
DB2 Performance Samples:
Ten Tools for Faster Systems

Steve Rees

IBM Toronto Laboratory

Session C02

Monday, October 2, 2006 • 1:30 p.m. – 2:30 p.m.

Platform: Unix, Linux and Windows

2

Agenda

• Motivation, goals & framework

• The tools

• Configuration analysis

• Snapshot analysis

• Plan analysis

• Event monitor analysis

• Wrap up

3

Goals for the presentation

• Present & explain ten sample performance diagnostic
tools
• What each tool does, and why that‟s good

• Where the tool gets its data

• The principles & techniques involved in turning raw data into
crisply identified issues

• How to use the tool

• Sample output

• The fine print (prerequisites, assumptions, dependencies, side-effects, limitations, etc…)

• How it could be extended to be even better

• Some familiarity with DB2 performance diagnostics is
useful here

4

What do these tools do?
• Build on DB2‟s performance diagnostic interfaces

• Encapsulate techniques to extract, process, analyze &
present performance data

Capture best practices from the lab & the field

Easy to use

Portable

Repeatable

Extendible

• Simplify the process of identifying problems

• Source for all tools are available at IDUG Insider
http://www.idug.org/user/userlogin.asp

5

A few caveats
• These are unsupported, as-is samples

…to show you what monitoring data DB2 can produce
…to show you how this data can be a great benefit to

your system
…to show you how to use DB2 monitoring interfaces
…to show you how to use various DB2 technologies

• You are welcome to use these, to study them, to modify
them, etc. (subject to the usual legal terms in license.txt)

• Comprehensive, robust, fully-supported, integrated
performance monitoring tools are available from both IBM
and from 3rd parties. These work extremely well with DB2,
and implement many of the features shown in these
samples.

6

Agenda

• Motivation, goals & framework

• The tools

• Configuration analysis

• Snapshot analysis

• Plan analysis

• Event monitor analysis

• Wrap up

7

Purpose of db2perf_sanity:

• Sanity checks configuration parameters for basic

causes of performance problems

• Warnings issued if
1. Transaction log buffer < 128 pages

2. Transaction log located under the db directory

3. Too few page cleaners and prefetchers defined

4. BUFFPAGE defaulted and all bufferpools are not explicitly

sized

5. Mincommit > 1

6. Num_poolagents < current number of connections

Implementation:

C program using CLI & DB2 APIs

#1: db2perf_sanity

8

How it works:
• Configuration data gathered from APIs, table

functions and catalogs

For each parameter we‟re interested in

1. Extract parameter value from API / table function

2. Compare with recommend value

3. Print warning / success messages for each test

#1: db2perf_sanity

9

#1: db2perf_sanity

How to use it:
Preparation

1. Copy utility files & build script from $DB2PATH/samples/cli

to the current directory
cp $DB2PATH/samples/cli/utilcli.* .

cp $DB2PATH/samples/cli/bldapp .

• Build the program
bldapp db2perf_sanity

Use

1. Run the program
db2perf_sanity <dbname>

2. Update configuration based on results, if necessary

For Windows, use
• COPY

• %DB2PATH%

• bldapp.bat

etc.

We borrow error handling code,
etc., from the published samples

10

#1: db2perf_sanity

Sample output
Running sanity tests on configuration for database SAMPLE

LOGBUFSZ:

Warning:

The log buffer size (logbufsz) is currently 8.

Recommendation:

The generally recommended size is 128 or greater.

Log path:

Warning:

The transaction log is currently located in '/home/srees/srees/NODE0000/SQL00003/SQLOGDIR/',

which seems to be under the database path '/home/srees'.

Recommendation:

In general, the transaction log should be located on its own device(s) if possible.

NUM_IOCLEANERS:

Passed

NUM_IOSERVERS:

Passed

BUFFPAGE & NPAGES:

Warning:

BUFFPAGE seems to be left at the default value of 1000, but the following

bufferpools still have NPAGES set to either -1 or to 1000, so they still have the default

size

IBMDEFAULTBP

Recommendation:

Use ALTER BUFFERPOOL to set NPAGES to the desired value for all bufferpools.

MINCOMMIT:

Passed

NUM_POOLAGENTS:

Passed

Output from running the tool
against the sample database

11

#1: db2perf_sanity

Notes:
• Based on rules-of-thumb

• Not all messages applicable in all cases

• Path analysis is „quick & dirty‟ - may not be 100%

accurate

• Uses C because of need to get to configuration APIs

• Tool depends on DB2 v8.2 FP9 for table functions

12

Agenda

• Motivation, goals & framework

• The tools

• Configuration analysis

• Snapshot analysis

• Plan analysis

• Event monitor analysis

• Wrap up

13

Purpose of db2perf_utils:

• Provides a variety of „helper functions‟ that make life

a little easier for us

1. Translation from codes used in table functions to

human-readable form

• Statement Operations

• Statement types

• Lock types

2. „Quiet‟ SQL drop function :-)

• Suppresses „not found‟ errors.

• Useful in CLP scripts when doing proactive cleanup

(i.e. dropping objects that aren‟t there yet …)

Implementation:

SQL/PL UDFs

#2: db2perf_utils

14

#2: db2perf_utils

How to use it:

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create the stored procedures
db2 –td@ -f db2perf_utils.db2

15

#2: db2perf_utils

How to use it, cont’d:

Use

1. Translation UDFs

• Simply call them in SQL to translate fields returned from

snapshot table functions & event monitors

db2 “select db2perf_<UDF >2str(<element value>) from …”

Table function(s) Element(s) Translation UDF

SNAPSHOT_LOCK

SNAPSHOT_LOCKWAIT

Lock object type db2perf_lkobj2str

Lock mode

Lock mode requested
db2perf_lkmode2str

Lock status db2perf_lkstat2str

SNAPSHOT_TABLE Table type db2perf_tabtyp2str

SNAPSHOT_APPL_INFO Application status db2perf_apstat2str

SNAPSHOT_TBS_CFG
Tablespace type db2perf_tbstyp2str

Tablespace contents db2perf_tbscon2str

16

#2: db2perf_utils

How to use it, cont’d:

Use

2. „Quiet drop‟ function

db2 “call db2perf_quiet_drop(<suffix of DROP statement >)”

for example

db2 “call db2perf_quiet_drop(„procedure db2perf_crmsg‟)”

17

How it works:

#2: db2perf_utils

CREATE PROCEDURE db2perf_quiet_drop(IN statement VARCHAR(1000))

LANGUAGE SQL

BEGIN

DECLARE SQLSTATE CHAR(5);

DECLARE NotThere CONDITION FOR SQLSTATE '42704';

DECLARE EXIT HANDLER FOR NotThere

SET SQLSTATE = ' ';

SET statement = 'DROP ' || statement;

EXECUTE IMMEDIATE statement;

END@

CREATE FUNCTION db2perf_tbstyp2str(tablespace_type bigint)

:

BEGIN ATOMIC

DECLARE retstr CHAR(3);

:

SET retstr = CASE tablespace_type

WHEN 0 THEN 'DMS'

WHEN 1 THEN 'SMS'

ELSE NULL

END;

RETURN retstr;

END@

Values & strings
extracted from

sqlmon.h

Catch & overwrite
‘not found’

SQLSTATE

18

#2: db2perf_utils

Sample output

db2 “select substr(tablespace_name,1,20) as „Name‟,

tablespace_type, db2perf_tbstyp2str(tablespace_type),

tbs_contents_type, db2perf_tbscon2str(tbs_contents_type)

from table(snapshot_tbs_cfg(cast(null as varchar(256)),-1)) as t”

Name TABLESPACE_TYPE 3 TBS_CONTENTS_TYPE 5

-------------------- --------------- --- ----------------- ----------------

SYSCATSPACE 1 SMS 0 Any

SYSTOOLSPACE 1 SMS 0 Any

USERSPACE1 1 SMS 0 Any

TBS_ALL 0 DMS 0 Any

TEMPSPACE 1 SMS 2 System temporary

5 record(s) selected.

Untranslated values
provided by table function

Translated values
provided by the UDF

$ db2 “drop table blork”

SQL0204N "SREES.BLORK" is an undefined name. SQLSTATE=42704

$ db2 "call db2perf_quiet_drop('table blork')"

Return Status = 0

$ db2 “create table blork …”

Table does not exist
but quiet_drop

suppresses the error

19

Purpose of db2perf_bufferpool:
• Identifies & quantifies bufferpool-related performance

issues

• Reports at overall level and by bufferpool

• Issues warnings if
1. Bufferpool data or index hit ratios are below threshold

2. Data or index prefetch ratio below threshold

3. Page clean ratio below threshold

4. Number of dirty steals above threshold

5. Number of files closed above threshold

Implementation:

SQL/PL stored procedures

#3: db2perf_bufferpool

20

#3: db2perf_bufferpool

How to use it:
Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create stored procedures
db2 –td@ -f db2perf_utils.db2

db2 –td@ -f db2perf_bp.db2

3. Turn on bufferpool monitoring by default with
DFT_MON_BUFPOOL dbm config switch

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Call stored procedure & examine results
db2 “call db2perf_bufferpool()”

3. Update configuration based on results, if necessary

21

How it works:
• Snapshot data gathered from snapshot_database and

snapshot_bufferpool table functions

• Warnings with severity levels 1-5 inserted into
db2perf_msg table

#3: db2perf_bufferpool

Metric Formula Activity

Threshold

Severity

5 (worst) 3 1

Data Hit Ratio (LR – PR) / LR > 1000 LReads < 60% < 75% < 90%

Index Hit Ratio (LR – PR) / LR > 1000 LReads < 75% < 85% < 95%

Cleaning Async Writes / Total

Writes

> 1000 page

writes

< 40% < 65% < 90%

Prefetch Async data reads /

Data phys reads

> 1000 async data

reads

< 50% < 70% < 90%

Dirty page

steals

Dirty Steals / 10,000 Tx > 100 transactions > 100 > 30 > 1

File Closes Files Closed / 10,000 Tx > 100 transactions > 1000 > 100 > 10

22

#3: db2perf_bufferpool

Sample output

$ db2 "call db2perf_bufferpool()"

Result set 1

TS SEVERITY METRIC VALUE COMMENTS

------- -------- -------------------------------- ------- -----------------------------

2006... 3 Dirty Page Steals / 10k Tx 27

2006... 3 Overall BP page clean ratio 41.6

2006... 1 IBMDEFAULTBP data hit ratio 82.1

2006... 1 Overall BP data hit ratio 82.1

2006... 0 Overall BP index hit ratio 98.8

2006... 0 Files closed / 10k Tx 0

2006... 0 IBMDEFAULTBP idx hit ratio 98.8

2006... Overall BP data prefetch ratio 00.0 No data prefetching activity

2006... Overall BP index prefetch ratio 00.0 No index prefetching activity

2006... IBMDEFAULTBP data pftch ratio 00.0 No data prefetching activity

2006... IBMDEFAULTBP index pftch ratio 00.0 No index prefetching activity

11 record(s) selected.

Lots of dirty page steals –
look at bufferpool size if

possible, and/or page
cleaning parameters

23

#3: db2perf_bufferpool

Notes:
• Thresholds & severity levels are easily tuned to

support different environments

• Depends on DB2 v8.2.2 for table functions

• Creates SQL/PL stored procedure and db2perf_msg

message table in default schema

• Returns a result set with the most recent rows added

to the message table

• Leaves the message table in place after execution

• Messages remain in message table by default

• Use ORDER BY ts DESC on SELECT to see most

recent messages first

24

Purpose of db2perf_dynsql:
• Identifies & quantifies dynamic SQL-related

performance issues

• Calls out groups of „top 10‟ statements by:
1. Total elapsed time

2. Total CPU usage

3. Most physical reads

4. Most rows read

5. Sorts

6. Sort overflows

• Identifies statements that might benefit from parameter

markers instead of literals

Implementation:

CLP scripts + UDF in C

#4: db2perf_dynsql

25

#4: db2perf_dynsql

How to use it:
Preparation

1. Create the db2perf_quiet_drop utility stored procedure
db2 –td@ -f db2perf_utils.db2

2. Build & define the C user-defined function
cp $DB2PATH/samples/c/bldrtn . # use bldrtn script from

DB2 samples

bldrtn db2perf_udf # compile & copy UDF under

sqllib

db2 connect to <dbname>

db2 –tvf db2perf_setupudf.db2 # CREATE FUNCTION for UDF

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Run the CLP script, sending the output to a file
db2 -tf db2perf_dynsql.db2 -r db2perf_dynsql.out

26

How it works:
1. Grabs snapshot data from snapshot_dynsql table function into a

scratch table db2perf_dynsql

2. Adds columns to db2perf_dynsql to store rank within each metric

3. Queries snapshot table with ORDER BY & FETCH FIRST to find

top 10 statements in each metric

#4: db2perf_dynsql

SELECT

substr(char(row_num),1,2) as "#","Executions","Rows read", "% of Total",

"r/r / 100","Statement"

FROM

OLD TABLE

(UPDATE

(SELECT

CAST(num_executions as INTEGER) as "Executions",

CAST(rows_read as INTEGER) as "Rows read",

CAST(pct_of_total_rows_read as SMALLINT) as "% of Total",

100 * CAST(round(CAST(rows_read as FLOAT) /

(num_executions+1),0) as INTEGER) as "r/r / 100",

top10_rows_read,

row_number() over (ORDER BY (rows_read) DESC) as row_num,

substr(stmt_text,1,80) as "Statement"

FROM db2perf_dynsql

WHERE rows_read > 0

ORDER BY "Rows read" DESC

FETCH FIRST 10 ROWS ONLY)

SET top10_rows_read = char(row_num));

Finds top 10
and for each one, uses
SELECT from UPDATE

&
UPDATE through SELECT
to record the rank within

that list back in our
snapshot table

27

How it works, cont’d:
4. Pulls out all the „Top 10‟ statements from our work table –

chances are that some of them are Top 10 for more than one

metric. Look at those first …

5. For all statements that don‟t contain a parameter marker („?‟),
calls the UDF db2perf_RmLiterals to replace numeric and

character literals with parameter markers. Counts how many

duplicates this makes – i.e., how many statements with literals

could be replaced with a single statement using parameters
markers instead.

#4: db2perf_dynsql

UPDATE db2perf_dynsql

SET compressed_statement = db2perf_RmLiterals(translate(CAST(stmt_text as varchar(3000))))

WHERE length(stmt_text) < 3000

AND CAST(stmt_text as varchar(3000)) NOT LIKE '%?%';

SELECT

count(*) as "Count" , substr(compressed_statement,1,120) as "Statement without literals"

FROM db2perf_dynsql

WHERE substr(translate(ltrim(compressed_statement)),1,6) IN ('SELECT', 'INSERT')

AND num_executions = 1

GROUP BY substr(compressed_statement,1,120)

HAVING count(*) > 10;
Only report cases where 10 or

more statements could
potentially be replaced by 1

28

#4: db2perf_dynsql

Sample output

Top 10 dynamic SQL statements by execution time

Executions Exec Time % of Total sec / 100 Statement

-- ----------- ------------ ---------- ------------ --------------------------------------

1 11712 478.286 20 4.083 Select D_NEXT_O_ID, D_TAX from DIST …

2 117041 328.792 13 0.280 Insert into ORDER_LINE values (?, ? …

:

9 10800 36.042 1 0.333 Select MIN(NO_O_ID) from NEW_ORDER …

10 11311 35.859 1 0.317 Select C_LAST, C_CREDIT, C_DISCOUNT …

Combined ranking of top dynamic SQL statements

Rank elapsed Rank CPU Rank phys rd Rank R/R Rank sorts Rank sort ovf Statement

------------ -------- ------------ -------- ---------- ------------- ------------------------------…

10 10 4 6 Select C_LAST, C_CREDIT, …

9 Select O_OL_CNT, O_ID, …

4 1 1 1 Select S_QUANTITY, S_DIST_01,

:

6 5 2 Select Count(Distinct S_I_ID) …

7 2 2 Update STOCK set S_QUANTITY = ?, …

List of dynamic SQL statements which differ only by literal values

(Good candidates for parameter markers)

Count Statement without literals

----------- ---

693 SELECT C_ID, C_FIRST FROM CUSTOMER WHERE (C_W_ID = ? AND C_D_ID = ? AND C_LAST = ?) …

Heavy
hitter!

#1 in all 3
of CPU use,

physical
reads &

rows read

We can possibly replace 693 SQL
PREPAREs with just one

statement that uses parameter
markers

29

#4: db2perf_dynsql

Notes:
• New „Top 10‟ summaries are easily added

• „Top 10‟s are easily changed to „Top 20‟s, etc.

• UDF in C to remove literals far more natural than

doing it in SQL!

• SELECT from UPDATE & UPDATE through

SELECT made storing & merging the various

Top 10 rankings very simple

• Script drops work table db2perf_dynsql at end

• Depends on DB2 v8.2 FP9 for table functions

30

Purpose of db2perf_locktree:
• Provides a (crude) graphical „tree‟ view of in-flight

lock wait relationships between DB2 connections,
based on the snapshot_lockwait table function

• Helps visualize the locking dependencies

between applications

Implementation:

Recursive SQL/PL stored procedure

#5: db2perf_locktree

31

#5: db2perf_locktree

How to use it:
Preparation
1. Connect to the desired database

db2 connect to <dbname>

2. Create the db2perf_quiet_drop utility stored procedure
db2 –td@ -f db2perf_utils.db2

3. Create the db2perf_locktree stored procedure
db2 –td@ -f db2perf_locktree.db2

Use
1. Connect to the desired database

db2 connect to <dbname>

2. Call the stored procedure to capture the state of lock wait

relationships at that moment

$ db2 “call db2perf_locktree()”

3. Examine the lock relationships in the result set returned from
db2perf_locktree

32

How it works:
1. Grabs lock wait snapshot data from snapshot_lockwait

table function into a scratch table db2perf_lockwait

2. Finds lock waits at the „root‟ – where the lock holder is not
waiting on another lock. Starts with these as the roots of
our trees

3. For each instance of lock wait
a) Draw a line to it from its „parent‟ lock wait, if one exists (ie, if the

owner of the lock we want is waiting on someone else…)

b) Writes details about this lock to our „report‟ table
db2perf_locktree

• holder / waiter application ids
• lock type
• lock wait time, etc.

b) Recursively calls db2perf_locktree for each of the applications
waiting on the „parent‟

4. Opens a cursor to return a result set with the lock tree

#5: db2perf_locktree

33

#5: db2perf_locktree

Sample output
Waiter appl handle: 547 (getlock)

| Holder appl handle: 584 (getlock)

| Lock object type: Row

| Lock mode requested: Intention Exclusive Lock

| Lock wait time (ms): 231451

| Lock escallation: N

| Table name: SREES.T

|

+-------Waiter appl handle: 540 (getlock)

| Holder appl handle: 547 (getlock)

| Lock object type: Row

| Lock mode requested: Intention Exclusive Lock

| Lock wait time (ms): 229446

| Lock escallation: N

| Table name: SREES.U

|

|-------Waiter appl handle: 552 (getlock)

| | Holder appl handle: 540 (getlock)

| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 215371

| | Lock escallation: N

| | Table name: SREES.V

| |

| |-------Waiter appl handle: 604 (getlock)

| | Holder appl handle: 552 (getlock)

| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 44941

| | Lock escallation: N

| | Table name: SREES.W

| |

| |-------Waiter appl handle: 606 (getlock)

| | Holder appl handle: 552 (getlock)

| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 46951

| | Lock escallation: N

| | Table name: SREES.W

| |

| |-------Waiter appl handle: 556 (getlock)

| | Holder appl handle: 552 (getlock)

| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 157304

| | Lock escallation: N

| | Table name: SREES.W

| |

| |-------Waiter appl handle: 562 (getlock)

| | | Holder appl handle: 552 (getlock)

| | | Lock object type: Row

| | | Lock mode requested: Intention Exclusive Lock

| | | Lock wait time (ms): 209336

| | | Lock escallation: N

| | | Table name: SREES.W

| | |

| | |-------Waiter appl handle: 566 (getlock)

| | | | Holder appl handle: 562 (getlock)

| | | | Lock object type: Row

| | | | Lock mode requested: Intention Exclusive Lock

| | | | Lock wait time (ms): 143217

| | | | Lock escallation: N

| | | | Table name: SREES.X

| | | |

| | | +-------Waiter appl handle: 598 (getlock)

| | | | Holder appl handle: 566 (getlock)

| | | | Lock object type: Row

| | | | Lock mode requested: Intention Exclusive Lock

| | | | Lock wait time (ms): 141204

| | | | Lock escallation: N

| | | | Table name: SREES.Y

| | | |

| | | |-------Waiter appl handle: 602 (getlock)

| | | | Holder appl handle: 598 (getlock)

| | | | Lock object type: Row

| | | | Lock mode requested: Intention Exclusive Lock

| | | | Lock wait time (ms): 109058

| | | | Lock escallation: N

| | | | Table name: SREES.Z

| | | |

: : : :

:

| Lock escalation: N

| Table name: SREES.U

|

|-------Waiter appl handle: 552 (getlock)

| | Holder appl handle: 540 (getlock)
| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 215371

| | Lock escalation: N

| | Table name: SREES.V

| |

| |-------Waiter appl handle: 604 (getlock)

| | Holder appl handle: 552 (getlock)

| | Lock object type: Row

| | Lock mode requested: Intention Exclusive Lock

| | Lock wait time (ms): 44941

| | Lock escalation: N

| | Table name: SREES.W

| |

| |-------Waiter appl handle: 606 (getlock)

| | Holder appl handle: 552 (getlock)

: :

552
wants

Row IX
on ‘V’

604
wants

Row IX
on ‘W’

540
wants

Row IX
on ‘U’

606
wants

Row IX
on ‘W’

Application
name

34

#5: db2perf_locktree

Notes:
• Recursive SQL/PL calls are an excellent choice here

• Maximum SQL/PL nesting depth currently caps length
of lockwait chains we can display at 16

• Like lock snapshot, captures instantaneous picture
when it‟s run, not cumulative

• Creates tables in the current schema

• scratch tables db2perf_lockwait, db2perf_appl_info

• report table db2perf_locktree

• Note - use „order by line‟ if selecting from
db2perf_locktree

• Report is overwritten by each run

• Content of scratch tables are deleted at end of run

35

Purpose of db2perf_snapdiff:
• Collects snapshot data into DB2 tables

• Compares data from „before‟ & „after‟ intervals
• One „interval‟ = the change between two snapshots

• Produces a report in table db2perf_snapdiff_report

• Supports:

• Normalization of results to overall system activity

• Thresholds (i.e., only report differences over X%)

• Currently handles the following snapshot types
1. Database Manager

2. Database

3. Tablespace

4. Tables

5. Bufferpool

Implementation:
SQL/PL stored procedures

#6: db2perf_snapdiff

Very easy to
extend to other
snapshot types!

36

#6: db2perf_snapdiff

How to use it:
Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create stored procedures and snapshot storage tables

db2 –td@ -f db2perf_utils.db2

db2 –td@ -f db2perf_snapdiff.db2

3. Turn on monitoring by default with DFT_MON_xxx

database manager configuration switches

37

#6: db2perf_snapdiff

How to use it – the basics:
Use

1. Connect to the desired database
db2 connect to <dbname>

2. Call stored procedure – the easy way, with one parameter

db2 “call db2perf_snapdiff(<operation>)”

‘start’ - collect „start of interval‟ snapshot from table function

and store it in one of our tables

‘stop’ - collect „end of interval‟ snapshot and store

it in snapshot storage table

‘diff’ - compare two rows in the snapshot tables and report

what‟s different

‘list’ - show what snapshot interval data has been

collected

‘delete’ - delete all snapshot interval data from storage tables

Prints usage
syntax if no
operation is

passed in

38

#6: db2perf_snapdiff

How to use it – the basics:
Typical sequence of operations:

1. Get the first interval of data
db2 “call db2perf_snapdiff(„start‟)”

sleep(30)

db2 “call db2perf_snapdiff(„stop‟)”

2. Sometime later, get another interval of data
db2 “call db2perf_snapdiff(„start‟)”

sleep(30)

db2 “call db2perf_snapdiff(„stop‟)”

3. List the intervals we‟ve got

db2 “call db2perf_snapdiff(„list‟)”

4. Compare the latest 2 intervals

db2 “call db2perf_snapdiff(„diff‟)”

39

#6: db2perf_snapdiff

How to use it – more advanced…
db2 “call db2perf_snapdiff(

<operation> , <snap_table_name> ,
<‘before’ interval #> , <‘after’ interval #> ,
<normalize to Tx> , <threshold_pct>)”

<snap_table_name>
- chooses one snapshot storage table to act on (defaults to all)

<‘before’ interval>, <‘after’ interval>
- number of „before‟ & „after‟ snapshot intervals to compare

(default to the two most recent intervals)

<normalize>
- „Y‟, „T‟, „1‟ means to normalize all data by the number

of transactions executed during the snapshot period (defaults to „Y‟)

<threshold_pct>
- „clip level‟ below which we don‟t report differences

(defaults to 5%)

db2 “call db2perf_snapdiff(„diff‟,

NULL, 11, 10, ‟Y‟,5)”
NULL or „ „ here
means compare all
snapshot tables

Normalize
results to
number of

transactions,
and don’t
show any

differences
smaller than

5%Compare data from intervals 10 & 11

40

How it works – collecting data:
• Our tables contain rows saved from snapshot table

functions when „start‟ & „stop‟ are called

#6: db2perf_snapdiff

SNAPSHOT_TIMESTAMP SORT_HEAP_ALLOCATED ...

-------------------------- ------------------- ...

2006-02-27-00.18.04.259134 1000 ...

2006-02-27-00.18.15.695562 1000 ...

2006-03-02-22.02.19.480432 1000 ...

2006-03-02-22.02.50.158643 1000 ...

db2perf_snapdbm

SNAPSHOT_TIMESTAMP ROWS_READ ...

-------------------------- ------------ ...

2006-02-27-00.18.04.259134 504265 ...

2006-02-27-00.18.15.695562 836199 ...

2006-03-02-22.02.19.480432 4253835 ...

2006-03-02-22.02.50.158643 4627251 ...

db2perf_snapdb

SNAPSHOT_TIMESTAMP ROWS_WRITTEN ... TABLE_NAME ...

-------------------------- ------------ ... ---------- ...

2006-02-27-00.18.04.259134 12460 ... DISTRICT ...

2006-02-27-00.18.04.259134 124600 ... STOCK ...

2006-02-27-00.18.15.695562 20574 ... DISTRICT ...

2006-02-27-00.18.15.695562 205900 ... STOCK ...

2006-03-02-22.02.19.480432 104881 ... DISTRICT ...

2006-03-02-22.02.19.480432 1048906 ... STOCK ...

2006-03-02-22.02.50.158643 114106 ... DISTRICT ...

2006-03-02-22.02.50.158643 1140702 ... STOCK ...

db2perf_snaptb

:

INTERVAL START STOP DBM DB TBS TB BP

-------- -------------------------- -------------------------- --- -- --- -- --

1 2006-02-27-00.18.04.259134 Y Y Y Y Y

2 2006-03-02-22.02.19.480432 Y Y Y Y Y

db2perf_snapdiff_toc

We create our first interval by

getting two snapshots:

call db2perf_snapdiff(„start‟)

… wait a while …

call db2perf_snapdiff(„stop‟)

The sometime later, when we

want to compare DB2 activity

with the first interval, we create

our second interval by getting

two more snapshots:

call db2perf_snapdiff(„start‟)

… wait a while …

call db2perf_snapdiff(„stop‟)

2006-02-27-00.18.15.695562
2006-03-02-22.02.50.158643

The ‘TOC’ table maps
interval numbers to

start/stop timestamps

41

How it works - comparing:
1. Finds the start/stop times for the intervals to be

compared from the TOC

2. For each snapshot table to be compared

a. Finds the pairs of rows from this table with:
• Timestamps matching the „before‟ & „after‟ interval times

• Matching „key column‟ values (if applicable)
For example, rows with the same table name, the same bufferpool

name, etc.

b) For each numeric column in the rows
i. Finds the normalized activity in intervals 1 & 2

ii. Calculates the difference between the normalized values for

interval 1 & 2 for this column

iii. If the change between intervals is greater than the threshold
Write the column name, interval values & difference to the report

#6: db2perf_snapdiff

) 1000 / 1 Interval in nstransactio #(

)start'' 1 (Interval -)stop'' 1 Interval (

) 1000 / 2 Interval in nstransactio #(

)start'' 2 (Interval -)stop'' 2 Interval (

We’re finding 4 times: start & stop for
each of interval 1 & 2

42

Interval 2 rows read / 1k Tx
(4,627,251 - 4,253,835) = 18,403

(253,236 - 232,945) / 1000

Interval 1 rows read / 1k Tx
(836,199 - 504,265) = 18,443

(45,654 - 27,657) / 1000

“Confusing”, you say? Ok, in pictures …

#6: db2perf_snapdiff

SNAPSHOT_TIMESTAMP POST_THRESHOLD_SORTS …

-------------------------- -------------------- …

2006-02-27-00.18.04.259134 0 …

2006-02-27-00.18.15.695562 0 …

2006-03-02-22.02.19.480432 0 …

2006-03-02-22.02.50.158643 0 …

db2perf_snapdbm

SNAPSHOT_TIMESTAMP ROWS_READ COMMITS …

-------------------------- --------- --------- …

2006-02-27-00.18.04.259134 504265 27657 …

2006-02-27-00.18.15.695562 836199 45654 …

2006-03-02-22.02.19.480432 4253835 232945 …

2006-03-02-22.02.50.158643 4627251 253236 …

db2perf_snapdb

SNAPSHOT_TIMESTAMP ROWS_WRITTEN TABLE_NAME …

-------------------------- ------------ ---------- …

2006-02-27-00.18.04.259134 12460 DISTRICT …

2006-02-27-00.18.04.259134 124600 STOCK …

2006-02-27-00.18.15.695562 20574 DISTRICT …

2006-02-27-00.18.15.695562 205900 STOCK …

2006-03-02-22.02.19.480432 104881 DISTRICT …

2006-03-02-22.02.19.480432 1048906 STOCK …

2006-03-02-22.02.50.158643 114106 DISTRICT …

2006-03-02-22.02.50.158643 1140702 STOCK …

db2perf_snaptb
:

db2 call db2perf_snapdiff(„diff‟)

2006...259134

2006...695562

2006...480432

2006...158643

INTERVAL START STOP DBM DB TBS TB BP

-------- -------------------------- -------------------------- --- -- --- -- --

1 2006-02-27-00.18.04.259134 2006-02-27-00.18.15.695562 Y Y Y Y Y

2 2006-03-02-22.02.19.480432 2006-03-02-22.02.50.158643 Y Y Y Y Y

db2perf_snapdiff_toc

0 – 0 =
0 change
between
Intervals 1 & 2

18,403 – 18,443 =
-40 rows read / 1k Tx
decrease between
Intervals 1 & 2
(-0.2 %)

DISTRICT:
455 – 451 =
4 rows written
per 1k Tx
increase between
intervals 1 & 2
(0.8%)

Int. 1 DISTRICT rows written / 1k Tx
(20,574 – 12,460) = 451

(45,654 - 27,657) / 1000

Int. 1 STOCK rows written / 1k Tx
(205,900 – 124,600) = 4,517

(45,654 - 27,657) / 1000

Int. 2 DISTRICT rows written / 1k Tx
(114,106 – 104,881) = 455

(253,236 – 232,945) / 1000

Int. 2 STOCK rows written / 1k Tx
(1,140,702 – 1,048,906) = 4,524

(253,236 – 232,945) / 1000

Interval 1 post thersh sorts / 1k Tx
0 - 0 = 0

(45,654 - 27,657) / 1000

Interval 2 post thresh sorts / 1k Tx
0 – 0 = 0

(253,236 - 232,945) / 1000

STOCK:
4,524 – 4,517 =
7 rows written
per 1k Tx
increase between
intervals 1 & 2
(0.1%)

All these changes
happen to be below

the default
threshold of 5%

43

#6: db2perf_snapdiff

Sample output

$ db2 "call db2perf_snapdiff('diff')"

Result set 1

MESSAGE

--

db2perf_snapdiff called at 2006-03-04-22.47.50.316251

operation:.............. diff

snap_table_name:........

'before' interval:...... -1

'after' interval:....... -1

normalize to 1k Tx:..... Y

threshold %:............ 5

:

Database Snapshot (db2perf_snapdb) ---

03/02/2006 03/02/2006

22:42:07 22:50:49

to to

03/02/2006 03/02/2006

22:43:08 22:51:35

---------- ----------

Normalizing to 1K Tx per Interval 40.9 0.1 -99.5 %

*** ROWS_READ 18228.0 412066692.7 2260516.9 %

*** POOL_DATA_L_READS 27898.6 10196246.9 36447.4 %

*** POOL_DATA_P_READS 1652.4 15433.7 833.9 %

** POOL_DATA_WRITES 1665.8 0.0 -100.0 %

* POOL_INDEX_L_READS 108994.1 73801.2 -32.2 %

* POOL_INDEX_P_READS 96.9 114.4 18.0 %

** POOL_INDEX_WRITES 262.7 0.0 -100.0 %

** POOL_READ_TIME 3025.5 4753.0 57.0 %

** POOL_WRITE_TIME 14882.7 0.0 -100.0 %

Here we happen to be
comparing intervals before &
after an index was dropped …

… many fewer transactions
… many, many more rows read,

logical data reads, physical
data reads

… many fewer index reads
etc., etc., etc.

*** for > 100% difference
** for > 33,
* for > 10

44

#6: db2perf_snapdiff

Sample output cont’d
:

Table Snapshot (db2perf_snaptb) --

Table DISTRICT

03/02/2006 03/02/2006

22:42:07 22:50:49

to to

03/02/2006 03/02/2006

22:43:08 22:51:35

---------- ----------

Normalizing to 1K Tx per Interval 40.9 0.1 -99.5 %

* ROWS_READ 1370.9 1180.7 -13.8 %

Table HISTORY

03/02/2006 03/02/2006

22:42:07 22:50:49

to to

03/02/2006 03/02/2006

22:43:08 22:51:35

---------- ----------

Normalizing to 1K Tx per Interval 40.9 0.1 -99.5 %

* ROWS_WRITTEN 428.8 295.1 -31.1 %

:

Buffer Pool Snapshot (db2perf_snapbp) --

Bufferpool IBMDEFAULTBP

03/02/2006 03/02/2006

22:42:07 22:50:49

to to

03/02/2006 03/02/2006

22:43:08 22:51:35

---------- ----------

Normalizing to K Tx per Interval 40.9 0.1 -99.5 %

*** POOL_DATA_L_READS 27893.9 10196289.1 36453.8 %

*** POOL_DATA_P_READS 1651.9 15433.7 834.2 %

** POOL_DATA_WRITES 1663.9 0.0 -100.0 %

:

45

#6: db2perf_snapdiff

Notes:
• Easily extended to compare numeric values in other

snapshot tables

…or pretty well any table with a timestamp column!

• Table definitions are derived „on the fly‟, not built in

• Some snapshot fields don‟t make sense to compare,

e.g. instantaneous values like „lock list used‟, etc.

• Snapdiff supports (hard-coded) „ignore lists‟ to

overlook columns we‟re not interested in

• Depends on DB2 v8.2.2 for snapshot table functions

46

Agenda

• Motivation, goals & framework

• The tools

• Configuration analysis

• Snapshot analysis

• Plan analysis

• Event monitor analysis

• Wrap up

47

Purpose of db2perf_plandiff:
• Examines the contents of the explain tables to

identify plan changes

• Saves time in combing through db2exfmt output,

looking for non-trivial changes

• Useful for „bulk comparing‟ plans across

migrations, system changes, etc.

Implementation:

Nested SQL/PL stored procedures

#7: db2perf_plandiff

Note – db2perf_plandiff in v1.1 of the toolbox has been updated to support comparisons

across two sets of explain tables. The syntax described here is still supported, but refer

to db2perf_plandiff\HowTo.txt for more options.

-- Steve Rees, June 2009

48

#7: db2perf_plandiff

How to use it:
Preparation
1. Connect to the desired database

db2 connect to <dbname>

2. Create the db2perf_quiet_drop utility stored procedure

db2 –td@ -f db2perf_utils.db2

3. Create the db2perf_plandiff stored procedures

db2 –td@ -f db2perf_plandiff.db2

4. Ensure the explain tables exist and are populated

Use
1. Connect to the desired database

db2 connect to <dbname>

2. Call the stored procedure to compare all plans with matching SQL &

matching patterns of requester, schema, source name & section

db2 “call db2perf_plandiff(

<requester>, <schema>, <source_name>, <section>)”

49

#7: db2perf_plandiff

How to use it, cont’d:

For example

db2 “call db2perf_plandiff(„SREES‟,‟SREES‟,‟FOO%‟,0)”

compares all pairs of plans in the explain tables where

• Original statement texts match

• Requester and schema are „SREES‟

• Source name (i.e. package name) starts with „FOO‟

• Section number is anything (0 is wildcard, as in db2exfmt)

and displays the results

3. If differences are reported, use the contents of
db2perf_plandiff_report to determine which statements to

examine with db2exfmt

50

How it works:
1. Opens a cursor C1 on EXPLAIN_STATEMENT

to find rows matching the patterns provided

2. Opens another cursor C2 on
EXPLAIN_STATEMENT to find all other rows

that
a) Match the patterns, and

b) Match the statement text found in C1

3. For each pair of matching statements
a) Generates a „signature string‟ for each from

the operators & operands in the explain

tables for that statement

#7: db2perf_plandiff
db2exfmt version

Access Plan:

Total Cost: 25.7601

Query Degree: 1

Rows

RETURN

(1)

Cost

I/O

|

1

GRPBY

(2)

25.7593

1.96576

|

900.254

IXSCAN

(3)

69.031

5.268

|

450127

INDEX: SREES

NU_ORD_IDX1

$ db2 “call db2perf_planstring('SREES','2006-02-12-15.46.03.296586','SREES','DELS',1,'')”

Value of output parameters

Parameter Name : PLAN_STRING

Parameter Value : RETURN(1)<-Op(2) GRPBY(2)<-Op(3) IXSCAN(3)<-Object(NU_ORD_IDX1)

db2perf_plandiff version

51

How it works, cont’d:
b) Compares the signature strings of the two plans

c) Writes the comparison result to db2perf_plandiff

along with

• SQL statement text

• Schema name

• Package name

• Section number

• Timestamp

• Estimated cost in timerons

4. Opens & return a result set cursor with the plan

comparison results

#7: db2perf_plandiff

for both statements

being compared

52

#7: db2perf_plandiff

Sample output

Plan Package Name Section Timestamp Cost Statement Text

Change? (timerons)

--

Yes | SREES.DELS 1 2006-...296586 25

| SREES.DELS 1 2006-...132561 28254

| SELECT MIN(no_o_id) INTO :H00009 :H00010

| FROM new_order WHERE

| no_w_id =:H00001 AND no_d_id =

| :H00008 WITH RR USE AND KEEP EX

| CLUSIVE LOCKS

Yes | SREES.DELS 2 2006-...296586 38

| SREES.DELS 2 2006-...132561 28251

| DELETE FROM new_order WHERE no_w_id = :H0

| 0001 AND no_d_id = :H00008 AN

| D no_o_id = :H00009

No | SREES.DELS 3 2006-...296586 51

| SREES.DELS 3 2006-...132561 51

| UPDATE orders SET o_carrier_id = :H00002

| WHERE o_id = :H00009 AN

| D o_w_id = :H00001 AND o_d_id = :H00008

:

Report run at 2006-02-12-16.46.20.984718

Compared 90 plan pairs (4 look different, 86 look unchanged). Unable to compare 0 plan(s) due

to length or complexity.

Cost of SELECT & DELETE on NEW_ORDER
has skyrocketed – check out plans for these

statements in db2exfmt

• Looking for plan changes before & after a slowdown in our system

No apparent change in plan
for UPDATE on ORDERS

• Based on this data, it‟s worthwhile digging into db2exfmt output,

especially for the DELETE & SELECT statements

53

#7: db2perf_plandiff

Notes:
• Assumes explain tables exist in current default schema

and are already populated

• Compares statements up to 30,000 characters in length

• Warns when statements are found that are too long /

complex to be compared

• Currently reports all plan comparison results – match or

non-match

• Tip - use more restrictive patterns to reduce scope &

improve runtime

• E.g. „PROD%‟ instead of just „%‟

• Highly populated explain tables (especially with many

versions of the same statements) could cause long

runtimes for this tool

54

Purpose of db2perf_plans:
• Mines the explain tables for useful information

about SQL execution plans

• Most expensive statements

• By total cost

• By I/O cost

• Unreferenced indexes

Implementation:

SQL/PL stored procedure

#8: db2perf_plans

55

#8: db2perf_plans

How to use it:
Preparation
1. Connect to the desired database

db2 connect to <dbname>

2. Create the utility stored procedures

db2 –td@ -f db2perf_utils.db2

3. Create the db2perf_plans stored procedure

db2 –td@ -f db2perf_plans.db2

4. Ensure the explain tables exist and are populated

Use
1. Connect to the desired database

db2 connect to <dbname>

2. Call the stored procedure

db2 “call db2perf_plans()”

56

How it works:
1. Selects the 10 statements from EXPLAIN_STATEMENT

with the greatest values for TOTAL_COST

• Write cost & SQL statement to db2perf_plans_report

2. Selects the 10 RETURN operators from

EXPLAIN_OPERATOR with the greatest IO_COST

• Join these with EXPLAIN_STATEMENT to get the SQL text

• Write cost & SQL statement to db2perf_plans_report

3. For each table referenced in EXPLAIN_OBJECT

• Find all indexes on that table from SYSCAT.INDEXES

• If an index is not found in EXPLAIN_OBJECT, write a

message to db2perf_plans_report

#8: db2perf_plans

RETURN is
the top

operator in
the plan;

its IO cost
represents
the whole

plan

57

#8: db2perf_plans

Sample output

$ db2 "call db2perf_plans()"

Result set 1

Top 10 most expensive statements - total cost

Rank Cost Source Section

1 30035 SREES.NEWS 6

SELECT i_price, i_name, i_data INTO :H00056 , :H00055 , :H00043 FROM item

WHERE i_id = :H00049

2 7644 SREES.STKS 2

SELECT count(distinct S_I_ID) INTO :H00006 FROM ORDER_LINE, STOCK WHERE OL_W_ID

= :H00001 AND OL_D_ID = :H00002 AND OL_O_ID < :

:

Top 10 most expensive statements - I/O cost

Rank Cost Source Section

--

1 2322 SREES.NEWS 6

SELECT i_price, i_name, i_data INTO :H00056 , :H00055 , :H00043 FROM item

WHERE i_id = :H00049

:

58

#8: db2perf_plans

Sample output, cont’d

:

Comparative ranking by total cost & I/O cost

Total I/O

Cost Cost

Rank Rank Statement

1 1 SELECT i_price, i_name, i_data INTO :H00056, :H00055, :H00043

2 2 SELECT count(distinct S_I_ID) INTO :H00006 FROM ORDER_LINE, STOCK

3 3 UPDATE ORDER_LINE SET ol_delivery_d = :H00012 WHERE ol_w_id = :H00001

4 7 DECLARE READ_ORDERLINE_CUR CURSOR FOR SELECT ol_i_id, ol_supply_w_id,

5 6 UPDATE stock SET s_quantity = :H00052, s_order_cnt = :H0

6 5 UPDATE customer SET c_balance = :H00015, c_delivery_cnt =

7 4 UPDATE orders SET o_carrier_id = :H00002 WHERE o_id = :H00009 AND

8 8 UPDATE customer SET c_data1 = :H00039, c_data2 = :H00040

9 SELECT SUM(ol_amount) INTO :H00011 FROM order_line WHERE ol_w_id =

10 SELECT s_quantity, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dis

9 DELETE FROM new_order WHERE no_w_id = :H00001 AND no_d_id = :H00008

Tables with unreferenced indexes

--

Table: SREES.HISTORY

HIST_1

Table: SREES.ITEM

ITEM_IDX1

ITEM_1

59

#8: db2perf_plans

Notes:
• db2perf_plans doesn‟t currently ignore duplicate

SQL statements

• It might be reasonable for it to go for the most recent

version of the plan

• There is a huge amount of information about SQL

plans in the explain tables that could be mined!

• Types of joins / scans / etc. used

• Missing statistics

• The fact that indexes are unreferenced in these plans

doesn‟t mean that they can necessarily be dropped

• Extra digging likely required

60

Agenda

• Motivation, goals & framework

• The tools

• Configuration analysis

• Snapshot analysis

• Plan analysis

• Event monitor analysis

• Wrap up

61

Purpose of db2perf_procevmon:
• Translates statement event monitor output

produced by „WRITE TO FILE‟ option and

db2evmon into .DEL files to IMPORT / LOAD

back into DB2

• Powerful tools in DB2 to mine this data!

• Creates a table with the same columns / layout as
produced by „WRITE TO TABLE‟ option of CREATE
EVENT MONITOR

• Queries built with „WRITE TO TABLE‟ event

monitor data in mind will work with tables built by
db2perf_procevmon

Implementation:

C program

#9: db2perf_procevmon

62

#9: db2perf_procevmon

How to use it:

Preparation

1. Compile db2perf_procevmon

UNIX: cc –o db2perf_procevmon \

db2perf_procevmon.c \

-I $DB2PATH/include –L $DB2PATH/lib –l db2

Windows: cl db2perf_procevmon.c

rem %INCLUDE%, etc., must point to DB2 path

2. Capture statement event monitor output
db2 “create event monitor e for statements

write to file „/tmp‟”

db2 set event monitor e state=1

execute your workload …

db2 set event monitor e state=0

db2evmon –path /tmp > db2evmon.out

63

#9: db2perf_procevmon

How to use it, cont’d:

Use

1. Run db2perf_procevmon

db2perf_procevmon <output file from db2evmon>

<DEL file for statements> [<DEL file for subsections>]

for example

db2perf_procevmon db2evmon.out stmt_evt.del

2. Create the tables to hold the statement / subsection data
db2 connect to <dbname>

db2 –tvf db2perf_procevmon.db2

3. LOAD / IMPORT the event monitor data into DB2 from

the DEL file(s).

db2 load from <DEL file for statements> of DEL replace into

db2perf_evmon

db2 load from <DEL file for subsections> of DEL replace into

db2perf_evmon_subsect

64

How it works:
1. Reads lines from the input

file

2. When the beginning of a

statement event is seen

a) Collect values from the

following lines and save

them in an internal

structure

b) When a line is seen that is

not expected, dump what

we have to the .DEL

output file, and resume

looking for the next line

3. Similar processing happens

when a subsection event is

seen

#9: db2perf_procevmon

:

23) Statement Event ...

Appl Handle: 13

Appl Id: *LOCAL.DB2.060226054531

Appl Seq number: 0020

Record is the result of a flush: FALSE

Type : Dynamic

Operation: Open

Section : 214

Creator : NULLID

Package : SQLC2E06

Consistency Token : AAAAAcEU

Package Version ID :

Cursor : CLP_CURSOR_4

Cursor was blocking: TRUE

Text : SELECT PARM_MODE FROM ...

Start Time: 02/26/2006 00:55:06.286922

Stop Time: 02/26/2006 00:55:06.286962

Exec Time: 0.000040 seconds

Number of Agents created: 1

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

:

It would
have been
simpler to

write
things out
as we find
them, but
we need to
change the
order of

some fields
to match

the WRITE
TO TABLE

format

65

#9: db2perf_procevmon

Notes:
• db2evmon output generally changes a bit from

release to release

• Compatible with v7.x, v8.2

66

Purpose of db2perf_evmon:
• Mines statement event monitor data to identify

„heavy hitters‟

• Top 10 SQL statements (either static or dynamic)

• Execution time

• Physical reads

• Rows read

• Sorts

• COMMIT / ROLLBACK frequencies / times

Implementation:

SQL/PL stored procedure

#10: db2perf_evmon

67

#10: db2perf_evmon

How to use it:

Preparation

1. Create the utility stored procedures
db2 –td@ -f db2perf_utils.db2

2. Create the db2perf_evmon stored procedure

db2 –td@ -f db2perf_evmon.db2

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Collect statement event monitor data in DB2
• Either using „WRITE TO TABLE‟ option, or „WRITE TO FILE‟

followed by db2perf_procevmon and LOAD

3. Call db2perf_evmon(<tabname> [, <top N>])
db2 “call db2perf_evmon(„evmon_tbl‟,20)”

Report the
‘Top 20’

statements
in

evmon_tbl

68

How it works:
1. Builds dynamic SQL „count(*)‟ statements to

summarize overall event monitor data

• # of events

• # of transactions

• COMMIT time

#10: db2perf_evmon

69

How it works, cont’d:
2. For each of our „Top N‟ categories by

statement (elapsed time, rows read, etc.)

a) Builds dynamic SELECT to aggregate the

statistic we‟re after, across all events with

matching SQL text/package/section.

• Fetches only the first N rows (default to 10)

• Translates statement type codes, operation

codes, etc., to words

e.g. statement type 2 = „Static SQL‟

b) For each aggregate row fetched

If the statement is static, retrieves the SQL
text from SYSCAT.STATEMENTS

#10: db2perf_evmon

70

#10: db2perf_evmon

Sample output

$ db2 "call db2perf_evmon(„e_stmt_static‟,5)"

Statistics on event monitor table e_stmt_static

Number of events:............ 189798

Number of connections:....... 21

Number of transactions:...... 5580

Number of rollbacks:......... 0

Start / stop timestamps:..... 2006-03-06-15.06.23.975777 to 2006-03-06-15.16.20.279026 (956.3 seconds)

Top 5 statements by elapsed time

Elapsed Package Section # Events CPU Time Type Statement

15.7 PAYS 2 2717 0.000 STATIC DECLARE CUST_CURSOR1 CURSOR FOR SELECT

5.7 SYSSN400 58 8856 0.000 DYNAMIC Select S_QUANTITY, S_DIST_01, S_DIST_0

:

Top 5 statements by total physical reads

Physical

Reads Package Section # Events Type Statement

5028 NEWS 7 14442 STATIC SELECT s_quantity, s_dist_01, s_dist_02,

954 SYSSN400 58 8856 DYNAMIC Select S_QUANTITY, S_DIST_01, S_DIST_02, S_DIST_0,

:

Top 5 statements by rows read / written

:

Top 5 statements by sort time

:

71

#10: db2perf_evmon

Notes:
• Aggregated CPU times are often zero on some

platforms due to minimum 10ms resolution supplied

by the operating system

• Opportunity to extend this to exploit time series

relationships

• Time spent in the client

• Synchronization / ordering of SQL statements

• „Pauses‟ in execution

72

Summary

Ten sample tools to simplify performance work on DB2!

db2perf_sanity Configuration sanity check

db2perf_utils Translate numeric monitor elements to strings

db2perf_bufferpool Bufferpool snapshot analysis

db2perf_dynsql Dynamic SQL snapshot analysis

db2perf_locktree “Graphical” lockwait display

db2perf_snapdiff Collect / compare snapshots

db2perf_plandiff Highlight differences in plans

db2perf_plans Explain table analysis

db2perf_procevmon Translate db2evmon output for import into DB2

db2perf_evmon Statement event monitor analysis

73

Summary
• Source-based & easily extendible

• Many best practices built in, e.g.
• Basic configuration guidelines in db2perf_sanity

• Bufferpool hotspots in db2perf_bp

• Places to use parameter markers in db2perf_dynsql

• Finding unused indexes in db2perf_plans

• Many tasks made easier, e.g.
• Understanding lock wait dependencies in db2perf_locktree

• Finding plan differences in db2perf_plandiff

• Finding changes in snapshot data in db2perf_snapdiff

• Simulating „static SQL snapshot‟ in db2perf_evmon

• Many great technologies demonstrated, e.g.
• SQL/PL programming, nested & recursive calls, result sets

• Advanced SQL – SELECT from INSERT, etc.

• Information in the explain tables

74

I like these – where do I get support?
• There is none – these are unsupported, as-is samples

…to show you what monitoring data DB2 can produce

…to show you how this data can be a great benefit to your

system

…to show you how to use DB2 monitoring interfaces

…to show you how to use various DB2 technologies, such as

SQL/PL stored procedures, and INSERT over SELECT, etc.

• You are welcome to use these, to study them, to modify them, etc.

(subject to the usual legal terms in license.txt)

• Comprehensive, robust, fully-supported, integrated performance

monitoring tools are available from both IBM and from 3rd parties.

These work extremely well with DB2, and implement many of the

features shown in these samples.

75

Steve Rees
IBM Canada Laboratory

srees@ca.ibm.com

Session C02

DB2 Performance Samples: Ten Tools for Faster Systems

