actions.

Workframe/NT doesn’t use the TeamConnection dialogues. Instead, WorkFrame/NT
uses monitored commands to invoke TeamConnection.

You must perform the following steps to integrate TeamConnection with
WorkFrame/NT:

1. Install VisualAge C++

2. Install the TeamConnection Client

3. Make a backup copy of the WorkFrame Configuration File which is named
vacpp.iws. This file is located in the MAINPRJ directory where VisualAge C++ is
installed.

4. Replace or merge the WorkFrame Configuration File with the TeamConnection
version of this file.

If you have made changes to the WorkFrame Configuration File named
vacpp.iws, you can use the TeamConnection Merge tool to view the differences
between the two files and selectively merge the text into a single file. You can
run the TeamConnection merge tool from a Windows command line. The syntax
is:
TCMERGE FILE1 FILE2

Note: It is very important that you make a backup copy of the WorkFrame
Configuration File (vacpp.iws) before making any changes to the file. Any
changes made to the configuration files will not be migrated to a future
version. Errors in the configuration file can prevent WorkFrame/NT from
operating correctly.

5. Reboot to activate the WorkFrame/NT changes.

Setting up your project options:

All TeamConnection commands are monitored from inside an editor session.
Environment variables are used to specify valid parameters for the project actions.

To set or change environment variables within WorkFrame/NT, from the Project’s
View pull-down menu, select Settings → Environment Variables.

You can use the following environment variables:

TC_FAMILY
The TeamConnection family. Required for all commands.

TC_USER
The current TeamConnection user. Required for all commands.

TC_BECOME
The current TeamConnection user. Required for all commands.

TC_RELEASE
The current TeamConnection release. Required for all commands.

© Copyright IBM Corp. 1992, 1999 219

TC_COMPONENT
The current TeamConnection component. Required for all commands.

TC_WORKAREA
The name of the current TeamConnection work area. NULL is the default if
a work area is not specified.

TC_TOP
Root of the work directory. Required for all commands.

TC_MAKEIMPORTRULES
The path and file name of the import rules file. Required for all Import
Makefile.

DPATH
Includes all work directories for the WorkFrame project. Required for Import
Makefile only if the project has more than one work directory. DPATH may
already be set in the environment.

Each time you change the TC command parameters, you must also change the
appropriate environment variable before selecting that TC action.

If you are using multiple directories in the WorkFrame project, you must set the
TC_TOP environment variable to specify the top directory structure for each
directory that you use.

Using your TeamConnection WorkFrame project

You can perform a set of TeamConnection actions from within your project:

v “Project actions” lists the actions you can perform without selecting a part.

v “Part actions” lists the actions you can perform against a selected
TeamConnection part.

Project actions

WorkFrame/NT has three project actions. They are:

1. Invoke the TeamConnection GUI

2. Show all parts from current context

3. Build All (build project target)

Part actions

The current release and work area are specified with environment variables. See
“Setting up your project options:” on page 219.

TC Extract Part
Extract the specified part.

TC View Part Information
View information about the specified part.

TC Build Part
Build the specified output part.

220 User’s Guide

TC Create Part
Create the specified part in TeamConnection.

TC Unlock Part
Unlock the specified part.

TC Import Makefile
Imports the information contained in the selected makefile into the
TeamConnection database.

TC Checkin Part
Check in the specified part.

TC View Part Contents
Displays the contents of the specified part.

TC Lock Part
Locks the specified part.

TC Checkout Part
Checks out the specified part.

WorkFrame/NT uses selective part options:

v You can only checkin, checkout, or view contents of a non-binary part.

v Makefiles can only be imported.

v For WorkFrame/NT all TeamConnection actions are prefaced with ″TC″. For
example, TC Checkout Part.

Appendix E. Enabling a Workframe/NT project for TeamConnection 221

222 User’s Guide

Appendix F. Enabling and Using the VisualAge
TeamConnection Enterprise Server Bridge

Overview of the VisualAge TeamConnection Enterprise Server Bridge

VisualAge TeamConnection for Smalltalk provides a repository with support
specifically for highly-interactive, prototyping environments that emphasize iterative
development, such as VisualAge for Smalltalk or VisualAge Generator. A bridge
from VisualAge TeamConnection Enterprise Server to VisualAge TeamConnection
for Smalltalk (and to VisualAge Generator through VisualAge TeamConnection for
Smalltalk) provides access to the software configuration management (SCM)
support provided by VisualAge TeamConnection for Smalltalk, along with the
scalable, enterprise-level support provided by VisualAge TeamConnection
Enterprise Server. VisualAge TeamConnection Enterprise Server’s ability to manage
all development artifacts (not just source code), to share information in a common
model, and to integrate multiple tools and multiple languages across the enterprise
on a single baseline extends the capabilities of software development groups. The
VisualAge TeamConnection Enterprise Server Bridge (also referred to as the bridge
in this documentation) provides essential integration for VisualAge tools that use
VisualAge TeamConnection for Smalltalk as their day-to-day operational library.

VisualAge Generator Version 3.0 has access to the bridge through it’s use of
VisualAge for Smalltalk Pro Version 4.0 or later, which can interface directly with
VisualAge TeamConnection Enterprise Server library support. The bridge supports
the import and export of VisualAge Generator objects (parts) to and from VisualAge
TeamConnection Enterprise Server.

VisualAge TeamConnection for Smalltalk provides a collaborative component
development environment for application development and integration using
fine-grained object languages, such as Smalltalk. The VisualAge TeamConnection
for Smalltalk repository is designed for languages that run on the universal virtual
machine (uVM). The repository includes persistence, versioning, and configuration
management.

VisualAge TeamConnection Enterprise Server can be used to manage artifacts
(parts) that need to be shared with non-uVM based languages or tools for purposes
of build management, problem tracking, and other configuration management
functions. These artifacts can be exported from VisualAge TeamConnection for
Smalltalk to VisualAge TeamConnection Enterprise Server through the bridge and
stored as TeamConnection parts.

Objects stored in a TeamConnection database can be queried and retrieved back
into the VisualAge TeamConnection for Smalltalk development environment as
needed. The units of storage in TeamConnection include exported VisualAge for
Smalltalk and VisualAge Generator components (such as applications and
configuration maps) and large grained objects (files). Small-grained objects, such as
VisualAge Generator data items, are imported and exported as constituents of
applications. The data items in an application are exported to VisualAge
TeamConnection Enterprise Server in a form that makes their definitions available
to other tools through the data model.

© Copyright IBM Corp. 1992, 1999 223

Scope of this documentation

This documentation is intended for users and administrators installing and using the
bridge. It is assumed that you familiar with both the VisualAge for Smalltalk and
TeamConnection products.

The following subsections describe the mechanics of enabling the bridge for
VisualAge for Smalltalk Pro (Version 4.0 or later), the process of exporting
VisualAge for Smalltalk and VisualAge Generator components to TeamConnection,
and the process of importing these components back into VisualAge
TeamConnection for Smalltalk. See the VisualAge Generator documentation for
tool-specific details. TeamConnection information related to change tracking and
build processing are addressed in the TeamConnection documentation.

Many terms used by VisualAge for Smalltalk and TeamConnection are problematic
because the tools may define these terms differently. Release and component are
typical examples. To avoid any ambiguity, such terms may preceded by the name of
the tool they are applied to, such as TeamConnection release.

Description of the bridge

Basic functionality

It makes sense to describe the functionality of the bridge from the perspective of a
Smalltalk developer, because it is through the Smalltalk image that the user drives
the bridge. The bridge is an import/export facility for three types of entities:

v Smalltalk configuration maps

v Smalltalk applications

v Files residing on local and networked file systems that are accessible through the
image

The bridge allows a Smalltalk developer to store any of these entities in a
TeamConnection database and retrieve them at a later time. Configuration maps
and applications must be versioned before they can be exported. This enforces the
notion that the Smalltalk developer uses the bridge and TeamConnection to
maintain baselines rather than for managing work-in-progress.

Developers use VisualAge TeamConnection for Smalltalk’s fine-grained support to
facilitate the process of shared development in open editions of components on a
daily basis. At appropriate junctures, components are versioned and promoted to
VisualAge TeamConnection Enterprise Server, where together with other project
elements, they form a baseline across an entire project. The resulting baseline may
contain objects such as program elements, files, and metadata.

From the perspective of the VisualAge TeamConnection Enterprise Server user or
administrator, the bridge allows the Smalltalk image to function as a
TeamConnection client, storing and retrieving parts in a TeamConnection family
database.

How the bridge communicates with TeamConnection

The bridge functions are initiated from within the VisualAge for Smalltalk
environment. Each operation that interacts with VisualAge TeamConnection
Enterprise Server runs for some time in the Smalltalk image, but at some stage will

224 User’s Guide

make use of functions built into an appropriate version of the TeamConnection client
and server. The bridge itself is implemented in Smalltalk and in one of the DLLs in
TeamConnection.

The unit of transfer used by the bridge for Smalltalk components is a VisualAge
TeamConnection for Smalltalk library. Each library stored in TeamConnection
contains one of the following:

v a Smalltalk application and its released subapplications (and their released
subapplications, and so forth)

v a configuration map without any of its released applications

Note: Subapplications cannot be exported through the bridge without an enclosing
application.

VisualAge TeamConnection for Smalltalk libraries are stored in VisualAge
TeamConnection Enterprise Server databases as TeamConnection parts. When the
bridge exchanges a library, the target in a TeamConnection database is specified by
a TeamConnection context. A TeamConnection context is comprised of the following
parameters:

v Family name

v Release name

v Work area name

Note: Each TeamConnection context can contain only one version of any named
application or configuration map. This is unlike VisualAge TeamConnection
for Smalltalk libraries, in which multiple versions of a named Smalltalk
component can co-exist.

The bridge is aware of the various relationships between VisualAge
TeamConnection for Smalltalk components. When an application is transferred
through the bridge, all of its released subapplications are transferred with it. When a
configuration map is transferred through the bridge, the bridge will also transfer the
released applications in separate operations. Depending on a user-specified setting,
the bridge can also transfer required maps of configuration maps.

Preparing to use the VisualAge TeamConnection Enterprise Server
Bridge

The bridge is delivered as a configuration map suitable for loading into a VisualAge
for Smalltalk Version 4.0 (or later) image. The library, TCEMBR.DAT, will contain the
configuration map ENVY/Manager-TeamConnection Bridge and, for VisualAge
Generator build support, VAGen ENVY/TC Bridge .

These configuration maps should be imported into your development library so that
it can be loaded by all of the users sharing that library. The step-by step instructions
are described in “Installing and activating the bridge” on page 226.

Usually, the Library Supervisor or the first user to use the bridge will perform this
operation and then inform other users that the tool is available in the library.

The sections that follow describe the steps necessary to set up the bridge and
verify that it is functional.

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 225

Setting up the bridge environment

The following information is especially pertinent to the individual(s) responsible for
bridge setup and administration.

Prerequisites

Before the bridge will work, you must have the following:

v VisualAge for Smalltalk Pro Version 4.0 or later installed. See the VisualAge for
Smalltalk documentation to confirm that you have the appropriate hardware and
software prerequisites available.

v A VisualAge TeamConnection Enterprise Server family that is running.

v A TeamConnection GUI client installed on the machine where you are running
your Smalltalk image.

Note: This release of the bridge only runs on OS/2 and Windows platforms.

You should verify that you are able to communicate with the relevant VisualAge
TeamConnection Enterprise Server family by using the TeamConnection GUI client.
If you cannot communicate with the TeamConnection server in this manner, the
bridge will definitely not function correctly.

Environment variables

The bridge relies on the user to specify the various parameters that make up the
TeamConnection context. By default, the bridge will query the variables in the
environment that the image is running. These variables, TC_FAMILY ,
TC_RELEASE , and TC_WORKAREA , are used as initial values for the default
TeamConnection context.

There are two additional environment variables that can be defined for the bridge,
as follows:

v TC_COMPONENT is used as the default TeamConnection component for parts
stored in TeamConnection through the bridge. If TC_COMPONENT is not defined
or is empty, the value root is used.

v TC_RELATIVE is used to specify the initial destination path for files retrieved
from TeamConnection through the bridge. If TC_RELATIVE is not defined or is
empty, the current directory according to the image is used.

It is not necessary to define any of these variables for the bridge to work. Defining
them only makes setting up the default bridge configuration in the image easier for
a bridge user.

A system administrator may want to have the environment variables automatically
defined in a network login script. When a user logs into a LAN and then uses the
bridge, the user will be provided with the defined values as hints for setting up the
default TeamConnection configuration.

Installing and activating the bridge

The bridge is loaded into the image like any other configuration map using the
Load option from the Editions menu of the Configuration Maps Browser .

226 User’s Guide

Once the bridge is loaded, the submenu TeamConnection Bridge will appear on
the Tools menu of the System Transcript window. This submenu is referred to as
the bridge menu. The bridge menu is the launching point for all of the bridge
operations.

“Importing and loading the bridge” provides step-by-step instructions for the bridge
loading process.

Importing and loading the bridge

Follow these steps to load the bridge:

1. Open the VisualAge for Smalltalk Pro - Client.

2. Go to the System Transcript window and select Browse Configuration
Maps from the Tools pulldown menu.

3. In the Configuration Maps Browser window, select Import from the Names
pulldown menu.

4. A dialog will prompt you to enter the full path name of the library that you want
to import. For purposes of activating the bridge, you will need to supply a
TeamConnection pathname (determined by where you have installed
TeamConnection) for the file called TCEMBR.DAT. Select the OK pushbutton
to continue and display the Selection Required window.

5. In the Selection Required window, select ENVY/Manager-TeamConnection
Bridge in the Names list, which will prime the Versions list with a version
number.

6. Select the version in the Versions list and move it to the Selected Versions
list using the right-arrow pushbutton.

Note: If you are using a Version 3 VisualAge TeamConnection Enterprise
Server, you should select version R1.02. If you are using a Version 2
TeamConnection server, you should select version R1.01.

7. For the additional interoperability with VisualAge Generator described in “Using
the bridge: a simple scenario for VisualAge Generator developers” on
page 234, you must also import the configuration map called VAGen ENVY/TC
Bridge, as described in the previous steps.

8. Select the OK pushbutton to initiate the import process. During the process of
importing the TCEMBR.DAT file into the VisualAge for Smalltalk Pro
manager.dat file, the System Transcript window will issue a message stream
that confirms the success of the import.

9. In the Configuration Maps Browser window, select ENVY/Manager-
TeamConnection Bridge from the Names list.

10. Select the item (there should only be one available) in the Editions and
Versions list.

11. Click mouse button 2, and select Load from the pop-up menu.

Note: For the additional interoperability with VisualAge Generator described in
“Using the bridge: a simple scenario for VisualAge Generator
developers” on page 234, you must also load VAGen ENVY/TC Bridge,
as described in the two previous steps. ENVY/Manager-
TeamConnection Bridge must be loaded first.

12. After the application loading progress dialog completes without errors, the
bridge should be functional. You can close the Configuration Maps Browser
window at this time.

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 227

Testing the bridge

To verify that the bridge is active and ready for VisualAge TeamConnection for
Smalltalk component export/import functions, follow these steps:

1. Go to the System Transcript window and select the Tools pulldown menu.
Then select Default Properties from the TeamConnection Bridge cascade
menu. This will display the Default Properties notebook.

2. Verify that the TeamConnection family in the Family field on the Context page
of the Default Properties notebook is appropriate for your project. You may
need to coordinate your access to the family with your family administrator.

3. Select the Test Server pushbutton. If the bridge is properly configured, the
server connection test will return an information window that provides
server-specific information. Select the OK pushbutton to dismiss the server
information window.

You are now ready to export VisualAge TeamConnection for Smalltalk components
to a VisualAge TeamConnection Enterprise Server.

Note: When exiting VisualAge for Smalltalk Pro - Client, you should save your
image so that the bridge will be preserved for future use.

Using the VisualAge TeamConnection Enterprise Server Bridge

You can perform TeamConnection functions on VisualAge TeamConnection for
Smalltalk components, provided that you supply parameters necessary to identify a
bridge configuration. Bridge configuration parameters are defined by the Default
Properties notebook, as described in “Setting default properties”.

Each time the bridge interacts with TeamConnection, it uses the parameters in a
bridge configuration to ensure that the behavior of the operation is in accordance
with the users’ specifications. Because specifying a configuration for each operation
would be time-consuming and most operations would use the same configuration,
you can specify a default configuration. Each time the user initiates an operation,
you can use the default configuration or modify it.

The default configuration is stored in the image so that once it is setup, it will be
maintained until the bridge is reloaded from the library.

Setting default properties

To set properties for import and export actions across the bridge, open the Default
Properties notebook as described in “Testing the bridge”. The Default Properties
notebook contains four pages of settings, as follows:

v Context page

v Operations page

v Import page

v Export page

Each page of the Default Properties notebook includes the following controls:

Show this dialog when exporting and importing checkbox
The Show this dialog when exporting and importing checkbox specifies
whether the dialog should be shown each time an import/export operation

228 User’s Guide

for the bridge is initiated by the user. If the dialog is shown, it gives the user
the opportunity the default configuration for a particular operation only.

push buttons

OK Saves the current settings as default setting. This option may not
be available if some fields are left incomplete or contain invalid
values.

Cancel
Closes the Default Properties notebook and ignores any changes
made in the dialog.

Defaults
Updates the dialog fields with the values in the current default
bridge configuration.

Reset Updates the dialog fields with the initial values that are set when
the bridge is first loaded into the image.

Context page

The context page is used to specify the TeamConnection family, release, and work
area used as the context for the default bridge configuration.

Family
Use this field to input the name of your TeamConnection family server.
Select the Test Server pushbutton to return an information window that
provides server-specific information. If you cannot successfully
communicate with the TeamConnection server, you may have specified an
invalid family name. Your TeamConnection family administrator may be of
some assistance at this point.

Release
The TeamConnection release. By selecting the Query releases pushbutton,
you can prime the Release field drop-down menu with valid release choices
based on the Family field value.

Work area
The TeamConnection work area in which you will perform TeamConnection
actions. By selecting the Query work areas pushbutton, you can prime
Work area field drop-down menu with valid work area choices based on the
Release field value.

Note: Any communication with a TeamConnection server takes time. Querying the
available releases and work areas typically takes a few seconds, which is
the reason that this data is not automatically used to populate the dialog.

Operations page

The Operations page determines how operations are performed in
TeamConnection, including whether operations are forced and how parts in the
database are locked.

Force The Force and Don’t force radio buttons are mutually exclusive.

In TeamConnection terms, force is an indication that changes should be
forced into the VisualAge TeamConnection Enterprise Server repository,
possibly breaking links with the part in other version contexts. Its intent is to
indicate that, although the specified version might not match the current set
of versions applicable to the object in the persistent store, the changes in

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 229

those versions specified in the version string are to be made, breaking the
links to those current versions not specified.

The force option is important only if you specify that a part version is to be
locked. If you want to retrieve or store a locked part in a particular release
or work area that is linked to another release or work area, you might want
to specify the force option when you are checking in or checking out the
part, even if someone else might have the part checked out in another
context. See the discussion of locking below for a description of
TeamConnection locking options.

Locking
These mutually-exclusive radio buttons enable you to instruct
TeamConnection on how to manage the locking behavior for parts that you
are exporting to or importing from the TeamConnection repository.

Obtain and release
Also known as optimistic locking, TeamConnection will attempt to
check out the part(s) before checking in changes that you have
made in the VisualAge TeamConnection for Smalltalk environment.
If this action is successful, the part(s) will not be locked in
TeamConnection after the export.

Obtain and retain
TCCS will attempt to check out the part(s) before checking in
changes that you have made in the VisualAge TeamConnection for
Smalltalk environment. If this action is successful, the part(s) will
remain locked in TeamConnection after the export.

Retain
For parts already locked in TeamConnection, after changes are
exported from VisualAge TeamConnection for Smalltalk, the locked
parts should remain locked (i.e., the lock is retained by the original
owner).

Release
For parts already locked in TeamConnection, after changes are
exported from VisualAge TeamConnection for Smalltalk the locked
parts should be unlocked, and therefore available to other
developers in that context.

Import page

The Import page provides default settings options when importing VisualAge
TeamConnection for Smalltalk components or files previously exported to a
TeamConnection database.

Configuration Maps
If the Import all required maps too checkbox is checked, it specifies that
when a configuration map is imported, its required configuration maps
(along with any other required configuration maps, recursively) should be
retrieved from TeamConnection as part of the import action. If this option is
enabled, and a configuration map being imported does have required maps,
the maps can only be imported if they actually exist in the TeamConnection
database.

Note: The checkbox is checked as the default.

230 User’s Guide

Destination for Files
The Destination path for files field identifies the target (base) directory for
imported files.

Replacing Existing Files
These mutually-exclusive radio buttons enable you to select a desired
default method for overwriting files (or not) in your working target directory.

Ask user
This choice enables you to choose which files are to be overwritten.

Do not replace existing files
Files that currently exist in the target directory will not be
overwritten.

Replace existing files
Files that currently exist in the target directory are automatically
overwritten.

Export page

The Export page provides default settings options for exporting VisualAge
TeamConnection for Smalltalk components or files to a TeamConnection database.

Storage in TeamConnection
The Component field identifies the TeamConnection target component for
your export action. This component designation, along with
TeamConnection family, release, and work area values supplied in the
Context page of the Default Properties notebook, is necessary to define
the context for any new TeamConnection parts created by an export action.

Configuration Maps
If the Export all required maps too checkbox is checked, it specifies that
when a configuration map is exported, its required configuration maps
(along with any other required configuration maps, recursively) should be
exported TeamConnection. If this option is enabled, and a configuration
map being exported does have required maps, the maps can only be
exported if they actually exist in the TeamConnection database.

This option is used to prevent version mismatches when a configuration
map requires other configuration maps, as in the following case:

1. For a configuration map that requires other configuration maps, you do
an export with the required maps.

2. At some later time, you export again without the required maps.

3. When you attempt to import with the required maps, the import may fail,
because a configuration map level in TeamConnection does not match
the level previously exported from VisualAge TeamConnection for
Smalltalk.

Note: The checkbox is checked as the default.

Exporting VisualAge TeamConnection for Smalltalk components to
TeamConnection

The TeamConnection Bridge cascade menu provides an Export choice, which
offers the following choices:

v Configuration Maps

v Applications

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 231

v Files

Note: You must have the appropriate authority to update all parts associated with
the configuration maps, applications, or files to be exported.

As a general rule, it is advisable to export applications and configuration maps
along with any configuration maps required by these VisualAge TeamConnection for
Smalltalk components to avoid version mismatches. If you make a change to an
application, it is important to update all the exported configuration maps that contain
the application and to export all of the configuration maps again.

Note: The Export all required maps too checkbox located on the Export page of
the Default Properties notebook defaults to this behavior.

The following describes two simple cases in which a mismatch might occur:

1. Export a configuration map that contains several applications.

2. Make a change to one of the contained applications.

3. Export the changed application only.

4. Attempt to import the configuration map.

or
1. Export two configuration maps that contain the same application.

2. Make a change to the common application and export only one of the
configuration maps that contains the application.

3. Attempt to import the second configuration map.

As the number of programmers authorized to version components and the
complexity of your applications increase, so does the possibility for these types of
problem to occur. Therefore, it is important to coordinate update authority in such a
way that all affected parties are notified about configuration changes, and that
someone in the development group has authority over all levels of components. It
may also be advisable to limit export actions to higher levels of authority than you
have previously.

Exporting components is a substantial operation that typically takes at least ten to
twenty seconds (possibly minutes for a large collection of components). Such an
operation begins with the bridge exporting the components to temporary VisualAge
TeamConnection for Smalltalk libraries and then generating detailed descriptions of
the library contents for the benefit of TeamConnection. To guarantee atomicity and
minimize the number of times that the bridge must communicate with
TeamConnection (thus avoiding unnecessary overheads), all components are
transferred in one primitive operation.

Even a single configuration map usually counts as more than one component,
because it typically contains at least one release application. Once the primitive
operation is invoked, control of the process is in the TeamConnection client code,
which is effectively blocked against the TeamConnection server. Because the
Smalltalk image is blocked waiting for the primitive to return, the user interface will
not update, and the user cannot halt the operation.

Exporting configuration maps and applications

The process for exporting VisualAge TeamConnection for Smalltalk-based
configuration maps and applications to a TeamConnection family database includes
the following steps:

232 User’s Guide

1. Select Configuration Maps or Applications from the Export cascade menu.
You will be prompted to select an appropriate version of the configuration map
or application that you want to export.

Note: VisualAge TeamConnection for Smalltalk components must be versioned
in VisualAge for Smalltalk before being exported to TeamConnection.

2. In the Selection Required window, select the desired configuration map or
application in the Names list, which will prime the Versions list with a version
number.

3. Select the version in the Versions list and move it to the Selected Versions list
using the right-arrow pushbutton. Because only one version of any named
configuration map can exist in a TeamConnection context, it is only possible to
choose one version for any particular name.

4. Select the OK pushbutton to initiate the export process.

5. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Export
Properties notebook, which is primed by values in the Default Properties
notebook. If you are satisfied with the current values in the Export Properties
notebook, select the OK pushbutton to initiate the export process.

If the export succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Exporting files

The process for exporting VisualAge TeamConnection for Smalltalk-based files to a
TeamConnection family database includes the following steps:

1. Selecting Files from the Export cascade menu.

2. You will be prompted to select the files that you want to export. You can add to
or delete files from the list using the Add , Remove , or Remove All
pushbuttons.

3. Select the OK pushbutton to initiate the export process.

4. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Export
Properties notebook, which is primed by values in the Default Properties
notebook. If you are satisfied with the current values in the Export Properties
notebook, select the OK pushbutton to initiate the export process.

If the export succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Importing VisualAge TeamConnection for Smalltalk components from
TeamConnection

The TeamConnection Bridge cascade menu provides an Import choice, which
offers the following choices:

v Configuration Maps

v Applications

v Files

The process for importing any of these VisualAge TeamConnection for Smalltalk
components is essentially the same, and includes the following steps:

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 233

1. Select Configuration Maps , Applications , or Files from the Import cascade
menu.

2. If the Show this dialog when exporting and importing option has been set in
the default bridge configuration, you will be presented with the Import
Properties notebook, which is primed by values in the Default Properties
notebook.

3. When you are satisfied with the current values in the Import Properties
notebook, select the OK pushbutton.

4. You will be prompted to supply a query pattern to further reduce the number of
candidates for import. Select the OK pushbutton to launch the query of the
TeamConnection context that you have specified up to this point.

Note: Use the wildcard characters (* and ?) as delimiters for your queries.

5. A list of VisualAge TeamConnection for Smalltalk components matching your
query is returned. Each of these components exists in a TeamConnection
database specified by the TeamConnection context in the configuration used for
this operation. Select the objects you want to import from this list and select the
OK pushbutton to initiate the import action.

6. In the case of configuration maps and applications, the selected components
will be imported into the default VisualAge TeamConnection for Smalltalk library
that the image is connected to. For files, the selected files will be written to the
path specified by the Destination path for files option in the bridge
configuration used for this operation. If any of the files already exist, they may
be overwritten, or the user may be prompted, depending on the value of the
Replace existing files option.

If the import succeeds without errors, a message is logged to the System
Transcript window. Users are informed of any errors with a message box.

Using the bridge: a simple scenario for VisualAge Generator
developers

The following scenario is a generalized case used to illustrate the way that
VisualAge Generator developers might use the bridge to accomplish change
tracking and build processing. An actual implementation requires that a Smalltalk
development team begin with versioned VisualAge TeamConnection for Smalltalk
components and a plan for sharing common applications.

After you have installed the bridge, you can export a versioned configuration map to
a TeamConnection family database. For VisualAge Generator developers, this
means that you can generate programs, tables, and map groups using the
TeamConnection build interface. See the VisualAge Generator Generator’s Guide
and “Part 4. Using TeamConnection to build applications” on page 117 in this
document for details.

Scenario assumptions

For purposes of describing the scenario, the following assumptions are established:

v A development team using VisualAge Generator wants to perform problem
tracking and build generation.

v A family is created in TeamConnection with a release r1, defined with a
track-driver process (i.e., all part changes are made in reference to work areas).

234 User’s Guide

v A build server has been started to handle build requests for generation, and
similarly for preparation.

v Data item definitions and records used to access data in a database are kept in
a ″common″ application, while programs and their other associates are kept in a
separate application.

Note: This assumption enables the scenarios to include application
prerequisites.

Exporting VisualAge TeamConnection for Smalltalk components to
TeamConnection

To prepare for exporting the VisualAge TeamConnection for Smalltalk components
to TeamConnection, perform the following activities:

1. In TeamConnection:

a. Create a feature called f1 and accept the feature.

b. Create a work area called wa1 for implementation of the feature.

2. In VisualAge TeamConnection for Smalltalk:

v Create applications for the common data and for other VisualAge Generator
parts.

3. In VisualAge Generator Developer:

v Create programs and their associates.

v Create generation option, linkage table, resource association, link edit, and
bind parts as necessary.

4. In VisualAge TeamConnection for Smalltalk:

a. Create a configuration map that gathers the common data application and
the application containing all the other parts.

b. The class developers version their classes.

c. The class owners release versioned classes into the two applications and
the application managers version the applications.

If more than one developer has been working on the feature, each may
have opened a new edition of a part’s class extension, so a merge of the
method editions will have to be performed.

d. The configuration map manager releases the versioned applications into the
configuration map and versions the configuration map.

e. An administrator uses the bridge to export the configuration map to the work
area associated with feature f1. See “Exporting VisualAge TeamConnection
for Smalltalk components to TeamConnection” on page 231 for bridge export
instructions.

After the bridge export action is completed, there will be a part for the
configuration map and for each of its applications, and parts for each class
and method in each application.

Object mapping in TeamConnection

After a bridge export action, the following parts are created in TeamConnection in
wa1 for f1 in the component and release specified as context for the export action:

v For each application of the configuration map there will be an application part.

v For each class and method, a part with a name qualified by the application name
for uniqueness, as described in Table 5 on page 236.

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 235

The bridge must map VisualAge TeamConnection for Smalltalk components to part
names in TeamConnection in such a way that the parts can be retrieved in a
reusable form when they are imported from TeamConnection back into the
VisualAge TeamConnection for Smalltalk environment.

Table 5. Name generation mapping for the VisualAge TeamConnection Enterprise Server Bridge

Class Type Naming Convention Mapped Name Example

EmLibrary <class_name_of_blob_object>.<name_of_blob_object> EmApplication.MyApp,
EmConfigurationMap.MyConfigMap

EmConfigurationMap <config_map_name> MyConfigMap

EmApplication <application_name> MyApp

EmSubapplication <app_name>.<subapp_name> MyApp.MySubapp

EmClass OR
EmClassExtension

<app_name>.<subapp_name>.<class_name> MyApp.MyClass,
MyApp.MySubapp.MyClass

EmInstanceMethod
OR EmClassMethod

<app_name>.<class_name>.<method_name> OR
<app_name.subapp_name>.<class_name>.<method_name>

MyApp.MyClass.MyMethod,
MyApp.MySubapp.MyClass.MyMethod

See the VisualAge Generator Generator’s Guide for additional information related to
generation part output names in TeamConnection.

Build generation

The VisualAge Generator Generator’s Guide provides detailed VisualAge Generator
build generation instructions. The following overview is provided to place these
activities in the context of the bridge:

1. In VisualAge Generator Developer:

v For each program, the Options Override (OVR) part that has been exported
to TeamConnection creates an initial build tree for VisualAge Generator
applications in TeamConnection.

Refer to the VisualAge Generator Generator’s Guide for more details on the
OVR part.

2. In TeamConnection (build function):

a. The build administrator selects the EZEPREP collector of the initial build
tree of a program proxy in wa1 for f1, and requests a build.

b. TeamConnection places the generator build event on the build queue, and
the generator build server detects a new build event that it can service.

c. The build server invokes the generator build script, which parses the name
of the generation configuration map name from the generated part’s build
parameters.

d. The build script invokes the generator, which imports the configuration map
and its references to the generation manager. The VisualAge
TeamConnection for Smalltalk manager used by generation is identified by a
VisualAge INI file on the generation build server.

The bridge determines whether each application referenced already exists in
the generation VisualAge TeamConnection for Smalltalk manager, and only
imports an application if that version of the application is not already in the
manager.

Note: For VisualAge Generator builds, you can use the environment
variable TC_ENVY_REFRESH to control when VisualAge Generator

236 User’s Guide

builders will import the required configuration map from
TeamConnection. TC_ENVY_REFRESH can be used to affect the
following behaviors:

v If TC_ENVY_REFRESH=null, the configuration map will not be
imported from TeamConnection if that version of the configuration
map is already in the connected VisualAge TeamConnection for
Smalltalk manager.

v If TC_ENVY_REFRESH=null, the configuration map will be
imported from TeamConnection if that version of the configuration
map is not already in the connected VisualAge TeamConnection
for Smalltalk manager.

v If TC_ENVY_REFRESH=notnull, the configuration map will always
be imported from TeamConnection. This setting is important if you
use VisualAge DataAtlas to modify data elements that are
dependents of the configuration map. In that case, if the data
elements have been modified since the configuration map was
exported to TeamConnection, the builder will warn you that the
configuration map is not synchronized with its dependent data
elements only if TC_ENVY_REFRESH=notnull. Such a warning
allows you to import the changed data elements into a new edition
of the configuration map and export the resulting new version to
TeamConnection, before trying the build again

Setting TC_ENVY_REFRESH is only relevant in the environment of
the TeamConnection build server that performs the VisualAge
generator builds.

e. The generator uses the bridge to update the outputs and dependencies in
the build tree.

f. If there are tables and/or map groups used by the program, the generator
determines whether there is already a build tree for them. If not, initial build
trees are added for them using the program’s OVR part.

g. TeamConnection re-examines the build tree of the EZEPREP collector and
determines that new build events have been added to the build scope for
preparation of the generation outputs, and possibly for generation and
preparation of tables and map groups. Build events are started to complete
the preparation of generation outputs, and generation and preparation of
tables and map groups if necessary.

Note: See the VisualAge Generator Generator’s Guide for greater detail on
this process.

3. In TeamConnection (change control):

v A project administrator completes the fix record(s) for the feature f1 and adds
the work area wa1 to a system test driver. Eventually the driver is committed
to the release and the feature is completed.

Making a change to a member
1. In TeamConnection:

a. Defect d1 is created and accepted in TeamConnection

b. Work area wa2 is created for the implementation of the defect d1.

2. In VisualAge TeamConnection for Smalltalk:

a. An application manager creates new edition of an application that requires a
change.

b. A developer makes a change to one or more parts.

Appendix F. Enabling and Using the VisualAge TeamConnection Enterprise Server Bridge 237

c. The class developer of the changed parts versions the class, the class
owner releases the class into the new edition of the application, and the
application manager versions the application. If more than one defect is in
progress, the class owner must release only the versions that apply for
defect d1.

d. The configuration map owner opens a new edition of the configuration map
used to generate the program being changed, and releases the new
application version into the configuration map. The configuration map owner
versions the configuration map.

e. The administrator uses the bridge to put the configuration map back into the
work area wa2 for defect d1.

3. In TeamConnection (build function):

a. Build administrator builds the program(s) affected by the change. This can
be done by selecting the preparation collector for each program and
requesting a build, or by selecting a collector for a subsystem, and building
the subsystem collector. Only programs, tables, or map group affected by
the changes to proxy members will be rebuilt.

b. The generation process continues as it did for the initial build (see “Build
generation” on page 236 for details), except that there should be no need to
add new build trees unless a new table or map group was added to a
program being built

4. In TeamConnection (change control):

v A project administrator completes the fix record(s) for the defect d1 and adds
the work area wa2 to a system test driver. Eventually the driver is committed
to the release and the feature is completed.

238 User’s Guide

Appendix G. Source Code Control User’s Guide

Differences between other source code control providers and
TeamConnection

The purpose of this document is to help Visual Basic, Visual C++, and PowerBuilder
users, make TeamConnection their Visual environments source code control
provider. This document assumes the reader is a new user of TeamConnection, but
has some familiarity with source code control.

Note: This component is for a client operating in a Windows 95 or NT environment.
However, it may accept files from other environments providing the Win
platforms can access them.

The following shows the version level supported by TeamConnection:

v PowerBuilder 5.0.04 or higher

v Visual Basic version 5.0 with SP2 applied or higer

v Visual C++ version 5.0 or higher

v IBM Visual Age Java 2.0 or higher

For the latest information on integrating third party development tools with
TeamConnection, visit the following website:
http://www.software.ibm.com/ad/teamcon/

Projects vs Families

Most source code control providers group all code into projects. TeamConnection
uses an object oriented approach that provides much more control over the
software product while allowing greater flexibility. Projects have one dimension of
control. Development environments like Visual Basic group all of their files into
projects. Using projects to group source code has several limitations. First, the
source code control system is limited to providing just version control. While version
control is useful, once the enterprise-size organization is reached, it is often not
sufficient to control just versions of the source code. TeamConnection provides not
only versioning but defect and feature tracking, build and driver management,
access control, and much more. TeamConnection uses families, releases,
components, and work areas for management and control.

TeamConnection uses several layers of control. The highest level is the family. The
family is the name of the data base, where TeamConnection stores all of the code,
the versions, and all other information related to the code. A family represents a
complete and self-contained collection of TeamConnection users and development
data. Data within a family is completely isolated from data in all other families. One
family cannot share data with another. It is important to know the name of the family
where TeamConnection will store your code and associated information.

A part in TeamConnection is a collection of data that is stored by the family server.
This can include files, text, objects, binary objects, or modeled objects. Parts can be
stored by a user, a tool, or generated from other parts, such as when a linker
generates an executable file.

Components are used to organize the data in a family. Components are arranged in
a hierarchical tree structure, with a single top component called root. The

© Copyright IBM Corp. 1992, 1999 239

component owns the parts that may be in it, and controls access to the parts. Once
you are given access to a component, you have access to all the parts and
subcomponents in that component. The component also controls the process that
TeamConnection uses, for example, to report and fix a defect. Within each family,
development data is organized into groups called components. The component
hierarchy of each family includes a single top component, initially called root, and
descendants of that root. Each child component has at least one parent component;
a child can have multiple parents.

The release is somewhat analogous to a project. A release is a logical grouping of
the components that make up a product. An application is likely to contain parts
from more than one component. Because you probably want to use some of the
same parts in more than one application, or in more than one version of an
application, TeamConnection groups parts into releases. A release is a logical
organization of all parts that are related to an application; that is, all parts that must
be built, tested, and distributed together. Each time a release is changed, a new
version of the release is created. Each version of the release points to the correct
version of each part in the release. Each part in TeamConnection is managed by at
least one component and contained in at least one release. One release can
contain parts from many components; a component can span several releases.
Each time a new development cycle begins, you can define a separate release.
Each subsequent release of an application can share many of the same parts as its
predecessor. You need to know the name of the release.

A work area is basically a view of a release. For example, a work area can be
opened for each defect that needs to be fixed. More than one programmer can
work in the same work area at the same time. A programmer can have more than
one work area active at a time. A release contains the latest integrated version of
each of its parts. As users check parts out of the releases, update them, and then
check them back in, TeamConnection keeps track of all these changes, even when
more than one user updates the same part at the same time.

You need to know the name of the work area in which you will be working. A good
practice is to create and name a work area after the defect being addressed in the
work area. For example, name work area W1557 for defect 1557. You can create a
work area if you have the authority in TeamConnection, but this must be done
through the TeamConnection GUI.

For more information about families, releases, components, work areas, parts, and
what you can do with them, see your TeamConnection Documentation.

Installing the TeamConnection source code control DLL

Before you can use the integrated support from your development environment you
must install TeamConnection and the TeamConnection Source Code Control DLL. If
you are using TeamConnection Version 2.0.8 or later, the source code control DLL
is already installed.

Note: If you have not already done so, follow the directions and install the
TeamConnection client for your workstation. The following directions assume
that you have successfully installed the TeamConnection client.

240 User’s Guide

Connecting TeamConnection to an IDE

In order for TeamConnection to be your source code control provider, both of the
following Registry structure conditions must be in place:

v HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider contains
the key name ProviderRegKey . If TeamConnection is your source code control
provider, the value (Data) for this key name should be
SOFTWARE\IBM\VisualAge TeamConnection . The key name may currently
point to another provider if you have another provider installed.

v

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProviders
contains the key names for the available (installed) source code providers. The
key name for TeamConnection is IBM VisualAge TeamConnection Enterprise
Server and the data is SOFTWARE\IBM\VisualAge TeamConnection when the
TeamConnection client is installed.

Note: There may be other source code control providers currently designated
(e.g., Microsoft Visual SourceSafe with data
SOFTWARE\Microsoft\SourceSafe), depending on which other SCC
providers have been installed.

Removing the TeamConnection Source Code Control DLL

To change the default source code control system for Visual Basic, Visual C++, or
PowerBuilder, change the value in the ProviderRegKey to the registry key of
another provider.

To remove TeamConnection, leave the value in the ProviderRegKey blank.

Using TeamConnection as your source code control provider

Once the installation procedure is complete, starting your development environment
automatically links the TeamConnection Source Code Control DLL.

For the latest information on integrating third party development tools with
TeamConnection, visit the following website:
http://www.software.ibm.com/ad/teamcon/

Before you start

There are several things you must know before you can start using
TeamConnection as your source code control provider. If you are not sure of this
information, contact your administrator. Your family administrator can help you find
the following information:

v Family, defined by the following attributes:

– Name

– TCP/IP Host

– Port Address

v Component

v Release

v WorkArea

Appendix G. Source Code Control User’s Guide 241

You also need to know the project name. The project name is used by your
development tool to relate to the TeamConnection attributes of family, release, work
area, and component by the Source Code Control DLL.

Opening a project

One of the few differences you see when using TeamConnection as your source
code control provider occurs when you open or save a project (depending on the
IDE you are using). When you open or save the new project, the TeamConnection
Settings window opens. At the top of this window is a field with your development
project name. In addition to the project name field, there are fields for family
attributes, work area, release, and component. If this is a new project, these fields
are blank. If this is not a new project, the fields contain the previous values. You
can change these values only when this window is open. If at anytime you decide
to change any of these values, you might need to first close the project and reopen
it.

Once all the fields are filled in, select OK. The project will open. If you select
Cancel , the source code control system might disconnect from the development
environment until another project is opened.

Under some versions of Visual Basic, for example, projects automatically close and
open after certain operations. This causes this TeamConnection Settings window to
open at times when it may appear unnecessary. When this occurs, select OK. If
you select Cancel , you might be in a state that requires shutting down and
restarting Visual Basic to reconnect the source code control system.

Integrated features

Once you open a project you can use the integrated features of the development
environment to access your files in TeamConnection. The development environment
keeps track of the files that are known to TeamConnection, and the checkout status
of each file. For example, the development environment keeps track of files
checked out to other users.

The exact steps necessary to perform each of the following actions depend on the
development environment being used. However, for a given IDE, the steps are the
same regardless of the source code control provider. For example, if you check out
a file in the Visual C++ development environment when it is connected to Visual
SourceSafe, the steps you use are exactly the steps you use when Visual C++ is
connected to TeamConnection.

Check-in

The steps to check-in a file vary by the development environment. In most cases
pressing mouse button 2 when the mouse pointer is over a file icon of a file
checked out to you, brings up a menu that includes the file check-in option.
Selecting the file checkin option opens the Check-In window. Checking the keep
checked out box on the Check-In window sets the keep locked flag,
TeamConnection saves the file, but keeps it checked out to you. Selecting OK
causes the TeamConnection part check-in function to execute and the file is
checked in.

Note: Depending on development environment and software levels, some features
that follow may be unavailable.

242 User’s Guide

Check-out

Similar to check-in, the check-out action can be started by pressing mouse button 2
on the file icon of a file not already checked-out. Check-out calls the
TeamConnection Part Check-out function.

Uncheck-out

A checked out file can be unchecked out. Again this action can often be started by
right clicking the file icon of a file that is checked out. Uncheck-out calls the part
unlock function in TeamConnection.

Get Version

Rather than check out a file, you can also get the latest version of the file. Get
Version calls the TeamConnection Part Extract function.

Adding Files to source code control

Adding a file that is not already under source code control places the selected file
into the source code control system. Add calls the TeamConnection part create
function.

Properties

Selecting Properties from a pull-down menu opens the properties GUI. Information
that TeamConnection needs to correctly check out and check in parts is provided
here. For example, the work area field changes each time an existing work area is
integrated and a new work area is created.

Full features of TeamConnection

Most development environments allow you to evoke TeamConnection from the
pull-down menus. In Visual Basic, TeamConnection appears as an option in the
Add-Ins pull-down menu. In Visual C++, TeamConnection appears in the Source
Code Control option of the Tools pull-down menu. PowerBuilder uses the
PowerBuilder Library Icon to designate TeamConnection as the Source Code
Control provider. From the TeamConnection GUI you can create new work areas (if
you have the correct authority), retrieve previous versions of a part, open or
process defects, and perform many other actions against parts.

Migrating project data bases

One key issue for programmers and project managers moving from another source
code control system to TeamConnection is how to migrate the database of projects.
The following describes one way to bring the current level of code for a small to
medium sized project into TeamConnection.

Migrating an existing project: The following example illustrates the simplest way
to migrate an existing Visual Basic source code control database into
TeamConnection. Lets say we were using the ABC source code control system, and
we are going to migrate our project, Baylout, to TeamConnection. The idea is to
extract all the files in Baylout using the ABC source code control system, and then
add them as parts in TeamConnection. Follow the steps below to perform this
migration.

1. Make ABC the default source code provider. To do this, set the registry key
ProviderRegKey to point to the registry entry for source code control provider

Appendix G. Source Code Control User’s Guide 243

ABC. See “Installing the TeamConnection source code control DLL” on
page 240 for more information on how to perform this step. Once you complete
this step, ABC will be the Source Code Control provider when we open Visual
Basic.

2. Start the Visual Basic development environment.

3. Open project Baylout.

4. Extract all the files to your system.

5. Exit the Visual Basic development environment.

6. Edit the registry key ProviderRegKey to be:
SOFTWARE\IBM\TeamConnection

See “Installing the TeamConnection source code control DLL” on page 240 for
more information on how to perform this step. TeamConnection is now the
default source code control provider and is attached when the development
environment starts.

7. Restart the Visual Basic development environment.

8. Open project Baylout again. Save the Baylout project. The TeamConnection
Settings window will display.

9. When the TeamConnection Settings window opens it will have Baylout listed
as the project. Fill in the values for family attributes, release, component, and
work area, then select OK.

10. Add the files to TeamConnection following the steps in the Visual Basic
development environment.

11. Repeat these steps until all of your projects are migrated to TeamConnection.

Starting a new project

Starting a new project in Microsoft Visual Basic, Visual C++, or PowerBuilder is
essentially the same regardless of the source code provider. The only operational
difference is that the TeamConnection Source Code Control Settings window
opens at some point. When the TeamConnection Source Code Control Settings
window opens, enter the family attributes, component, work area, and release.

Starting Visual Basic: In order to use TeamConnection source code control with
Visual Basic. a subset of Microsoft Source Safe DLLs are required. After you have
Microsoft Source Safe installed, you must make the following changes:

1. Add or update the following lines in the vbaddin.ini file :
vbscc=0
SccAddIn.SourceCodeControlAddIn=1

2. When you start Visual Basic after making these changes, you will see another
check box in the Add-Ins->Add-In Manager panel called Source Code Control
Add-In . You should check the new box, and uncheck the Source Code Control
checkbox.

These steps should enable you to use the TeamConnection source code control
with Visual Basic

To create a new project in Visual Basic, do the following:

1. Start Visual Basic.

2. Create and save a new project.

244 User’s Guide

3. Select Add Project to TeamConnection from the TeamConnection option in
the Add-Ins menu. The TeamConnection Settings window will display. Fill in
the family attributes, release, component, and work area, then select OK.

4. The Add Project to TeamConnection window opens. Select the files you want
to add. Type a comment in the comment field. (Visual Basic requires that a
comment be entered.) Select OK.

For more information, visit the following website:
http://www.software.ibm.com/ad/teamcon/

Starting Visual C++: To create a new project under Visual C++, do the following:

1. Start the Visual Developers Studio as normal.

2. From the File menu, select New. The New Project Workspace window will
open.

3. On the New Project Workspace window, do the following:

a. Select the type of project

b. Type a name

c. Select Create .

4. Select Project->Source Control->Add to Source Control to open the
TeamConnection Settings window.

5. On the TeamConnection Settings window, enter the family attributes, release,
component, and work area. Then, select OK.

6. Files can now be added to the project using the Insert menu.

7. To place the files under source code control, select the Add to Source Code
Control option of the Tools menu.

For more information, visit the following website:
http://www.software.ibm.com/ad/teamcon/

Starting PowerBuilder: To create a new project under PowerBuilder, do the
following:

1. Start PowerBuilder.

2. Select the Library icon.

Note: If TeamConnection Source Code Control is already installed (the
TeamConnection Settings window will open), you can proceed with
Step 5

3. From the Source menu, select Connect . The Connect dialog box will display.

4. Select SCC API from the Connect list box, and then select OK.

5. The TeamConnection Settings window will open. On the TeamConnection
Settings window, enter the family attributes, release, component, and work
area. Then select OK.

Note: The TeamConnection Settings window may redisplay. If this happens,
select OK again.

6. Add parts to the TeamConnection. Select all parts that you want to add to
TeamConnection, including the project folder in the Library window. You can
select all of these objects simultaneously by dragging the mouse pointer while
depressing the Control (CTRL) key.

7. From the Source menu, select Register . This may take some time. These
registered parts should be added to the TeamConnection work area previously
specified in the TeamConnection Settings window

Appendix G. Source Code Control User’s Guide 245

For more information, visit the following website:
http://www.software.ibm.com/ad/teamcon/

246 User’s Guide

Appendix H. Supported expandable keywords

TeamConnection supports expandable keywords in text files. When a file containing
expandable keywords is extracted from TeamConnection, the current value of each
keyword is added to the file. This information can help you identify what version of
source code is used for your deliverables.

TeamConnection supports the following keywords.

Keyword Description
$ChkD; The time and date stamp applied during check in.
$FN; The file name complete with its path.
$KW; The start of keyword expansion. It expands to @(#).
$EKW; Keyword expansion is ended until the next $KW; keyword.
$Own; The user ID of the owner of the component that manages the part.
$Ver; The version of the part in TeamConnection.

The following examples show lines of code that change in a text file as a user
extracts a part. The text file used in this example is filex.hdr.
#ifndef_filex_hdr_
#define_filex_hdr_
static char _filex_hdr[]="$KW; $FN; $Ver; $ChkD; $EKW;";

#endif

TeamConnection ignores keywords until it finds a $KW; keyword. It then expands all
keywords until a $EKW; keyword is found. If the semicolon (;) following a keyword
is omitted, the keyword is not expanded.

No change occurs when the part is checked in to TeamConnection. However, when
the part is extracted, the keyword variables are updated. The following example
shows how the keywords are expanded.
#ifndef_filex_hdr_
#define_filex_hdr_
static char _filex_hdr[]="$KW=@(#) $FN=bin/filex.hdr; $Ver=1:1;

$ChkD=1998/03/20 18:13:19; $EKW;";
#endif

In the previous example, each keyword and its value appears in the output. The
value of the keyword is replaced each time the part is extracted. If you do not want
the keyword to appear in the output, add a minus sign (-) after the dollar sign ($).
For example, if the statement is prepared as follows:
static char _filex_hdr[]="$−KW; $−FN; $−Ver; $−ChkD; $−EKW;";

Then the expanded keywords will look like:
static char _filex_hdr[]="$@(#) bin/filex.hdr 1:1

1998/03/20 18:13:19 $−EKW;";

Be aware that if a file is extracted, then locked and checked in, the version
information can no longer be updated because the keyword does not appear in the
output.

© Copyright IBM Corp. 1992, 1999 247

248 User’s Guide

Appendix I. Authority and notification for TeamConnection
actions

TeamConnection ships with IBM-supplied authority groups, interest groups,
component processes, and release processes. Your family administrator can modify
these preconfigured authority groups, interest groups, and processes to fit the
needs of your organization.

Each authority group consists of actions normally performed by a particular type of
user. Your family administrator can modify these groups or create new ones to
reflect the needs of your organization.

Authority groups provide explicit authority to perform the actions included in each
group. You might also have implicit authority to perform certain actions according to
the objects that you own. Authority groups are defined in a file called authorit.ld.

To determine your authority groups, from the Actions pull-down menu, select Lists →
Access lists → Show authority actions. On the Show authority actions window select
an action.

Each notification group consists of actions normally of interest to a particular type of
user. Your family administrator can modify these groups or create new ones to
reflect the needs of your organization. Interest groups are defined in a file called
interest.ld.

To determine your interest notification groups, from the Actions pull-down menu,
select Lists → Notification lists → Show interest actions. On the Show authority
actions window select an action.

The following table lists all of the TeamConnection actions, the required level of
implicit and explicit authority to perform the action, and the users who are notified
when an action is performed. To explicitly assign authority to a user, add the user’s
ID to a component’s access list.

Note: The user who performs the action is excluded from the notification that is
sent out after the action is successfully completed.

For this action These users have authority These users are notified

AccessCreate
v Component owner

v Explicitly defined for the component where access
is being added

User being given new access,
subscribers

AccessDelete v Component owner

v Explicitly defined for the component where access
is being altered

User whose access was deleted,
subscribers

AccessRestrict v Component owner

v Explicitly defined for the component where access
is being restricted

User whose access is being
restricted, subscribers

ApprovalAbstain v Approval record owner

v Explicitly defined for the component that manages
the associated release

Approval record owner, subscribers

© Copyright IBM Corp. 1992, 1999 249

For this action These users have authority These users are notified

ApprovalAccept v Approval record owner that manages the
associated release

Approval record owner, subscribers

ApprovalAssign v Approval record owner

v Explicitly defined for the component that manages
the associated release

New and original approval record
owners, subscribers

ApprovalCreate v Work area owner

v Explicitly defined for the component that manages
the associated release

New approval record owner,
subscribers

ApprovalDelete v Explicitly defined for the component that manages
the associated release

Approval record owner, subscribers

ApprovalReject v Approval record owner

v Explicitly defined for the component that manages
the associated release

Approval record owner, subscribers

ApproverCreate v Release owner

v Explicitly defined for the component that manages
the associated release

New approver, subscribers

ApproverDelete v Release owner

v Explicitly defined for the component that manages
the associated release

Deleted approver, subscribers

BuilderCreate v Explicitly defined for the component that manages
the associated release

Subscribers

BuilderDelete v Explicitly defined for the component that manages
the associated release

Subscribers

BuilderExtract v Explicitly defined for the component that manages
the associated release

Not applicable

BuilderModify v Explicitly defined for the component that manages
the associated release

Subscribers

BuilderView v Explicitly defined for the component that manages
the associated release

Not applicable

CollisionAccept v Component owner

v Explicitly defined for the component that manages
the associated release

Release owner, subscribers

CollisionReconc v Component owner

v Explicitly defined for the component that manages
the associated release

Release owner, subscribers

CollisionReject v Component owner

v Explicitly defined for the component that manages
the associated release

Release owner, subscribers

CompCreate v Parent component owner

v Explicitly defined for the parent component

New component owner

CompDelete v Component owner

v Explicitly defined for the component being removed

Component owner, subscribers

250 User’s Guide

For this action These users have authority These users are notified

CompLink v Component owner of the component being linked

v Explicitly defined for the component being linked

Owners of both components,
subscribers

CompModify v Component owner

v Explicitly defined for the component being modified

New component owner if applicable,
subscribers

CompRecreate v Parent component owner

v Explicitly defined for the parent component

Owners of both components,
subscribers

CompUnlink v Component owner of the component being unlinked

v Explicitly defined for the component being unlinked

Owners of both components,
subscribers

CompView v Component owner

v Explicitly defined for the component being viewed

Not applicable

CoreqCreate v Work area owner of all specified work areas

v Explicitly defined for the component managing the
associated work area and release

Not applicable

CoreqDelete v Work area owner of all specified work areas

v Explicitly defined for the component associated with
the release

Not applicable

DefectAccept v Defect owner for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectAssign v Defect owner, defect originator

v Explicitly defined for the component associated with
the defect

Note: Originators who do not have DefectAssign
authority can reassign the defect only when it is in the
open state.

New owner, defect originator,
duplicate defect originators,
subscribers

DefectCancel v Defect originator

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectClose Automatic action; no authority is required Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectConfiginfo Not applicable; this is a base authority that can be
performed by all users in the family

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectDesign v Defect owner

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

Appendix I. Authority and notification for TeamConnection actions 251

For this action These users have authority These users are notified

DefectModify v Defect owner can modify:

– answer, abstract, environment, driver, prefix,
reference, release, and all configurable fields

v Defect originator can modify:

– originator, severity, name, abstract, environment,
driver, prefix, reference, release, and all
configurable fields

v Explicitly defined for the component associated with
the defect, these users can modify:

– abstract, answer, name, environment, driver,
originator, prefix, reference, release, severity,
phaseFound*, phaseInject*, priority*, symptom*,
and target*

*If these fields have been configured by the family
administrator, the field names might differ from
those shown.

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectOpen Not applicable; this is a base authority that can be
performed by all users in the family

Component owner, subscribers

DefectReopen v Defect originator

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectReturn v Defect owner

v Explicitly defined for the component associated with
the defect

Defect originator, duplicate defect
originators, subscribers

DefectReview v Defect owner

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectSize v Defect owner

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectVerify v Defect owner

v Explicitly defined for the component associated with
the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectView v Defect owner, defect originator

v Explicitly defined for the component associated with
the defect

Not applicable

DriverAssign v Driver owner

v Explicitly defined for the component associated with
the release

New owner, subscribers

DriverCheck v Driver owner

v Explicitly defined for the component associated with
the release

Not applicable

DriverCommit v Explicitly defined for the component associated with
the release

Subscribers

DriverComplete v Explicitly defined for the component associated with
the release

Subscribers

252 User’s Guide

For this action These users have authority These users are notified

DriverCreate v Release owner

v Explicitly defined for the component associated with
the release

Subscribers

DriverDelete v Driver owner

v Explicitly defined for the component associated with
the release

Subscribers

DriverExtract v Driver owner

v Explicitly defined for the component associated with
the release

Not applicable

DriverFreeze v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

DriverModify v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

DriverRefresh v Explicitly defined for the component associated with
the release

Component owner, subscribers

DriverRestrict v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

DriverView v Driver owner

v Explicitly defined for the component associated with
the release

Not applicable

EnvCreate v Release owner

v Explicitly defined for the component associated with
the release

Tester, subscribers

EnvDelete v Release owner

v Explicitly defined for the component associated with
the release

Subscribers

EnvModify v Release owner

v Explicitly defined for the component associated with
the release

Tester, subscribers

FeatureAccept v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureAssign v Feature owner

v Explicitly defined for the component associated with
the feature

New owner, feature originator,
duplicate feature originators,
subscribers

FeatureCancel v Feature originator

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureClose Occurs automatically; no authority is required Feature owner, feature originator,
duplicate feature originators,
subscribers

Appendix I. Authority and notification for TeamConnection actions 253

For this action These users have authority These users are notified

FeatureComment Not applicable; this is a base authority that can be
performed by all users in the family

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureDesign v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureModify v Feature owner can modify:

– abstract, prefix, reference, and all configurable
fields

v Feature originator can modify:

– abstract, name, prefix, reference, and all
configurable fields

v Explicitly defined for the component associated with
the feature, these users can modify:

– abstract, name, originator, prefix, reference,
priority*, and target*

*If these fields have been configured by the family
administrator, the field names might differ from those
shown.

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureOpen Not applicable; this is a base authority that can be
performed by all users in the family

Component owner, subscribers

FeatureReopen v Feature originator

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureReturn v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureReview v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureSize v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureVerify v Feature owner

v Explicitly defined for the component associated with
the feature

Feature owner, feature originator,
duplicate feature originators,
subscribers

FeatureView v Feature owner

v Explicitly defined for the component associated with
the feature

Not applicable

FixActive v Fix record owner, component owner, work area
owner

v Explicitly defined for the component associated with
the fix record

Subscribers

254 User’s Guide

For this action These users have authority These users are notified

FixAssign v Fix record owner, component owner, work area
owner

v Explicitly defined for the component associated with
the fix record

New fix record owner, subscribers

FixComplete v Fix record owner, component owner, work area
owner

v Explicitly defined for the component associated with
the fix record

Subscribers

FixCreate v Defect or feature owner, work area owner

v Explicitly defined for the component associated with
the defect or feature

Subscribers

FixDelete v Defect or feature owner, work area owner

v Explicitly defined for the component associated with
the defect or feature

Subscribers

HostCreate v Owner of the user ID for which a host list entry is
being created or deleted

v Superuser

Not applicable

HostDelete v Owner of the user ID for which a host list entry is
being deleted

v Superuser

Not applicable

MemberCreate v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberCreateR v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberDelete v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

MemberDeleteR v Driver owner

v Explicitly defined for the component associated with
the release

Driver owner, subscribers

NotifyCreate v Component owner

v Explicitly defined for the component associated with
the notification list

Not applicable

NotifyDelete v Component owner

v Owner of user ID

v Explicitly defined for the component associated with
the notification list
Note: Users can delete themselves from a
notification list without requiring any authority

Not applicable

ParserCreate v Explicitly defined for the component associated with
the release

Subscribers

ParserDelete v Explicitly defined for the component associated with
the release

Subscribers

Appendix I. Authority and notification for TeamConnection actions 255

For this action These users have authority These users are notified

ParserModify v Explicitly defined for the component associated with
the release

Subscribers

ParserView v Explicitly defined for the component associated with
the release

Not applicable

PartAdd v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartBuild v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartCheckIn v User who checked out or locked the part originally,
component owner

v Explicitly defined for the component associated with
the part

Note: The user who is explicitly given this authority
can check in a part that is checked out by someone
else.

Subscribers

PartCheckOut v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartChildInfo v Component owner

v Explicitly defined for the component associated with
the part

Not applicable

PartConnect v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartDelete v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartDeleteForce v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartExtract v Component owner

v Explicitly defined for the component associated with
the part

Not applicable

PartForceIn v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartForceOut v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartLink v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

256 User’s Guide

For this action These users have authority These users are notified

PartLock v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartLockForce v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartMark v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartMerge v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartModify v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartOverrideR Explicitly defined for the component associated with
the release

Subscribers, user granted the
override (if a user specified)

PartReconcile v Component owner

v Explicitly defined for the component that manages
the associated release

Subscribers

PartRecreateForce v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartRecreate v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartRefresh v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartRename v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartRenameForce v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartResolve Not applicable; this is a base authority that can be
performed by all users in the family

Not applicable

PartRestrict Explicitly defined for the component associated with
the release

Subscribers

PartTouch v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartUndo v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

Appendix I. Authority and notification for TeamConnection actions 257

For this action These users have authority These users are notified

PartUndoForce v Component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartUnlock v User who checked out or locked the part originally,
component owner

v Explicitly defined for the component associated with
the part

Subscribers

PartView v Component owner

v Explicitly defined for the component associated with
the part

Not applicable

PartViewMsg v Component owner

v Explicitly defined for the component associated with
the part

Not applicable

PrereqCreate v Work area owner of all specified work areas

v Explicitly defined for the component managing the
associated work area and release

Not applicable

PrereqDelete v Work area owner of all specified work areas

v Explicitly defined for the component managing the
associated work area and release

Not applicable

ReleaseCreate v Explicitly defined for the component associated with
the new release

New release owner, component
owner, subscribers

ReleaseDelete v Release owner

v Explicitly defined for the component associated with
the release

Release owner, component owner,
subscribers

ReleaseExtract v Release owner

v Explicitly defined for the component associated with
the release

Not applicable

ReleaseLink v Release owner

v Explicitly defined for the component associated with
the release

Release owner, subscribers

ReleaseMerge v Release owner

v Explicitly defined for the component associated with
the release

Release owner, subscribers

ReleaseModify v Release owner

v Explicitly defined for the component associated with
the release

Note: To identify a new component to manage the
release, you must have ReleaseCreate in an
authority group in the component that you are
modifying

Release owner, subscribers, new
owner (if applicable)

ReleasePrune v Release owner

v Explicitly defined for the component associated with
the release

Subscribers

258 User’s Guide

For this action These users have authority These users are notified

ReleaseRecreate v Release owner

v Explicitly defined for the component associated with
the release

Release owner, component owner,
subscribers

ReleaseView v Release owner

v Explicitly defined for the component associated with
the release

Not applicable

Report Not applicable; this is a base authority that can be
performed by all users in the family

Not applicable

ShadowCreate Explicitly defined for the component associated with
the release

Not applicable

ShadowDefine Superuser Not applicable

ShadowDelete Explicitly defined for the component associated with
the release

Not applicable

ShadowDisable Explicitly defined for the component associated with
the release

Not applicable

ShadowEnable Explicitly defined for the component associated with
the release

Not applicable

ShadowModify Explicitly defined for the component associated with
the release

Not applicable

ShadowRedefine Superuser Not applicable

ShadowSync Explicitly defined for the component associated with
the release

Not applicable

ShadowUndefine Superuser Not applicable

ShadowVerify Explicitly defined for the component associated with
the release

Not applicable

ShadowView Explicitly defined for the component associated with
the release

Not applicable

SizeAccept v Sizing record owner

v Explicitly defined for the component associated with
the sizing record

Subscribers

SizeAssign v Sizing record owner

v Explicitly defined for the component associated with
the sizing record

New sizing record owner,
defect/feature owner, subscribers

SizeCreate v Defect/feature owner

v Explicitly defined for the component associated with
the defect/feature

Component owner, defect/feature
owner, subscribers

SizeDelete v Defect/feature owner

v Explicitly defined for the component associated with
the defect/feature

Subscribers, sizing record owner,
defect/feature owner

SizeReject v Sizing record owner

v Explicitly defined for the component associated with
the sizing record

Subscribers

TestAbstain v Test record owner

v Explicitly defined for the component associated with
the test record’s release

Subscribers

Appendix I. Authority and notification for TeamConnection actions 259

For this action These users have authority These users are notified

TestAccept v Test record owner

v Explicitly defined for the component associated with
the test record’s release

Subscribers

TestAssign v Test record owner

v Explicitly defined for the component associated with
the test record’s release

New test record owner, subscribers

TestReady v Test record owner

v Explicitly defined for the component associated with
the test record’s release

Subscribers

TestReject v Test record owner

v Explicitly defined for the component associated with
the test record’s release

Subscribers

UserCreate Superuser New user

UserDelete Superuser Not applicable

UserModify v Owner of the user object can modify all
characteristics except the superuser privilege

v Must be a superuser to grant the superuser
privilege

Not applicable

UserRecreate Superuser Not applicable

UserView Not applicable; this is a base authority that can be
performed by all users in the family

Not applicable

VerifyAbstain v Verification record owner

v Explicitly defined for the component associated with
the verification record’s defect or feature

Subscribers

VerifyAccept v Verification record owner

v Explicitly defined for the component associated with
the verification record’s defect or feature

Subscribers

VerifyAssign v Verification record owner

v Explicitly defined for the component associated with
the verification record’s defect or feature

New verification record owner,
subscribers

VerifyReady Takes place automatically; no authority is required Verification record owners

VerifyReject v Verification record owner

v Explicitly defined for the component associated with
the verification record’s defect or feature

Subscribers

WorkAreaAssign v Work area owner

v Explicitly defined for the component associated with
the release

New work area owner, subscribers

WorkAreaCancel v Defect or feature owner

v Explicitly defined for the component associated with
the defect or feature

Subscribers, owners of approval
records for work area being
canceled

WorkAreaCheck v Work area owner

v Explicitly defined for the component associated with
the release

Not applicable

260 User’s Guide

For this action These users have authority These users are notified

WorkAreaCommit v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaComplet v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaCreate v Defect or feature owner

v Explicitly defined for the component associated with
the defect or feature

Work area owner, subscribers

WorkAreaFix v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaFreeze v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaIntegra v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaModify v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaReconcile v Work area owner

v Explicitly defined for the component associated with
the release

Work area owner, subscribers

WorkAreaRefresh v Work area owner

v Explicitly defined for the component associated with
the release

Work area owner, subscribers

WorkAreaTest v Work area owner

v Explicitly defined for the component associated with
the release

Subscribers

WorkAreaUndo v Work area owner

v Explicitly defined for the component associated with
the release

WorkAreaView v Work area owner

v Explicitly defined for the component associated with
the release

Not applicable

Appendix I. Authority and notification for TeamConnection actions 261

262 User’s Guide

Appendix J. Sample REXX execs, build scripts, and parsers

This appendix is composed of the IBM-supplied REXX execs, build scripts, and
parsers. Your family administrator can modify these samples to fit the needs of your
organization.

The samples in this appendix may not be available on all platforms. Refer to the
readme file for a complete list of samples available with TeamConnection. All
samples are provided as-is and any use of or modifications to the samples are the
sole responsibility of the customer.

Sample REXX execs

This section lists the sample REXX execs that are shipped with TeamConnection.
The client.smp file contains this same listing. It is located in the bin subdirectory of
the directory where the TeamConnection client is installed.

Users running these execs must have user and host access to your
TeamConnectionfamily.

Most of the execs require input parameters, and some require that the TC_FAMILY or
TC_RELEASE environment variables be set. If the user who is running the script is
acting for another user, the TC_BECOME environment variable must also be set. These
variables can be set from a command line prompt.

The following convention is used to show the required, optional, and selective input
parameters:

v Brackets ([]) indicate that the input or variable is optional.

v Braces ({}) indicate that one of the inputs is required.

v An input or variable that is not surrounded by brackets or braces is required.

Script name Function Inputs Environment
variables

accComp Lists the explicit access of users in a
specified component.

componentName TC_FAMILY
[TC_BECOME]

compChld Lists the direct children of a specified
component. Also lists the description and
owner of each child component.

componentName TC_FAMILY
[TC_BECOME]

compOwnr Displays a list of component owners’
addresses in a specified family.

familyName [TC_BECOME]

compPrnt Lists the parent component of a specified
component.

componentName TC_FAMILY
[TC_BECOME]

compWalk Displays the children and grandchildren of a
specified component.

componentName TC_FAMILY
[TC_BECOME]

defClone Creates a new defect based on values
contained in a specified defect.

defectNumber TC_FAMILY
[TC_BECOME]

defDrvr Lists all defects for a specified driver. driverName TC_FAMILY
[TC_BECOME]

defFfea Creates a new defect based on values
contained in a specified feature.

featureNumber TC_FAMILY
[TC_BECOME]

defNew Displays the number of the most recent
defect that was entered in the system.

TC_FAMILY
[TC_BECOME]

defReopn Reopens a previously canceled or returned
defect.

defectNumber TC_FAMILY
[TC_BECOME]

© Copyright IBM Corp. 1992, 1999 263

Script name Function Inputs Environment
variables

defRept Generates a global defect report showing
work areas, test records, approval records,
and fix records.

TC_FAMILY
[TC_BECOME]

defState Lists the defect number of all defects that are
in a specified state.

stateName TC_FAMILY
[TC_BECOME]

defStats Displays total active defect statistics on a
defect owner area basis.

ownerArea TC_FAMILY
[TC_BECOME]

defWRef Displays the full details of defects that
contain the specified reference field value.

reference TC_FAMILY
[TC_BECOME]

dfDesc Displays the full remarks that were entered
when the specified defect or feature was
created.

{defectNumber |
featureNumber}

TC_FAMILY
[TC_BECOME]

feaClone Creates a new feature based on values
contained in a specified feature.

featureNumber TC_FAMILY
[TC_BECOME]

feaDrvr Lists all features contained in a specified
driver.

driverName TC_FAMILY
[TC_BECOME]

feaFdef Creates a new feature based on the values
contained in the specified defect.

defectNumber TC_FAMILY
[TC_BECOME]

feaNew Displays the number of the most recent
feature that was entered in the system.

TC_FAMILY
[TC_BECOME]

feaReopn Reopens a previously canceled or returned
feature.

featureNumber TC_FAMILY
[TC_BECOME]

feaRept Generates a global feature report showing
work areas, test records, size records, and fix
records.

TC_FAMILY
[TC_BECOME]

feaState Lists the feature number of all features that
are in a specified state.

stateName TC_FAMILY
[TC_BECOME]

feaStats Displays total active feature statistics on a
feature owner area basis.

ownerArea TC_FAMILY
[TC_BECOME]

drvByDF Lists the name of the drivers that contain a
specified defect or feature.

{defectNumber |
featureNumber}

TC_FAMILY
[TC_BECOME]

drvrMem Lists the defect and feature members of a
specified driver for a specified release.

driverName
[releaseName]

TC_FAMILY
[TC_RELEASE]
[TC_BECOME]

mailTo Sends a message to the addresses read
through stdin.

messagefile subject

ownerChg Re-assigns all current work and objects
owned by userLogin1 to userLogin2.

userLogin1 userLogin2 TC_FAMILY
[TC_BECOME]

prtChckin Checks parts into the TeamConnection family.
When common parts are encountered, the
script requests the releases for which the
part should remain common.

partPathName
[releaseName]

TC_FAMILY
[TC_RELEASE]
[TC_BECOME]

prtChgDf Lists all the parts that were changed for a
specified defect or feature.

{defectNumber |
featureNumber}

TC_FAMILY
[TC_BECOME]

prtChgDr Lists the parts that were changed for a
specified driver.

driverName TC_FAMILY
[TC_BECOME]

prtComGt Extracts all the parts associated with a
specific component. The parts are placed in
a directory that represents the release name
to which the version of the part is associated.
This directory is created relative to the
relativePathName parameter.

componentName
relativePathName
[committed]

TC_FAMILY
[TC_BECOME]

prtComp Lists all parts related to a specified
component.

componentName TC_FAMILY
[TC_BECOME]

264 User’s Guide

Script name Function Inputs Environment
variables

prtHist Lists all defect and feature numbers and
abstracts that caused a change to a specified
part in a specified release.

partName
[releaseName]

TC_FAMILY
[TC_RELEASE]
[TC_BECOME]

prtInfo Displays information for a specified part. partName TC_FAMILY
[TC_RELEASE]
[TC_BECOME]

prtLock Lists all parts that a specified user has
locked.

userLogin TC_FAMILY
[TC_BECOME]

prtLokBy Lists who has a specified part checked out. partName TC_FAMILY
TC_RELEASE
[TC_BECOME]

PrtPath Finds and lists all parts that match a partial
part path name.

partPathName TC_FAMILY
[TC_BECOME]

prtRel Lists all parts related to a specified release. releaseName TC_FAMILY
[TC_BECOME]

prtWaGt Extracts all the parts associated with a
specific work area and places them in the
path specified by the relativePathName
parameter.

releaseName
workareaName
relativePathName

TC_FAMILY
[TC_BECOME]

rByArea Generates a manager’s report based on the
specified areas or departments of interest.

areaName ... TC_FAMILY
[TC_BECOME]

relOwner Displays a list of addresses of all release
owners in a specified TeamConnectionfamily.

familyName [TC_BECOME]

showConf Lists the valid values pertaining to a specified
configurable type.

configType TC_FAMILY
[TC_BECOME]

userAuth Lists the users who have the authority to give
other users access to a specified component.

componentName TC_FAMILY
[TC_BECOME]

userInfo Finds user information based on part of the
user’s name. A fuzzy search is performed.

userName TC_FAMILY
[TC_BECOME]

usersAll Lists the addresses of all users in a specified
TeamConnection family.

familyName [TC_BECOME]

usrAcc Lists the explicit access of a specified user
for the specified component and its
descendant components.

userLogin
componentName

TC_FAMILY
[TC_BECOME]

usrRept Generates a user’s report based on the
specified user login.

userLogin TC_FAMILY
[TC_BECOME]

verByPrt Lists the version numbers, release names,
and path names for the specified part.

partName
releaseName

TC_FAMILY
[TC_BECOME]

waComit Lists the work areas that are in the commit
state for a specified release.

releaseName TC_FAMILY
[TC_BECOME]

waFix Lists all the work areas that are in the fix
state for a given release.

releaseName TC_FAMILY
[TC_BECOME]

waInLvl Lists the work areas that are in the integrate
state and are associated with at least one
development driver for the specified release.

releaseName TC_FAMILY
[TC_BECOME]

waInt Lists the work areas that are in the integrate
state for a specified release.

releaseName TC_FAMILY
[TC_BECOME]

waPrdLv Lists the work areas that are included in a
production driver and are in the integrate
state for a specified release.

releaseName TC_FAMILY
[TC_BECOME]

waStat Generates a work area activity statistics
report on a user area basis.

userArea TC_FAMILY
[TC_BECOME]

waTest Lists the work areas that are in the test state
for a specified release.

releaseName TC_FAMILY
[TC_BECOME]

Appendix J. Sample REXX execs, build scripts, and parsers 265

Sample build scripts
fhbcob2.cmd

Calls the COBOL Visual Set for OS/2 compiler.

fhbcob2l.cmd
Calls the COBOL Visual Set for OS/2 compiler and link editor.

fhbocomp.cmd
Calls the VisualAge for C++ icc compiler.

fhbolib.cmd
Calls the OS/2 implib utility.

fhbolin2.cmd
Calls the VisualAge for C++ icc link editor.

fhbolink.cmd
Calls the link386 link editor.

fhborc.cmd
Calls the OS/2 resource compiler.

fhbplbld.cmd
Calls the OS/2 PL/1 compiler.

fhbpllnk.cmd
Calls the OS/2 PL/1 link editor.

edcc.jcl
Calls the C/370 JCL procedure.

fhbcobm.jcl
Calls the COBOL for MVS compiler.

fhbm370.jcl
Calls the C/370 compiler.

fhbmasm.jcl
Calls the MVS assembler.

fhbmc.jcl
Calls the C/370 compiler.

fhbmlink
Calls the MVS linkage editor.

fhbmpli.jcl
Calls the PL/1 MVS compiler.

fhbplked.jcl
Calls the C370 prelinker.

fhbtclnk
Calls the TeamConnection pseudo linker.

fhbwcomp.c
Calls the Microsoft Visual C++ compiler

fhbwlink.c
Calls the Microsoft linker

gather.cmd
Calls the Gather tool.

266 User’s Guide

Sample parsers

The following sample parser files are shipped with TeamConnection and are
installed on the server in the SAMPLES directory.

fhbcbprs.cmd
A parser for COBOL applications.

fhbcpp1.dll, fhbcpp2.dll, fhbcpp3.dll, fhbcbp.exe, fhbcbprs.cmd
An OS/2 parser for (REXX) COBOL applications.

fhbopars.cmd
A parser for C applications.

fhbcpp.c, func.c, fhbcpp.h, fhbcpp.exe (Intel),
A C parser for COBOL applications.

fhbwpars.c, fhbwpars.exe(Intel)
A parser for C applications

fhbplprs.cmd (Intel)
A parser for PL/1 applications.

mvsasmp.c, mvsasmp.h, mvsasmp.exe (Intel), mvsasmp (UNIX)
A parser for MVS assembly language applications.

Sample package files
gather.pkf

A package file for the Gather tool.

softdist.pkf
A package file for the Tivoli Software Distribution tool.

Appendix J. Sample REXX execs, build scripts, and parsers 267

268 User’s Guide

Appendix K. XML Support in TeamConnection

This section provides information on XML support provided by TeamConnection.
TeamConnection supports the following methods:

v get

v put

Details about each of these methods are discussed later in this section.

The following assumptions apply to using XML in TeamConnection:

v PUTs contain the entire set of objects in the views. TeamConnection will perform
a merge operation on the server and remove old objects. Old objects are those
that appear in the original view (on the server) but are not in the incoming XML
stream.

v There is currently no support for explicit locking of objects as a separate XML
request. Locking is allowed, however, during a GET (see the GET section below).

v Relationships/links between objects can be represented in different ways in XML
(ie. embedded objects vs. separate objects). While TeamConnection will handle
both cases in the incoming XML stream, it will only generate XML streams using
one of these formats. TeamConnection does not currently use embedded objects.

v The ’get’ and ’put’ functions can only be performed on versioned objects however
the ’query’ variant of the ’get’ function can be performed on either versioned or
unversioned objects.

Format of the incoming XML stream/request

The XML request coming to XML needs to have the following MIME header:
verb url HTTP/1.1
HOST: tc-hostname:tc-portnum
Authorization: Basic encoded-password
Content-Type: text/xml
Context-Length: xxx (only on PUTs)

incoming-xml-stream(only on PUTs)

Notice the ’Content-Type’ tag. The XML interface will only recognise ’text/xml’ type
of streams.

XML requests that support options expect the format of the URL to be as follows:

http://url?option1=value1&option2=value2...

TeamConnection ships with a sample C++ client program (called GETXML) that
generates the XML header/request. The source code for this program
(GETXML.CPP) is also included.

Get Method

The URL should be in the following form:

release/workarea/view/part-name?option=value-pairs

© Copyright IBM Corp. 1992, 1999 269

Depending on the type of ’get’ operation, all or part of the
release/workarea/view/part-name portion of the URL is required.

Default

If no ″action″ option is specified, the default GET method is invoked. Workarea,
view and part-name are optional and should be used to reduce the scope of the
requested data. For example, a request of ’r’ will return an XML stream containing
all of the parts in the release ’r’; ’r/w’ will return all of the objects in workarea ’w’ in
release ’r’; ’r/w/BuildView’ will return all of the objects contained in all of the
BuildView’s visible in ’r/w’; and ’r/w/BuildView/foo.exe’ will return just the objects in
the BuildView rooted off of the part called ’foo.exe’.

Part names containing slashes ’/’ should not be treated differently. So a URL
request of ’r/w/BuildView/src/main/main.exe’ will return all of the objects in the
BuildView for src/main/main.exe.

Supported options

lock
- type: Boolean
- action: Will lock the TCPart’s being retrieved if ’true’

force
- type: Boolean
- action: Will break common links (if needed during a lock) if ’true’

Sample:

getxml get http://dugnt:8765/r/w/buildviewonelevel/src/tcrs/deviant/exe

HTTP/1.0 207 Multi-Status
Server: VisualAge TeamConnection/3.0.2
Content-Type: text/xml
Content-Length: 1611

<?xml version=″1.0″ ?>
<A:multistatus xmlns:A=’DAV:’ xmlns:B=’http://dugnt:8765/’>
<A:response>
<B:TCPart xmlns:C=’http://dugnt:8765/TCPart’

id=″33bc5102-a572-31d2-b429-0925c4c71d72″>
<C:adName>src/tcrs/deviant/exe</C:adName>
<C:systemTimeStamp>1999/01/06 09:15:10</C:systemTimeStamp>
<C:lastUpdateTimeStamp>1999/01/06 09:15:10</C:lastUpdateTimeStamp>
<C:buildStatus>out_of_date</C:buildStatus>
<C:type>none</C:type>
<C:parser/>
<C:lockedBy/>
<C:generatedBy href=″#35861484-a572-31d2-b429-0925c4c71d72″/>
</B:TCPart>
<B:FHBGeneratesInfo xmlns:C=’http://dugnt:8765/FHBGeneratesInfo’

id=″35861484-a572-31d2-b429-0925c4c71d72″>
<C:controller href=″#35861481-a572-31d2-b429-0925c4c71d72″/>
<C:PartTimeStamp>1999/01/06 09:15:36</C:PartTimeStamp>
<C:pBE href=″#35861481-a572-31d2-b429-0925c4c71d72″/>
</B:FHBGeneratesInfo>
<B:FHBuildEvent xmlns:C=’http://dugnt:8765/FHBuildEvent’

270 User’s Guide

id=″35861481-a572-31d2-b429-0925c4c71d72″>
<C:adName>1340.0</C:adName>
<C:systemTimeStamp>1999/01/06 09:15:09</C:systemTimeStamp>
<C:beTS/>
<C:builderRC>0</C:builderRC>
<C:outputFileParms/>
<C:builder>noop</C:builder>
<C:buildParms/>
<C:translates afterHref=″0″>459df418-a572-31d2-b429-0925c4c71d72</C:translates>
</B:FHBuildEvent>
<B:FHBTransformedByInfo xmlns:C=’http://dugnt:8765/FHBTransformedByInfo’
id=″459df418-a572-31d2-b429-0925c4c71d72″>
<C:controller href=″#35861481-a572-31d2-b429-0925c4c71d72″/>
<C:PartTimeStamp/>
<C:includeFlag>0</C:includeFlag>
</B:FHBTransformedByInfo>
</A:response>
</A:multistatus>

Test Server

If the URL contains the ″action=testServer″ option, then the rest of the URL is
ignored and just information about the server is returned:

getxml get http://dugnt:8765/?action=testServer

HTTP/1.0 200 Ok
Server: VisualAge TeamConnection/3.0.2
Content-Type: text/xml
Content-Length: 240

<?xml version=″1.0″ ?>
<B:testServer xmlns:A=’DAV:’ xmlns:B=’http://dugnt:8765/’>
<B:family>vgtstest</B:family>
<B:user>dug</B:user>
<B:version>3.0.2</B:version>
<B:os>NT</B:os>
<B:language>English</B:language>
</B:testServer>

List

If the URL contains the ″action=list″ option, then only only key pieces of information
about the root objects are returned (overwise it’s just like a normal ’get’):

getxml get http://dugnt:8765/r/w/buildview/%25?action=list

HTTP/1.0 207 Multi-Status
Server: VisualAge TeamConnection/3.0.2
Content-Type: text/xml
Content-Length: 592

<?xml version=″1.0″ ?>
<A:multistatus xmlns:A=’DAV:’ xmlns:B=’http://dugnt:8765/’>
<A:response>

Appendix K. XML Support in TeamConnection 271

<B:TCPart xmlns:C=’http://dugnt:8765/TCPart’
id=″33bc5102-a572-31d2-b429-0925c4c71d72″>

<C:adName>src/tcrs/deviant/exe</C:adName>
</B:TCPart>
<B:FHBuildEvent xmlns:C=’http://dugnt:8765/FHBuildEvent’

id=″35861481-a572-31d2-b429-0925c4c71d72″>
<C:adName>1340.0</C:adName>
</B:FHBuildEvent>
<B:TCPart xmlns:C=’http://dugnt:8765/TCPart’

id=″459df402-a572-31d2-b429-0925c4c71d72″>
<C:adName>src/tcrs/deviant/c</C:adName>
</B:TCPart>
</A:response>
</A:multistatus>

Query

If the URL contains the ″sql=sql-query″ option, then the rest of the URL is ignored
and the sql-query text is passed on to DB2:

getxml query http://dugnt:8765/?sql=select+name,buildstatus+from+buildviewonelevel

HTTP/1.0 200 Ok Server: VisualAge TeamConnection/3.0.2
Content-Type: text/xml
Content-Length: 471

<?xml version=″1.0″ ?>
<resultSet xmlns:A=’DAV:’ xmlns:B=’http://dugnt:8765/’ rows=″3″ columns=″2″

query=″select name,buildstatus from buildviewonelevel″>
<B:row>
<B:NAME>src/tcrs/deviant/exe</B:NAME>
<B:BUILDSTATUS>out_of_date</B:BUILDSTATUS>
</B:row>
<B:row>
<B:NAME>1340.0</B:NAME>
<B:BUILDSTATUS>success</B:BUILDSTATUS>
</B:row>
<B:row>
<B:NAME>src/tcrs/deviant/c</B:NAME>
<B:BUILDSTATUS>success</B:BUILDSTATUS>
</B:row>
</resultSet>

PUT Method

The URL should be in the following form:

release/workarea/view/part-name?option=value-pairs

The incoming XML stream must have an initial ″multistore″ element that contains all
of the objects that are to be stored. The root object must the part-name specified in
the URL. The ’view’ specified in the URL is used to determine which ’old’ objects to
remove from TeamConnection.

Creating Objects:

272 User’s Guide

When a new subclass of TCPart is created, the following 2 attributes must be
specified:

v adName (name of part)

v component (a default component my be specified on the URL - see below)

When a new non-TCPart is created, a controller attribute referencing the object’s
controller must be specified:

<F:controller href=″controller-guid″/>

Deleting Objects

To delete subclasses of TCPart, you must use the following DELETE XML element:

<E:DELETE id=’object-guid’>

These delete elements should appear first in the XML stream (see the example
below).

Ordered Attributes/Relationships

If an attribute is ordered then it must have an ’afterHref’ attribute in the XML
element. For example:

<C:translates afterHref=″123456″>4321</C:translates> Indicates that the attribute
’translates’ points to an object with GUID ’4321’ and in the set of pointers that
makes up the ’translates’ attribute, this pointer comes after the one that points to
the object with GUID ’123456’. The first object in the collection should have an
afterHref of ’0’.

If a link object is used to connect two objects then the ordering information can go
on the link object rather than the on the attributes in the source or target objects. In
this case, the ’afterHref’ attribute is expected on the XML element of link object. For
example:

<B:ADLinkTCPartDependsOnTCPart xmlns:
C=’http://dugnt:8765/ADLinkTCPartDependsOnTCPart’

id=″111″ afterHref=″555″>
<C:controller href=″#222″/>
<C:adTarget href=″#333″/>
<C:adSource href=″#222″/>
</B:ADLinkTCPartDependsOnTCPart>

indicates that in the collection of link objects in either the source or target attributes
(depending on which one is ordered) this new ADLinkTCPartDependsOnTCPart
comes after the ADLinkTCPartDependsOnTCPart with a GUID of ’555’. Remember
that only one side maybe ordered, not both.

Supported options

createComponents
- type: Boolean
- action: Will create components as needed if ’true’

force
- type: Boolean

Appendix K. XML Support in TeamConnection 273

- action: Will break common links on checkin (as needed) if ’true’

component
- type: String
- action: Specifies the default component to use if it’s not specified

as an attribute on the object.

Example:

getxml put http://dugnt:8765/r/w/TCPart/newpart inputFile

where ’inputFile’ contains:

<?xml version=″1.0″ ?>
<A:multistore xmlns:A=’DAV:’ xmlns:B=’http://dugnt:8765/’

xmlns:C=’http://dugnt:8765/TCPart’>
<B:DELETE id=’360262f3-5e88-0012-0000-000000000000″>
<B:TCPart id=″360262f1-5e47-000e-0000-000000000000″>
<C:adName>newpart</C:adName>
<C:component>c</C:component>
<C:lastUpdateTimeStamp>1998/09/18 09:41:06</C:lastUpdateTimeStamp>
<C:type>text</C:type>
<C:parser/>
</B:TCPart>
</A:multistore>

274 User’s Guide

Service and Support

VisualAge TeamConnection Services!

VisualAge TeamConnection services offerings will provide customers with the tools
to quickly establish a more productive and efficient development environment.
These services offerings focus on the LAN library component of VisualAge
TeamConnection and on the Repository function of VisualAge TeamConnection.

If you are interested in the VisualAge TeamConnection Services, select the Support
item at:
http://www.software.ibm.com/software/ad/teamcon

VisualAge TeamConnection Support!

If you have a question or a problem, please take a moment to review the Customer
Support section from any of the manuals for the VisualAge TeamConnection
product. Your options for VisualAge TeamConnection support, as described in your
License Information, include the following information (subject to availability).

IBM Lotus Passport Advantage Program

For more information on the IBM Lotus Passport Advantage volume licensing
program that provides customers with a series of contract offerings under which
they can acquire licenses, software subscriptions, and support, go to:
http://www.lotus.com/passportadvantage

DB2 Service Maintenance and Technical Library

To download the latest service maintenance for DB2, use the DB2 Service and
Support on the World Wide Web at:
http://www.software.ibm.com/data/db2/db2tech

Note: Even though DB2 is bundled with VisualAge TeamConnection you should
contact VisualAge TeamConnection Support to report DB2 problems. The
licensing for VisualAge TeamConnection does not entitle you to contact DB2
Support directly. For a complete and up-to-date source of DB2 information,
use the DB2 Product and Service Technical Library, in English only, on the
World Wide Web at:
http://www.software.ibm.com/data/db2/library

For North American Customers

Electronic Forums

So you may electronically access VisualAge TeamConnection technical information,
exchange messages with other VisualAge TeamConnection users, and receive
information regarding the availability of FixPaks.

IBM TalkLink
Use the TEAMC CFORUM. In the United States, call 1-800-547-1283. For
TalkLink information available via the Internet, go to:

© Copyright IBM Corp. 1992, 1999 275

http://www.ibmlink.ibm.com/talklink

CompuServe
From any ! prompt, type GO SOFSOL, then select TeamConnection. Refer
to the enclosed CompuServe brochure for additional information, or call
1-800-848-8199. For CompuServe information available via the Internet,
refer to:
http://www.compuserve.com

Internet
Go to the IBM homepage, http://www.ibm.com. Use the search function
with keyword TeamConnection to go to the VisualAge TeamConnection
area. Access the TeamConnection directory in our ftp site. Use ftp and login
as anonymous to ftp.software.ibm.com. In the directory
ps/products/teamconnection you can find fixes and information related to
VisualAge TeamConnection.

Telephone Support

Direct customer support is provided by the Personal Systems Support Line and by
the AIX Support Line. These fee services enhance customers’ productivity by
providing voice and electronic access to the IBM support organization. They will
help answer questions pertaining to usage, ″how to,″ and suspected software
defects for eligible products.

The following are phone numbers for software support in the US:

v Personal Systems Support Line: 1–800–237–5511

v AIX Support Line: 1–800–CALL-AIX (1–800–225–5249)

In Canada, call 1–800–IBM-SERV (1–800–426–7378).

Note: In the US, 1-800-237-5511 is the Software Support phone number for all IBM
software (390, OS/400, AIX, Personal Systems, etc.). You may call this
number and take the option for OS/2 - DOS support, which then transfers
you to 1-800-992-4777 for the Personal Systems (workstation) products, or
you may call 1-800-992-4777 directly.

Obtaining product information packages:

v United States: 1-800-IBM-CALL (1-800-426-2255)

v Canada: 1-800-IBM-CALL (1-800-426-2255)

Ordering TeamConnection products:

v United States: 1-800-IBM-CALL (1-800-426-2255)

v Canada: 1-800-IBM-CALL (1-800-426-2255)

TeamConnection education:

v United States:1-800-IBM-TEACh (1-800-426-8322) Canada 1-800-IBM-TEACh
(1-800-426-8322)

While we may not be able to respond to or resolve all problems and questions, your
satisfaction with our products and support is important to us. If you cannot access
these forums, contact your IBM representative. There are several other support
offerings available after purchasing IBM VisualAge TeamConnection.

If you live within the U.S.A., call any of the following numbers:

v 1-800-237-5511 to learn about available service options

276 User’s Guide

|

v 1-800-IBM-CALL (1-800-426-2255) to order products or get general information

v 1-800-879-2755 to order publications.

Support for Customers Outside North America

For information on how to contact IBM outside of the United States, see Appendix A
of the IBM Software Support Handbook, which can be located by selecting the
Service Offering item at:
http://www.ibm.com/support:

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

Service and Support 277

278 User’s Guide

Bibliography

IBM VisualAge TeamConnection Enterprise Server library

The following is a list of the TeamConnection publications. For a list of other
publications about TeamConnection, including white papers, technical reports, a
product fact sheet, and the product announcement letter, refer to the IBM VisualAge
TeamConnection Enterprise Server Library home page. To access this home page,
select Library from the IBM VisualAge TeamConnection Enterprise Server home
page at URL http://www.software.ibm.com/ad/teamcon.

v License Information (GC34-4497):

Contains license, service, and warranty information.

v Installation Guide (GC34-4742):

Lists the hardware and software that are required before you can install and use
the IBM VisualAge TeamConnection Enterprise Server product, provides detailed
instructions for installing the TeamConnection server and client.

v Administrator’s Guide (SC34-4551):

Provides instructions for configuring the TeamConnection family server and
administering a TeamConnection family.

v Getting Started with the TeamConnection Clients (SC34-4552):

Tells first-time users how to install the TeamConnection clients on their
workstations, and familiarizes them with the command line and graphical user
interfaces.

v User’s Guide (SC34-4499):

A comprehensive guide for TeamConnection administrators and client users that
helps them install and use TeamConnection.

v Commands Reference (SC34-4501):

Describes the TeamConnection commands, their syntax, and the authority
required to issue each command. This book also provides examples of how to
use the various commands.

v Quick Commands Reference (GC34-4500):

Lists the TeamConnection commands along with their syntax.

v Staying on Track with TeamConnection Processes (83H9677):

Poster showing how objects flow through the states defined for each
TeamConnection process.

v The following publications can be ordered as a set (SBOF-8560):

Administrator’s Guide

Getting Started with the TeamConnection Clients

User’s Guide

Commands Reference

Quick Commands Reference

Staying on Track with TeamConnection Processes

© Copyright IBM Corp. 1992, 1999 279

TeamConnection technical reports

The following is a list of technical reports available for TeamConnection. Refer to
the IBM VisualAge TeamConnection Enterprise Server Library home page for the
most up-to-date list of technical reports. To access this home page, select Library
from the IBM VisualAge TeamConnection Enterprise Server home page at URL
http://www.software.ibm.com/ad/teamcon.

29.2147 SCLM Guide to TeamConnection Terminology
29.2196 Using REXX command files with TeamConnection MVS Build Scripts
29.2231 TeamConnection Interoperability with MVS and SCLM
29.2235 Using REXX command files with TeamConnection MVS Build Scripts for PL/I

programs
29.2253 Comparison between CMVC 2.3 and TeamConnection 2
29.2254 Migrating from CMVC 2.3 to TeamConnection 2
29.2267 TeamConnection frequently asked questions: how to do routine operating

system tasks

DB2

The following publications are part of the IBM DB2 Universal Database library of
documents for DB2 administration. DB2 publications are available in HTML format
from the DB2 Product and Service Technical Library at the following URL:
http://www.software.ibm.com/data/db2/library/

v Administration Getting Started (S10J-8154–00)

An introductory guide to basic administration tasks and the DB2 administration
tools.

v SQL Getting Started (S10J-8156–00)

Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)

A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)

A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)

A guide to identifying and solving problems with DB2 servers and clients and to
using the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)

Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)

Provides information about DB2 system commands and the command line
processor.

v Replication Guide (S10J-0999–00)

Describes how to plan, configure, administer, and operate IBM replication tools
available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)

Describes how to monitor DB2 database activity and analyze system
performance.

v Glossary

A comprehensive glossary of DB2 terms.

280 User’s Guide

Related publications
v Transmission Control Protocol/Internet Protocol (TCP/IP)

– TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)

– TCP/IP for MVS Planning and Customization (SC31-6085)

v MVS

– MVS/XA JCL User’s Guide (GC28-1351)

– MVS/XA JCL Reference (GC28-1352)

– MVS/ESA JCL User’s Guide (GC28-1830)

– MVS/ESA JCL Reference (GC28-1829)

v NLS and DBCS

– AIX 4, General Programming Concepts: Writing and Debugging Programs.
(SC23-2533-02). See chapter 16 ″National Language Support″ for an updated
contents of the AIX 3 material (see below).

– AIX 4, System Management Guide: Operating System and Devices
(SC23-2525-03). See chapter 10, ″National Language Support″ for system
tasks.

– AIX Version 3.2 for RISC System/6000, National Language Support
(GG24-3850).

– Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).

– National Language Design Guide Volume 1 (SE09-8001-02). This manual
contains very good information on how to enable an application for NLS.

– National Language Design Guide Volume 2 (SE09-8002-02). This manual
provides information on the IBM language codes (consult the ″Language
codes″ chapter).

Bibliography 281

282 User’s Guide

Glossary

This glossary includes terms and definitions from
the IBM Dictionary of Computing, 10th edition
(New York: McGraw-Hill, 1993). If you do not find
the term you are looking for, refer to this
document’s index or to the IBM Dictionary of
Computing.

This glossary uses the following cross-references:

Compare to
Indicates a term or terms that have a
similar but not identical meaning.

Contrast with
Indicates a term or terms that have an
opposed or substantially different
meaning.

See also
Refers to a term whose meaning bears a
relationship to the current term.

A
absolute path name. A directory or a part expressed
as a sequence of directories followed by a part name
beginning from the root directory.

access list. A set of objects that controls access to
data. Each object consists of a component, a user, and
the authority that the user is granted or is restricted
from in that component. See also authority, granted
authority, and restricted authority.

action. A task performed by the TeamConnection
server and requested by a TeamConnection client. A
TeamConnection action is the same as issuing one
TeamConnection command.

agent. See build agent.

alternate version ID. In collision records, the
database ID of the version of a driver, release, or work
area where the conflicting version of a part is visible.

approval record. A status record on which an
approver must give an opinion of the proposed part
changes required to resolve a defect or implement a
feature in a release.

approver. A user who has the authority to mark an
approval record with accept, reject, or abstain within a
specific release.

approver list. A list of user IDs attached to a release,
representing the users who must review part changes
that are required to resolve a defect or implement a
feature in that release.

attribute. Information contained in a field that is
accessible to the user. TeamConnectionenables family
administrators to customize defect, feature, user, and
part tables by adding new attributes.

authority. The right to access development objects
and perform TeamConnection commands. See also
access list, base authority, explicit authority, granted
authority, implicit authority, restricted authority, and
superuser privilege.

authority group. A group of TeamConnection actions
that a member of the authority group is authorized to
perform.

B
base authority. The set of actions granted to a user
when a user ID is created within a TeamConnection
family. See also authority. Contrast with implicit authority
and explicit authority.

base name. The name assigned to the part outside of
the TeamConnection server environment, excluding any
directory names. See also path name.

base part tree. The base set of parts associated with
a release, to which changes are applied over time. Each
committed driver or work area for a release updates the
base part tree for that release.

build. The process used to create applications within
TeamConnection.

build associate. A TeamConnection part that is not an
input to or an output from a build. An example of such a
part is a read.me file.

build cache. A directory that the build processor uses
to enhance performance.

build dependent. A TeamConnection part that is
needed for the compile operation to complete, but it will
not be passed directly to the compiler. An example of
this is an include file. See also dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking tools
such as compilers and linkers.

build event. An individual step in the build of an
application, such as the compiling of hello.c into
hello.obj.

build input. A TeamConnection part that will be used
as input to the object being built.

© Copyright IBM Corp. 1992, 1999 283

build output. A TeamConnection part that will be
generated output from a build, such as an .obj or .exe
file.

build pool. A group of build servers that resides in an
environment. The environment in which several build
servers operate. Typically, several servers are set up for
each environment that the enterprise develops
applications for.

build scope. A collection of build events that
implement a specific build request. See also build event.

build script. An executable or command file that
specifies the steps that should occur during a build
operation. This file can be a compiler, a linker, or the
name of a .cmd file you have written.

build server. A program that invokes the tools, such
as compilers and linkers, that construct an application.

build target. The name of the part at the top of the
build tree which is the final output of a build.
TeamConnection uses the build target to determine the
scope of the build. See also build tree.

build tree. A graphical representation of the
dependencies that the parts in an application have on
one another. If you change the relationship of one part
to another, the build tree changes accordingly.

C
change control process. The process of limiting and
auditing changes to parts through the mechanism of
checking parts in and out of a central, controlled,
storage location. Change control for individual releases
can be integrated with problem tracking by specifying a
process for the release that includes the tracking
subprocess.

check in. The return of a TeamConnection part to
version control.

check out. The retrieval of a version of a part under
TeamConnection control. In non-concurrent releases,
the check out operation does not allow a second user to
check out a part until the first user has checked it back
in.

child component. Any component in a
TeamConnection family, except the root component, that
is created in reference to an existing component. The
existing component is the parent component, and the
new component is the child component. A parent
component can have more than one child component,
and a child component can have more than one parent
component. See also component and parent
component.

child part. Any part in a build tree that has a parent
defined. A child part can be input, output, or dependent.
See also part and parent part.

client. A functional unit that receives shared services
from a server. Contrast with server.

collision record. A status record associated with a
work area or driver, a part, and one of the following:

v The work area or driver’s release

v Another work area

TeamConnection generates a collision record when a
user attempts to replace an older version of a part with
a modified version, another user has already modified
that part, and the first user’s modification is not based
on this latest version of the part.

command. A request to perform an operation or run a
program from the command line interface. In
TeamConnection, a command consists of the command
name, one action flag, and zero or more attribute flags.

command line. (1) An area on the Tasks window or in
the TeamConnection Commands window where a user
can type TeamConnection commands. (2) An area on
an operating system window where you can type
TeamConnection commands.

committed version. The revision of a part that is
visible from the release.

common part. A part that is shared by two or more
releases, and the same version of the part is the current
version for those releases.

comparison operator. An operator used in
comparison expressions. Comparison operators used in
TeamConnection are > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to), =
(equal to), and <> (different from).

component. A TeamConnection object that organizes
project data into structured groups, and controls
configuration management properties. Component
owners can control access to data and notification of
TeamConnection actions. Components exist in a
parent-child hierarchy, with descendant components
inheriting access and notification information from
ancestor components. See also access list and
notification list.

concurrent development. Several users can work on
the same part at the same time. TeamConnection
requires these users to reconcile their changes when
they commit or integrate their work areas and drivers
with the release. Contrast with serial development. See
also work area.

configurable field. A field that a family administrator
can add to certain TeamConnection objects to
customize the kind of information that TeamConnection
stores in relation to those objects.

284 User’s Guide

configuration management. The process of
identifying, managing, and controlling software modules
as they change over time.

connecting parts. The process of linking parts so that
they are included in a build.

context. The current work area or driver used for part
operations.

corequisite work areas. Two or more work areas
designated as corequisites by a user so that all work
areas in the corequisite group must be included as
members in the same driver, before that driver can be
committed. If the driver process is not used in the
release, then all corequisite work areas must be
integrated by the same command. See also prerequisite
work areas.

current version. The last visible modification of a part
in a driver, release, or work area.

current working directory. (1) The directory that is
the starting point for relative path names. (2) The
directory in which you are working.

D
daemon. A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

database. A collection of data that can be accessed
and operated upon by a data processing system for a
specific purpose.

default. A value that is used when an alternative is not
specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued each
time that TeamConnection window is opened. See also
search.

defect. A TeamConnection object used to formally
report a problem. The user who opens a defect is the
defect originator.

delete. If you delete a development object, such as a
part or a user ID, any reference to that object is
removed from TeamConnection. Certain objects can be
deleted only if certain criteria are met. Most objects that
are deleted can be re-created.

delta part tree. A directory structure representing only
the parts that were changed in a specified place.

dependencies. In TeamConnection builds there are
two types of dependencies:

v automatic . These are build dependencies that a
parser identifies.

v manual . These are build dependencies that a user
explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development object,
such as, a part or a user ID, any reference to that
object is removed from TeamConnection. Certain
objects can be descendant only if certain criteria are
met. Most objects that are descendants can be
re-created.

disconnecting parts. The process of unlinking parts
so that they are not included in a build.

driver. A collection of work areas that represent a set
of changed parts within a release. Drivers are only
associated with releases whose processes include the
track and driver subprocesses.

driver member. A work area that is added to a driver.

E
end user. See user.

environment. (1) A user-defined testing domain for a
particular release. (2) A defect field, in which case it is
the environment where the problem occurred. (3) The
string that matches a build server with a build event.

environment list. A TeamConnection object used to
specify environments in which a release should be
tested. A list of environment-user ID pairs attached to a
release, representing the user responsible for testing
each environment. Only one tester can be identified for
an environment.

explicit authority. The ability to perform an action
against a TeamConnection object because you have
been granted the authority to perform that action.
Contrast with base authority and implicit authority.

extract. A TeamConnection action you can perform on
a builder, part, driver or release builder. An extraction
results in copying the specified builder, part, or parts
contained in the driver or release to a client workstation.

F
family. A logical organization of related data. A single
TeamConnection server can support multiple families.
The data in one family cannot be accessed from
another family.

family administrator. A user who is responsible for all
nonsystem-related tasks for one or more
TeamConnection families, such as planning, configuring,
and maintaining the TeamConnection environment and
managing user access to those families.

Glossary 285

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to formally
request and record information about a functional
addition or enhancement. The user who opens a feature
is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path name.
Any text or binary file used in a development project
can be created as a TeamConnection file. Examples
include source code, executable programs,
documentation, and test cases.

file allocation table (FAT). The DOS-, OS/2-,
Windows 95-, and Windows NT-compatible file system
that manages input, output, and storage of files on your
system. File names can be up to 8 characters long,
followed by a file extension that can be up to 3
characters.

fix record. A status record that is associated with a
work area and that is used to monitor the phases of
change within each component that is affected by a
defect or feature for a specific release.

freeze. The freeze action saves changed parts to the
work area. Thus, TeamConnectiontakes a snapshot of
the work area, including all of the current versions of
parts visible from that work area, and saves this image
of the system. The user can always come back to this
stage of development in the work area. Note, however,
that a freeze action does not make the changes visible
to the other people working in the release.

Compare with refresh.

full part tree. A directory structure representing a
complete set of active parts associated with the release.

G
Gather. A tool to organize files for distribution into a
specified directory structure. This tool can be used as a
prelude to further distribution, such as using CD-ROM
or through electronic means like NetView DM/2. It can
also be used by itself for distributing file copies to
network-attached file systems.

GID. A number which uniquely identifies a file’s group
to a UNIX system.

granted authority. If an authority is granted on an
access list, then it applies for all objects managed by
this component and any of its descendants for which
the authority is not restricted. See also access list,
authority, and inheritance. Contrast with restricted
authority.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world
scene, often as a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

GUI. Graphical user interface.

H
high-performance file system (HPFS). In the OS/2
operating system, an installable file system that uses
high-speed buffer storage, known as a cache, to provide
fast access to large disk volumes. The file system also
supports the existence of multiple, active file systems on
a single personal computer, with the capacity of multiple
and different storage devices. File names used with
HPFS can have as many as 254 characters.

host. A host node, host computer, or host system.

host list. A list associated with each TeamConnection
user ID that indicates the client machine that can
access the family server and act on behalf of the user.
The family server uses the list to authenticate the
identity of a client machine when the family server
receives a command. Each entry consists of a login, a
host name, and a TeamConnection user ID.

host name. The identifier associated with the host
computer.

HPFS. See high-performance file system.

I
implicit authority. The ability to perform an action on
a TeamConnection object without being granted explicit
authority. This authority is automatically granted through
inheritance or object ownership. Contrast with base
authority and explicit authority.

import. To bring in data. In TeamConnection, to bring
selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration
management properties from parent to child component.
The configuration management properties that are
inherited are access and notification. Inheritance within
each TeamConnection family or component hierarchy is
cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control to track
all reported defects, all proposed features, and all
subsequent changes to parts. See also change control.

interest group. The list of actions that trigger
notification to the user IDs associated with those actions
listed in the notification list.

286 User’s Guide

J
job queue. A queue of build scopes. One job queue
exists for each TeamConnection family.

L
local version ID. In collision records, the database ID
of the version of the current work area.

lock. An action that prevents editing access to a part
stored in the TeamConnectiondevelopment environment
so that only one user can change a part at a time.

login. The name that identifies a user on a multi-user
system, such as AIX or HP-UX, Solaris, or Windows NT.
In OS/2 and Windows 95, the login value is obtained
from the TC_USER environment variable.

M
map. The process of reassigning the meaning of an
object.

metadata. In databases, data that describe data
objects.

N
name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The modification
or conversion of a United States English product to
conform to the requirements of another language or
country. This can include the enabling or retrofitting of a
product and the translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File
System is a program that enables you to share files with
other computers in networks over a variety of machine
types and operating systems.

notification list. An object that enables component
owners to configure notification. A list attached to a
component that pairs a list of user IDs and a list of
interest groups. It designates the users and the
corresponding notification interest that they are being
granted for all objects managed by this component or
any of its descendants.

notification server. A server that sends notification
messages to the client.

NTFS. NT file system.

NVBridge. A tool for automatic electronic distribution
of TeamConnection software deliverables within a
NetView DM/2 network.

O
operator. A symbol that represents an operation to be
done. See also comparison operators.

originator. The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection family,
either because the user created the object or was
assigned ownership of the object.

P
parent component. All components in each
TeamConnection family, except the root component, are
created in reference to an existing component. The
existing component is the parent component. See also
child component and component.

parent part. Any part in a build tree that has a child
defined. See also part and child part.

parser. A tool that can read a source file and report
back a list of dependencies of that source file. It frees a
developer from knowing the dependencies one part has
on other parts to ensure a complete build is performed.

part. A collection of data that is stored by the family
server and retrieved by a path name. They include text
objects, binary objects, and modeled objects. These
parts can be stored by the user or the tool, or they can
be generated from other parts, such as when a linker
generates an executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a base
name. It must be unique within each release. See also
base name.

pool. See build pool.

pop-up menu. A menu that, when requested, appears
next to the object it is associated with.

prerequisite work areas. If a part is changed to
resolve more than one defect or feature, the work area
referenced by the first change is a prerequisite of the
work area referenced by later changes. A work area is a
prerequisite to another work area if:

v Part changes are checked in, but not committed, for
the first work area.

v One or more of the same parts are checked out,
changed, and checked in again for the second work
area.

Glossary 287

problem tracking. The process of tracking all reported
defects through to resolution and all proposed features
through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family administrator,
that controls the general movement of TeamConnection
objects (defects, features, work areas, and drivers) from
state to state within a component or release. See also
subprocess and state.

Q
query. A request for information from a database, for
example, a search for all defects that are in the open
state. See also default query and search.

R
raw format. Information retrieved on the report
command that has the vertical bar delimiter separating
field information, and each line of output corresponds to
one database record.

refresh. This TeamConnection action updates a work
area with any changes from the release, and it also
freezes the work area, if it is not already frozen.

relative path name. The name of a directory or a part
expressed as a sequence of directories followed by a
part name, beginning from the current directory.

release. A TeamConnection object defined by a user
that contains all the parts that must be built, tested, and
distributed as a single entity.

restricted authority. The limitation on a user’s ability
to perform certain actions at a specific component.
Authority can be restricted by the superuser, the
component owner, or a user with AccessRestrict
authority. See also authority.

root component. The initial component that is created
when a TeamConnection family is configured. All
components in a TeamConnection family are
descendants of the root component. Only the root
component has no parent component. See also
component, child component, and parent component.

S
search. To scan one or more data elements of a set in
a database to find elements that have certain
properties.

serial development. While a user has parts checked
out from a work area, no one else on the team can
check out the part. The user develops new material
without interacting with other developers on the project.
TeamConnection provides the opportunity to hold the
part until the user is sure that it integrates with the rest

of the application. Thus, the lock is not released until
the work area as a whole is committed. Contrast with
concurrent development. See also work area.

server. A workstation that performs a service for
another workstation.

shadow. A collection of parts in a filesystem that
reflects the contents of a TeamConnection workarea,
driver, or release.

shared part. A part that is contained in two or more
releases.

shell script. A series of commands combined in a file
that carry out a function when the file is run.

SID. The name of a version of a driver, release, or
work area.

sizing record. A status record created for each
component-release pair affected by a proposed defect
or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

stanza format. Data output generated by the Report
command in which each database record is a stanza.
Each stanza line consists of a field and its
corresponding values.

state. Work areas, drivers, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess. TeamConnection subprocesses govern
the state changes for TeamConnection objects. The
design, size, review (DSR) and verify subprocesses are
configured for component processes. The track,
approve, fix, driver, and test subprocesses are
configured for release processes. See also process and
state.

superuser. This privilege lets a user perform any
action available in the TeamConnectionfamily.

system administrator. A user who is responsible for
all system-related tasks involving the TeamConnection
server, such as installing, maintaining, and backing up
the TeamConnectionserver and the database it uses.

T
task list. The list of tasks displayed in the Tasks
window. The user can customize this list to issue
requests for information from the server. Tasks can be
added, modified, or deleted from the lists.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

288 User’s Guide

TeamConnection client. A workstation that connects
to the TeamConnection server by a TCP/IP connection
and that is running the TeamConnection client software.

TeamConnection part. A part that is stored by the
TeamConnection server and retrieved by a path name,
release, type, and work area. See also part, common
part, and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the resolution of
a defect or the implementation of a feature for a specific
driver of a release and recording the results on a test
record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a specific
driver of a release.

track subprocess. An attribute of a TeamConnection
release process that specifies that the change control
process for that release will be integrated with the
problem tracking process.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line will show
up in reports with the type of TCPart as the part type.
The TeamConnectionGUI and command line can only
check in, check out, and extract parts of the type
TCPart.

U
user exit. A user exit allows TeamConnection to call a
user-defined program during the processing of
TeamConnection transactions. User exits provide a
means by which users can specify additional actions
that should be performed before completing or
proceeding with a TeamConnection action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V
verification record. A status record that the originator
of a defect or a feature must mark before the defect or
feature can move to the closed state. Originators use
verification records to verify the resolution or
implementation of the defect or feature they opened.

version. (1) A specific view of a driver, release, or
work area. (2) A revision of a part.

version control. The storage of multiple versions of a
single part along with information about each version.

view. An alternative and temporary representation of
data from one or more tables.

W
work area. An object in TeamConnection that you
create and associate with a release. When the work
area is created, you see the most current view of the
release and all the parts that it contains. You can check
out the parts in the work area, make modifications, and
check them back into the work area. You can also test
the modifications without integrating them. Other users
are not aware of the changes that you make in the work
area until you integrate the work area to the release.
While you work on files in a work area, you do not see
subsequent part changes in the release until you
integrate or refresh your work area.

working part. The checked-out version of a
TeamConnection part.

Y
year 2000 ready. IBM VisualAge TeamConnection
Enterprise Server is Year 2000 ready. When used in
accordance with its associated documentation,
TeamConnection is capable of correctly processing,
providing and/or receiving date data within and between
the twentieth and twenty-first centuries, provided that all
products (for example, hardware, software and
firmware) used with the product properly exchange
accurate date data with it.

Glossary 289

290 User’s Guide

Index

Special Characters
/Ft(dir) builder parameter 144

A
Accept Defects window 48
Accept Test Records 85
Activate Fix Records 80
Add Driver Members 78
approval command

approving a fix 73
Approval Records window 73
approve state 41
authority

basic 24
build 160
for checking in parts 31
for checking out parts 30
for extracting parts 30

B
build action 6
build administrator 11
build agent

installing on separate machines 127
startup file, creating 133
stopping 134

build environment 137
build event

criteria used to determine success 137
defining multiple outputs from one event 176
definition of 120
timeout setting 138
with VisualAge C ++ templates 144

build function
authority 160
building a driver 82
canceling a build 175
collector part 176
concepts of 119
creating an MVS build server 127
definition of 10
diagram showing physical structure of 119
features of 119
installing 127
installing an MVS build server 127
monitoring build progress

using Build Progress window 174
using part -viewmsg command 173

object model 122
startup files, creating 133
testing part updates 74

build mode 172
Build Parts window 54
build pool

specifying when starting build 172

build scripts
at work 173
debug variable 140
definition of 120
for MVS

compile example 153
definition of 145
file name conversions 149
link example 156
steps for working with 135, 145
supported JCL syntax 151
writing 148

for OS/2 138
modifying contents of 142
samples shipped 266
testing 141
timeout of 138
writing 140
writing an executable file for 140

build server
creating for MVS 127
installing 127
installing on separate machines 127
starting MVS 131
startup file, creating 133
stopping 134
timeout setting 138

build target 172
build tree

creating 167
display of 171
example of 123
multiple outputs from single event 176
setting up for packaging

for the gather tool 182
setting up for packaging 181

versions of 123
working with 123

builder
command

connecting builder to its parts 143
creating a builder 136, 141
extracting a builder 142
modifying builder contents 142

connecting to parts 142, 162
creating a null builder 137, 176
definition 120
for MVS

creating 145
environment supported 147
naming 146
passing parameters to a build script 150
versions of 146

for OS/2
creating 135
environment supported 137
naming 136
passing parameters to a build script 138

© Copyright IBM Corp. 1992, 1999 291

builder (continued)
versions of 143

removing from a part 143
building an application

an example
build scripts at work 173
creating a build tree 167
creating builders and parsers 167
extracting resulting executable 173
list of tasks 165
starting a build on the client 171
starting servers and agents 166

authority 160
building all parts ignoring times 174
canceling a build 175
monitoring progress of build 173
preparing your parts 28, 124
report of which parts will be built 175
running in spite of errors 174
testing part updates 54
with VisualAge C ++ and templates 144

buildView action 25

C
canceled state 39
change control 3
check-in action 6
Check In Parts window 53
check-out action 6
checking in parts

authority needed to 31
example of 53
explanation of 31

checking out parts
an example of 50
authority needed to 30
explanation of 30

Checkout Parts window 50
client

definition 4
starting 16
stopping 16

closed state 39
collector part

example of 176
using a null builder 137

collision command
reconciling differences 67

collision record
example of 31
reconciling using command line 66
reconciling using GUI 66
when creating driver members 79

command file
fhbopars.cmd sample shipped 161
specifying 160
writing 161

command line interface
using 19
viewing syntax online 19

commands
becoming familiar with 19

commands (continued)
fhomigmk 19
for client

teamc.log file 19
viewing syntax online 19

tcmerge 67
teamcgui 16

Commit Drivers 84
commit state

of drivers 43
of work areas 42

committing
a driver 83
versus integrating 86

common parts
between releases 30
between work areas 29
breaking link 29
definition of 29
locking 29

Complete Drivers 84
Complete Fix Records 77
complete state

moving work area to 85
of drivers 44
of work areas 42

components
definition of 6
displaying structure of 23
example of hierarchy 6
information stored about 7

Components window 23
concepts of

build function 119
TeamConnection 3

concurrent development
definition of 47
example of 31, 63
how to work in 29
reconciling differences in no-track process 65
reconciling differences in tracking process 79

configuration management 3
configuring

processes 86
connect function 28
create action 6
Create Builder 135
Create Parser 159
Create Parts window 167
Create Work Areas window 49

D
DEBUG 141, 142
defect command

accepting 48
closing 62
modifying ownership 71
verifying 62

defects
accepting 48, 71
approving the fix 72

292 User’s Guide

defects (continued)
closing 48
definition of 8
designing 70
reassigning ownership 70
reviewing 70
sizing 70
states of

canceled state 39
closed state 39
design state 39
open state 39
return state 39
review state 39
size state 39
verify state 39
working state 39

verifying 62
working with 35

delta file tree 43
dependencies on a build

defining through parsers 120
viewing through a build tree 123

dependent part 28
design, size, review process 70
design changes 35
design state 39
development mode 29
differences in parts

reconciling in no-track process 65
reconciling in tracking process 79

driver command
committing a driver 84
completing a driver 85
refreshing driver 82
restricting driver 83

driver member 78
driverMember command

adding driver members 79
drivers

building 82
committing changes into release 83
completing 84
definition of 8
preparing for formal test 84
refreshing 81
states of

commit state 43
complete state 44
integrate state 43
restrict state 43, 83
working state 43

versioning 33

E
edit action 6
Edit Task List window 51
editing parts 31
environment variables 203

setting 208

environment variables 150 (continued)
setting before invoking MVS build script 208
setting before invoking OS/2 build script 138
setting before invoking Windows NT build script 138
setting for command line usage 19
setting for GUI usage 17

examples of
build components on separate machines 127
build script for an MVS compile 153
build script for an MVS link 156
build tree 123
building an application 165
client/server network 4
component hierarchy 6
concurrent development 63
display of a build tree 171
executable file for a build script 140
following a no-track process 47
following a tracking process 69
listing work areas in a release 89
retrieving past part versions 86
rules file 212
serial development 47
showing part/release/component relationship 7
starting make import 210
teamcpak command for Gather 187
teamcpak command for NVBridge 194
writing a build script 140

expand keywords 17
extract action 6
Extract Parts window 56
extracting parts

an example of 55
authority needed 30
previous versions of 88
resulting build executable 173
versus checking out 30

F
family 5
family administrator responsibilities 11
features

definition of 8
states of

canceled state 39
closed state 39
design state 39
open state 39
return state 39
review state 39
size state 39
verify state 39
working state 39

working with 35
fhbopars.cmd, sample command file 161
files

teamc.log 19
filter windows for parts 25
finding objects 25

Index 293

fix command
accepting fix records 78
completing fix records 78
reactivate 80

fix records
accepting 77
completing 77
moving back to active state 80
reactivating 80
when created 72

fix state 41
Fix Work Areas 79
Freeze Work Areas window 59
freezing work areas

examples of 58, 75
explanation of 26

full part tree 44

G
Gather tool

explanation of 185
packaging file

example of syntax 188
keywords for 188
specifying 186, 194
syntax rules for 188
writing 188

teamcpak command 185
GUI

client
accepting a defect 48
accepting fix records 77
accepting test records 85
accessing online help 18
adding driver member 78
approving the fix 72
building a driver 82
building parts 54
checking in part 53
checking out a part 50
closing a defect 62
committing driver changes into release 83
completing a driver 84
connecting builder to its parts 142
connecting parser to parts 162
creating a work area 49
creating parsers 159
extracting parts 55
fast path 17
freezing a work area 58
integrating a work area, concurrent

development 64
integrating a work area, serial development 61
moving fix records back to active state 80
reactivating fix records 80
reassigning defect ownership 70
reconciling collisions 66
refreshing a driver 81
refreshing a work area, concurrent

development 63
refreshing a work area, serial development 60

GUI (continued)
client (continued)

removing builder connection from parts 48
removing parser connection from parts 163
restricting a driver 83
returning work area to fix state 79
searching for parts 51
Settings notebook 17
starting 16
stopping 16
Tasks window 16
using 15
verifying a defect 62

H
help

diagram push button 19
how do I 18
how to access 18

hierarchy
component example 6
displaying component structure 23

how do I help 18

I
importing makefile information 209
input part 28
installation

build components on separate machines 127
creating an MVS build server 127

integrate state
of drivers 43
of work areas 41

Integrate Work Areas window 61
integrating

commit versus integrate 86
interfaces

becoming familiar with 15
description of 5

K
keyword

DATA 188, 195
EXITPOST 191
EXITPRIOR 191
EXITREPLACE 191
for Gather utility 188
in text files 247
INSTALLS 194
MAIL 193
NVGLOBALS 196, 197, 198
package file 188
PACKAGEFORMAT 188, 196
RULE 189
SENDS 194
SOURCE 189
TARGET 190
TARGETROOT 188

294 User’s Guide

L
LANG 203

M
makefile

creating rules file 210
example of starting import 210
importing information 209

merging differences 67
Modify Defect Owner window 71
Modify Part Properties 142
MVS

build script
definition of 145
file name conversions 149
for a compile 153
for a link 156

builder 145
creating a build server 127
installing a build server 127
modifying RUNPGM JCL 131
starting build server 131
stopping build server 134
supported JCL syntax 151
syntax for builds 151

N
naming

builders 136
parts 27
work areas 26

network 4
NLSPATH 203
no-track process, scenario 47

O
online help

diagram push button 19
how to access 18

open state 39
output part 28

P
package file

for Gather tool
keywords for 188
specifying 186, 194
syntax rules for 188
writing 188

for Tivoli Software Distribution tool
example of syntax 195
keywords for 195
syntax rules for 195
writing 195

packaging
definition of 10
explanation of Gather tool 185

packaging (continued)
sample files shipped 10
setting up build tree

for the gather tool 182
tasks involved in 181, 193

parameters
passing to a build script 138
where specified

attributes of a builder 138
attributes of part in a build tree 139
parameters of part -build command 140

parser command
connecting parser to parts 162
creating a parser 160

parsers
command file

fhbopars.cmd, sample shipped 161
specifying 160
writing 161

creating 159
definition of 120
explanation of 159
removing from a part 163
samples shipped 267

part command
building a driver 83
building parts 55
canceling a build 175
checking in parts 53
checking out parts 50, 52
extracting build executable 173
extracting parts 56
listing parts that will be built 175
monitoring progress of build 173
removing builder connection 144
removing parser connection 163
starting a build 172
viewing all version parts in a work area 87

partFull action 25
parts

authority needed to check in 31
authority needed to check out and extract 30
checking in 31
checking in, an example 53
checking in versus integrating 31
checking out, an example 50
checking out versus extracting 30
common

between releases 29, 30
between work areas 29
breaking link 29
definition of 29

connecting builder 142
connecting parser 162
creating 27
definition of 6
dependent 28
editing parts 31
empty 27
extracting 30
extracting, an example 55

Index 295

parts (continued)
finding

using BuildView action 25
using Filter window 25
using PartFull action 25
using Parts action 25
using report command 25

input 28
linking 29
linking between releases 30
linking between work areas 29
locked 29
making changes visible to a release 83
making changes visible without driver

subprocess 86
naming 27
preparing for build 28
removing builder from 143
removing parser from 163
retrieving past versions 86, 88
searching for 25
searching for, an example 51
testing updates to 54, 74
versioning 34
viewing versions in a work area 87
where placed on workstation 31

parts action 25
Parts Filter window 51
PATH 203
placeholder parts 27
PowerBuilder 243, 244
problem information, reporting 35
processes

definition of 9
example of using a configured process 86
relating to defects and features 35

R
reassigning ownership of a defect 70
Reconcile Collision Record window 66
reconciling differences 65, 79
Refresh Drivers 82
Refresh Work Areas window 60
refreshing

a driver 81
a work area 59

relative flag 31
release management 3
releases

committing driver changes to 83
common parts 30
definition of 7
example of relationship with other objects 7
linking parts between releases 30
parts common to more than one 29
using a configured process 86
versioning 32

report command
listing work areas in a release 89
searching for parts 52

report command (continued)
to find parts 89
used to view differences 66

Restrict Drivers 83
restrict state

of drivers 43, 83
of work areas 42

retrieving past versions of objects 32
return state 39
review state 39
REXX execs 263
rules file

creating 210
example of 212

RUNPGM JCL 131

S
sample files shipped

build script for NVBridge tool 193
build scripts 266
for package function 267
parsers 267
REXX execs 263

Save to Task List push button 51
scenarios

concurrent development 63
no-track process

accepting a defect 48
checking in a part 53
checking out a part 50
closing a defect 62
creating a work area 49
extracting a part 55
freezing the work area 58, 59
integrating a work area 61
reconciling differences 65
searching for a part 51
testing part updates 54
verifying a defect 62

tracking process
accepting a defect 71
accepting fix records 77
accepting test records 85
adding driver member to a driver 78
approving the fix 72
building a driver 82
checking out a part 73
committing driver changes into release 83
completing a driver 84
completing fix records 77
designing a defect 70
freezing the work area 75
reactivating fix record 80
reassigning defect ownership 70
refreshing a driver 81, 83
returning work area to fix state 79
reviewing a defect 70
sizing a defect 70
testing part updates 74

searching for objects 25
serial development

definition of 47

296 User’s Guide

serial development (continued)
example of 47
how to work in 29

servers
definition 4
family server

definition 4
Settings notebook

for client 17
list of variables 17

size state 39
sizing records 70
starting

a build on the client 171
GUI client 16
MVS build server 131

startup files 133
states of objects

defects 37
drivers 43
features 37
work areas 40

stopping
build agent 134
MVS build server 134
OS/2 build server 134

superuser 5
syntax

for MVS builds 151
how to view online 19
supported JCL syntax for build 151

system administrator, responsibilities 11

T
tasks

authority to perform 24
preparing to build an application 124
understanding the basics 23
when following a no-track process 47, 69

Tasks window 16
TC_BECOME 203, 263
TC_BUILDPOOL 203
TC_CASESENSE 203
TC_COMPONENT 19, 203, 211
TC_DBPATH 203
TC_FAMILY 19, 47, 138, 166, 203, 208, 209, 210,

219, 263
TC_INPUT 138, 141, 142, 219
TC_INPUTTYPE 138, 219
TC_LOCATION 138, 219
TC_MAKEIMPORTRULES 203, 209, 212
TC_MAKEIMPORTTOP 203, 210
TC_MAKEIMPORTVERBOSE 203, 210
TC_MIGRATERULES 203
TC_NOTIFY_DAEMON 203
TC_OUTPUT 141, 142
TC_OUTPUTTYPE 138, 219
TC_RELATIVE 74
TC_RELEASE 138, 203, 209, 210, 219, 263
TC_TOP 31, 203
TC_TRACE 203

TC_TRACEFILE 203
TC_TRACESIZE 203
TC_USER 203
TC_WORKAREA 138, 203, 209, 219
tclogin command 19
tcmerge 67
teamcgui command 16
TeamConnection

concepts of 3
diagram showing physical structure of 119
introducing 3
the basics of using 23

teamcpak command
for Gather tool

command line flags 186
examples of 187
starting 185
syntax of 185

for NVBridge tool
examples of 194

templates 144
test command

accepting test records 85
test records

accepting 85
when created 85

test state
moving work area to 85
of work areas 42

Tivoli Software Distribution tool
explanation of 193
packaging file

example of syntax 195
keywords for 195
syntax rules for 195
writing 195

problem determination 198
sample build script 193
teamcpak command 193
Tivoli Software Distribution output files 193
used as a builder for packaging 193

tracking
following a no-track process 47
following a tracking process 69

V
verification record 39
Verify Defects window 62
verify state 39
version control 3, 32
versions 32

builders 136
of build trees 123
of drivers 33
of parts 34
of releases 32
of work areas 33
retrieving past part versions 86
viewing all part versions in a work area 87

VisualAge C ++ 144

Index 297

W
window examples

Accept Defects 48
Accept Test Records 85
Activate Fix Records 80
Add Driver Members 78
Approval Records 73
Build Parts 54
BuildView 25
Check In Parts 53
Check Out Parts 50
Commit Drivers 84
Complete Drivers 84
Complete Fix Records 77
Components window 23
Create Builder 135
Create Parser 159
Create Parts 167
Create Work Areas 49
Edit Task List 51
Extract Parts 56
Fix Work Areas 79
Freeze Work Areas 59
Integrate Work Areas 61
Modify Defect Owner 71
Modify Part Properties 142
PartFull 25
Parts Filter 25, 51
Reconcile Collision Record 66
Refresh Drivers 82
Refresh Work Areas 60
Restrict Driver 83
Tasks 16
Verify Defects 62

work area
automatic creation of 26
canceling 27
creating 49
definition of 7
freezing 26
freezing, an example 58, 75
integrating, concurrent development 64
integrating, serial development 61
linking parts between work areas 29
moving to complete state 85
moving to test state 85
naming 26
reactivating to fix state 80
refreshing, concurrent development 63
refreshing, serial development 59
returning to fix state 79
reusing 27
states of

approve state 41
commit state 42
complete state 42
fix state 41
integrate state 41
restrict state 42
test state 42

things you can do with 8

work area (continued)
using 26
versioning 33
viewing all version parts 87
when parts become visible to others 26
when to create one 26

workarea command
creating 49
freezing work areas 59
integrating when driver subprocess is not

enabled 86
integrating work areas, concurrent development 65
integrating work areas, serial development 62
refreshing work areas, concurrent development 64
refreshing work areas, serial development 60
return work area to fix state 80

working state
of defects and features 39
of drivers 43

298 User’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM VisualAge TeamConnection Enterprise Server
User’s Guide
Version 3.0

Publication No. SC34-4499-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4499-04

SC34-4499-04

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Part Number: CT66GNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4499-04

CT
66

GN
A

