Session C02
2-6 October, 2006

Hilton Vienna

Vienna, Austria

DB2 Performance Samples:g::
Ten Tools for Faster Systems  Za

IDUG 2006
Europe

Steve Rees
IBM Toronto Laboratory

Monday, October 2, 2006 * 1:30 p.m. — 2:30 p.m.

Platform: Unix, Linux and Windows



- Europe

Agenda

* Motivation, goals & framework
* The tools

« Configuration analysis

« Snapshot analysis

 Plan analysis

« Event monitor analysis
* Wrap up

@



Goals for the presentation

* Present & explain ten sample performance diagnostic
tools

What each tool does, and why that’s good

Where the tool gets its data

The principles & techniques involved in turning raw data into

crisply identified issues

How to use the tool

Sample output

The fine print (prerequisites, assumptions, dependencies, side-effects, limitations, etc...)
How it could be extended to be even better

- Some familiarity with DB2 performance diagnostics Is
useful here



What do these tools do?

- Build on DB2’s performance diagnostic interfaces

- Encapsulate technigues to extract, process, analyze &
present performance data

K Capture best practices from the lab & the field
¥ Easy to use
K Portable
K Repeatable
K Extendible
» Simplify the process of identifying problems

» Source for all tools are available at IDUG Insider
http://www.idug.org/user/userlogin.asp

4



IDUG 2006

These are unsupported, as-is samples
...to show you what monitoring data DB2 can produce
...to show you how this data can be a great benefit to
your system
...to show you how to use DB2 monitoring interfaces
...to show you how to use various DB2 technologies

You are welcome to use these, to study them, to modify
them, etc. (subject to the usual legal terms In license.txt)

Comprehensive, robust, fully-supported, integrated
performance monitoring tools are available from both IBM
and from 3" parties. These work extremely well with DB2,
and implement many of the features shown in these
samples.



- Europe

Agenda

* Motivation, goals & framework
* The tools

« Configuration analysis

« Snapshot analysis

* Plan analysis

« Event monitor analysis
* Wrap up

@



#1: db2perf sanity

Purpose of db2perf_sanity:

« Sanity checks configuration parameters for basic
causes of performance problems

« Warnings issued if

1.

5.
6.

Transaction log buffer < 128 pages

2. Transaction log located under the db directory
3.
4. BUFFPAGE defaulted and all bufferpools are not explicitly

Too few page cleaners and prefetchers defined

sized
Mincommit > 1
Num_poolagents < current number of connections

Implementation:
C program using CLI & DB2 APls

7



#1: db2perf sanity

How it works:

« Configuration data gathered from APIs, table
functions and catalogs

For each parameter we're interested in
1. Extract parameter value from API / table function
2. Compare with recommend value
3. Print warning / success messages for each test



#1: db2perf sanity

HOW to use it: We borrow error handling code,

etc., from the published samples

Preparation

1. Copy utility files & build script from $DB2PATH/samples/cli
to the current directory

cp $DB2PATH/samples/cli/utilcli.* .
cp $DB2PATH/samples/cli/bldapp .

 Build the program

For Windows, use

bldapp db2perf sanity « COPY
« $DB2PATHS
Use - bldapp.bat
1. Run the program etc.

db2perf sanity <dbname>
2. Update configuration based on results, if necessary



#1: db2perf sanity

Sample OUTPLI"' Output from running the tool

against the sample database

Running sanity tests on configuration for database SAMPLE
LOGBUFSZ:

Warning:

The log buffer size (logbufsz) is currently 8.
Recommendation:

The generally recommended size is 128 or greater.
Log path:

Warning:

The transaction log is currently located in '/home/srees/srees/NODE0000/SQL00003/SQLOGDIR/',
which seems to be under the database path '/home/srees'.
Recommendation:

In general, the transaction log should be located on its own device(s) if possible.
NUM_IOCLEANERS:
Passed
NUM_IOSERVERS:
Passed
BUFFPAGE & NPAGES:

Warning:

BUFFPAGE seems to be left at the default value of 1000, but the following

bufferpools still have NPAGES set to either -1 or to 1000, so they still have the default
size

IBMDEFAULTBP
Recommendation:

Use ALTER BUFFERPOOL to set NPAGES to the desired value for all bufferpools.
MINCOMMIT:

Passed

NUM_POOLAGENTS:

Passed




#1: db2perf sanity

Notes:

« Based on rules-of-thumb
- Not all messages applicable in all cases

« Path analysis is ‘quick & dirty’ - may not be 100%
accurate
« Uses C because of need to get to configuration APIs

« Tool depends on DB2 v8.2 FP9 for table functions

11



- Europe

Agenda

* Motivation, goals & framework
* The tools

« Configuration analysis

« Snapshot analysis

* Plan analysis

« Event monitor analysis
* Wrap up

12

@



#2: db2perf utils

Purpose of db2perf_utils:

* Provides a variety of ‘helper functions’ that make life
a little easier for us
1. Translation from codes used in table functions to
human-readable form

« Statement Operations
« Statement types
* Lock types

2. 'Quiet’ SQL drop function :-)

« Suppresses ‘not found’ errors.
« Useful in CLP scripts when doing proactive cleanup
(i.e. dropping objects that aren’t there yet ...)

Implementation:
SQL/PL UDFs

13



#2: db2perf utils

How to use it:

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create the stored procedures
db2 -tdQR -f db2perf utils.db2

14



#2: db2perf utils

How to use it, cont'd:

Use

1. Translation UDFs

« Simply call them in SQL to translate fields returned from

snapshot table functions & event monitors

db2 “select db2perf <UDF >2str (<element value>) from ..

Table function(s)

SNAPSHOT_LOCK
SNAPSHOT_LOCKWAIT

Element(s)
Lock object type

Translation UDF

db2perf_lkobj2str

Lock mode
Lock mode requested

db2perf_Ikmode2str

Lock status

db2perf_Ikstat2str

SNAPSHOT_TABLE

Table type

db2perf_tabtyp2str

SNAPSHOT_APPL_INFO

Application status

db2perf_apstat2str

SNAPSHOT TBS_CFG

Tablespace type

db2perf_tbstyp2str

Tablespace contents

db2perf_tbscon2str




#2: db2perf utils

How to use it, cont'd:

Use
2. 'Quiet drop’ function
db2 “call db2perf quiet drop( <suffix of DROP statement > )”

for example
db2 “call db2perf quiet drop(‘procedure db2perf crmsg’)”

16



#2: db2perf utils

How it works:

CREATE FUNCTION db2perf tbstyp2str (tablespace_type bigint)

BEGIN ATOMIC
DECLARE retstr CHAR(3);

SET retstr = CASE tablespace_ type Values & STF‘IHQS
WHEN O THEN 'DMS' extracted from
WHEN 1 THEN 'SMS' Sqlmon.h
ELSE NULL
END;
RETURN retstr;
ENDQ@

CREATE PROCEDURE db2perf quiet drop( IN statement VARCHAR(1000) )
LANGUAGE SQL
BEGIN
DECLARE SQLSTATE CHAR(5) ;
DECLARE NotThere CONDITION FOR SQLSTATE '42704'; .
Catch & overwrite

DECLARE EXIT HANDLER FOR NotThere anT found'

SET SQLSTATE = ' ' SQLSTATE

SET statement = 'DROP ' || statement;
EXECUTE IMMEDIATE statement;
END(@




#2: db2perf utils

Sample output

db2 “select substr(tablespace_ name,1,20) as ‘Name’,
tablespace_type, db2perf tbstyp2str (tablespace_type),
tbs_contents_type, db2perf tbscon2str (tbs_contents_type)
from table(snapshot_tbs cfg(cast(null as varchar(256)),-1)) as t”

Name TABLESPACE TYPE 3 TBS_CONTENTS_TYPE 5

SYSCATSPACE 1 SMS 0 Any

SYSTOOLSPACE 1 SMS 0 Any

USERSPACE1l 1 SMS 0 Any

TBS_ALL 0 DMS 0 Any

TEMPSPACE 1 sSMsS 2 System temporary

5 record(s) selected.

Untranslated values Translated values
provided by table function provided by the UDF

$ db2 “drop table blork”
SQL0204N "SREES.BLORK" is an undefined name. SQLSTATE=42704
$ db2 "call db2perf quiet drop('table blork')"
et e = G Table does not exist
but quiet_drop
$ db2 “create table blork ..” SUPPPCSSQS The error




#3: db2perf bufferpool

Purpose of db2perf_bufferpool:

* |dentifies & quantifies bufferpool-related performance
ISsues

» Reports at overall level and by bufferpool
* Issues warnings if

1.

a0

Bufferpool data or index hit ratios are below threshold
Data or index prefetch ratio below threshold

Page clean ratio below threshold

Number of dirty steals above threshold

Number of files closed above threshold

Implementation:
SQL/PL stored procedures

19



#3: db2perf bufferpool

How to use it:

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create stored procedures

db2 -td@ -f db2perf utils.db2
db2 -td@ -f db2perf bp.db2

3. Turn on bufferpool monitoring by default with
DFT MON BUFPOOL dbm config switch

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Call stored procedure & examine results
db2 “call db2perf bufferpool()”

3. Update configuration based on results, if necessary

20



How

it works:

#3: db2perf bufferpool

Snapshot data gathered from snapshot database and
snapshot bufferpool table functions

Warnings with severity levels 1-5 inserted into

db2perf msg table

Metric Formula

Activity
Threshold

Severity

Data Hit Ratio (LR-PR)/LR > 1000 LReads < 60% < 75% <90%

Index Hit Ratio (LR-PR)/LR > 1000 LReads <75% < 85% < 95%

Cleaning Async Writes / Total > 1000 page <40% < 65% < 90%
Writes writes

Prefetch Async datareads / > 1000 async data <50% <70% < 90%
Data phys reads reads

Dirty page Dirty Steals / 10,000 Tx > 100 transactions > 100 > 30 >1

steals

File Closes Files Closed /10,000 Tx | > 100 transactions > 1000 > 100 >10

1




#3: db2perf bufferpool

Sample output

$ db2 "call db2perf bufferpool ()"

Result set 1

TS SEVERITY METRIC VALUE COMMENTS

2006... 3 Dirty Page Steals / 10k Tx 27 .

2006... 3 Overall BP page clean ratio 41.6 Lots of dirty page steals -
2006... 1 IBMDEFAULTBP data hit ratio 82.1 look at bufferpool size if
2006... 1 Overall BP data hit ratio 82.1 possible, and/or page
2006... O Overall BP index hit ratio 98.8 .

2006... 0 Files closed / 10k Tx 0 Cleanmg par'ame‘rer's
2006... O IBMDEFAULTBP idx hit ratio 98.8

2006. .. Overall BP data prefetch ratio 00.0 No data prefetching activity
2006. .. Overall BP index prefetch ratio 00.0 No index prefetching activity
2006. .. IBMDEFAULTBP data pftch ratio 00.0 No data prefetching activity
2006. .. IBMDEFAULTBP index pftch ratio 00.0 No index prefetching activity

11 record(s) selected.

22



#3: db2perf bufferpool

Notes:

« Thresholds & severity levels are easily tuned to
support different environments

» Depends on DB2 v8.2.2 for table functions
« Creates SQL/PL stored procedure and db2perf msg
message table in default schema

* Returns a result set with the most recent rows added
to the message table

- Leaves the message table in place after execution

- Messages remain in message table by default

e Use ORDER BY ts DESC on SELECT to see most
recent messages first

23



#4. db2perf dynsql

Purpose of db2perf_dynsql:

 ldentifies & quantifies dynamic SQL-related

performance issues

« Calls out groups of ‘top
1. Total elapsed time
Total CPU usage
Most physical reads
Most rows read
Sorts
6. Sort overflows
« |dentifies statements that
markers instead of literals

Implementation:
CLP scripts + UDFin C

LD

10’ statements by:

might benefit from parameter

24



#4. db2perf dynsql

How to use it:

Preparation

1. Create the db2perf quiet drop utility stored procedure
db2 -td@ -f db2perf utils.db2

2. Build & define the C user-defined function

cp $SDB2PATH/samples/c/bldrtn . # use bldrtn script from
# DB2 samples
bldrtn db2perf udf # compile & copy UDF under
4 sqllib
db2 connect to <dbname>
db2 -tvf db2perf setupudf.db2 # CREATE FUNCTION for UDF

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Run the CLP script, sending the output to a file
db2 -tf db2perf dynsql.db2 -r db2perf dynsql.out
25



How it works:

#4. db2perf dynsql

1. Grabs snapshot data from snapshot dynsql table function into a
scratch table db2perf dynsql

2. Adds columns to db2perf dynsql to store rank within each metric

3. Queries snapshot table with ORDER BY & FETCH FIRST to find
top 10 statements in each metric

SELECT

FROM
OLD TABLE

Finds top 10
and for each one, uses
SELECT from UPDATE
&

UPDATE through SELECT
to record the rank within
that list back in our
snapshot table

substr (char (row_num),1,2) as "#","Executions","Rows read", "% of Total",
"r/r / 100","Statement"

( UPDATE
( SELECT

CAST (num_executions as INTEGER) as "Executions",
CAST (rows_read as INTEGER) as "Rows read",
CAST (pct_of total rows_read as SMALLINT) as "% of Total",
100 * CAST (round(CAST (rows_read as FLOAT) /
(num_executions+1),0) as INTEGER) as "r/r / 100",

topl0_rows_read,
row_number () over (ORDER BY (rows_read) DESC) as row_num,
substr( stmt_text,1,80 ) as "Statement"

FROM db2perf dynsql

WHERE rows_read > 0

ORDER BY "Rows read" DESC

FETCH FIRST 10 ROWS ONLY )

SET topl0_rows_read = char(row_num) );




#4. db2perf dynsql

How it works, cont'd:

4. Pulls out all the “Top 10’ statements from our work table —
chances are that some of them are Top 10 for more than one
metric. Look at those first ...

5. For all statements that don’t contain a parameter marker (‘?’),
calls the UDF db2perf RmLiterals to replace numeric and
character literals with parameter markers. Counts how many
duplicates this makes — i.e., how many statements with literals

could be replaced with a single statement using parameters
markers instead.

UPDATE db2perf dynsql
SET compressed statement = db2perf RmLiterals( translate( CAST( stmt_text as varchar(3000) ) ) )
WHERE length (stmt_text) < 3000
AND CAST( stmt_text as varchar(3000) ) NOT LIKE '%°?%';

SELECT
count (*) as "Count" , substr(compressed statement,1,120) as "Statement without literals"
FROM db2perf dynsql
WHERE substr( translate( ltrim( compressed statement ) ),1,6 ) IN ( 'SELECT', 'INSERT' )

AND num_executions =1
GROUP BY substr( compressed statement,1,120
ET———— Only report cases where 10 or

more statements could

potentially be replaced by 1




#4. db2perf dynsql

Sample output

Top 10 dynamic SQL statements by execution time

# Executions Exec Time % of Total sec / 100 Statement P*CGVY
““““““““““““““““““““““““““““““““““““““““““““““““““ hitter!

1 11712 478.286 20 4.083 Select D_NEXT O ID, D TAX from DIST .. #1i 1

2 117041 328.792 13 0.280 Insert into ORDER _LINE values (?, ? .. ina 3
: of CPU use,
9 10800 36.042 1 0.333 Select MIN(NO_O ID) from NEW_ORDER .. hysical
10 11311 35.859 1 0.317 Select C_LAST, C_CREDIT, C_DISCOUNT .. pny

reads &
rows read

Combined ranking of top dynamic SQL statements

Rank elapsed Rank CPU Rank phys rd Rank R/R Rank sorts Rank sort ovf Statement

10 10 4 6 Select C_LAST, C_CREDIT,

9 Select O OL CNT, O_ID, ..
4 1 1 1 Select S_QUANTITY, S DIST 01,
6 5 2 Select Count(Distinct S_I_ID) ..
7 2 2 Update STOCK set S _QUANTITY = ?, ..

We can possibly replace 693 SQL
PREPAREs with just one
statement that uses parameter
L e e markers
693 SELECT C_ID, C_FIRST FROM CUSTOMER WHERE (C_W_ID = ? AND C_D ID = ? AND C_LAST = ?)

List of dynamic SQL statements which differ only by literal wvalues
(Good candidates for parameter markers)

28



#4. db2perf dynsql

Notes:

New ‘Top 10 summaries are easily added

“Top 10’s are easily changed to "Top 20’s, etc.
UDF in C to remove literals far more natural than
doing it in SQL!

SELECT from UPDATE & UPDATE through

SELECT made storing & merging the various
Top 10 rankings very simple

Script drops work table db2perf dynsql at end
Depends on DB2 v8.2 FP9 for table functions

29



#5. db2perf locktree

Purpose of db2perf_locktree:

* Provides a (crude) graphical ‘tree’ view of in-flight
lock wait relationships between DB2 connections,
based on the snapshot lockwait table function

» Helps visualize the locking dependencies
between applications

Implementation:
Recursive SQL/PL stored procedure

30



#5. db2perf locktree

How to use it:
Preparation

1.

Connect to the desired database
db2 connect to <dbname>

2. Create the db2perf quiet drop utility stored procedure
db2 -td@ -f db2perf utils.db2
3. Create the db2perf locktree stored procedure
db2 -td@ -f db2perf locktree.db2
Use
1. Connect to the desired database
db2 connect to <dbname>
2. Call the stored procedure to capture the state of lock wait
relationships at that moment
$ db2 “call db2perf locktree()”
3. Examine the lock relationships in the result set returned from

db2perf locktree

31



#5: db2perf locktree

How it works:

1. Grabs lock walit snapshot data from snapshot lockwait
table function into a scratch table db2perf lockwait

2. Finds lock waits at the ‘root’ — where the lock holder is not
waiting on another lock. Starts with these as the roots of
our trees

3. For each instance of lock wait
a) Draw a line to it from its ‘parent’ lock wait, if one exists (ie, if the
owner of the lock we want is waiting on someone else...)

n)  Writes details about this lock to our ‘report’ table
db2perf locktree

holder / waiter application ids
lock type
lock wait time, etc.

0) Recursively calls db2perf locktree for each of the applications
waiting on the ‘parent’

4. Opens a cursor to return a result set with the lock tree

32



- Furope #5: db2perf locktree

Sample output

Waiter appl handle: 547 (getlock)
| Holder appl handle: 584 (getlock)

| Lock object type: Row.

| Lock mode requested: Intention Exclusive Lock
| Lock wait time (ms): 231451
|
|
|

Lock escallation: N
Table name: SREES.T
4mmmmme Waiter appl handle: 540 (getlock)
Holder appl handle: 547 (getlock)
Lock object type: Row

Lock mode requested: Intention Exclusive Lock
Lock wait time (ms): 229446
Lock escallation: N

Table name: SREES.U
|====== Waiter appl handle: 552 (getlock)
Holder appl handle: 540 (getlock)
Lock object type: Row

Lock mode requested: Intention Exclusive Lock

Lock wait time (ms): 215371 .
Lock escallation: N -
Table name: SREES.V Lock escalation: N
s e 1 (oo Table name: SREES.U Appllca'l'lon

Lock object type: Row.
Lock mode requested: Intention Exclusive Lock
Lock wait time (ms): 44941

name

Lock escallation: N
Table name: sREES.W  N\OHEEEEEEEEEE Waiter appl handle: 552
(j et Waiter appl handle: 606 (getlock)

e Gt pn Do (gectock) Holder appl handle: 540

Lock mode requested: Intention Exclusive Lock

P et T D Lock object type: Row

Table name: SREES.W - -

_ Lock mode requested: Intention Exclusive Lock
| === Waiter appl handle: 556 (getlock) . .

o O . o o Lock wait time (ms): 215371

Lock mode requested: Intention Exclusive Lock

|
|
| -
| Lock wait time (ms): 157304 Lock escalation: N
| Lock escallation: N
| Table name: SREES.W o
! Table name: SREES.V
------- Waiter appl handle: 562 (getlock)
| Holder appl handle: 552 (getlock)
| Lock object type: Row

| Lock mode requested: Intention Exclusive Lock .
| EREREs e | | |=-mmmme Waiter appl handle: 604 (getlock)
| Table name: SREES.W

(— Waiter appl handle: 566 (gotiock) Holder appl handle: 552 (getlock)
Holder appl handle: 562 (getlock)
Lock object type: Row

Lock object type: Row
Lock mode requested: Intention Exclusive Lock
Lock wait time (ms): 143217

fock eecailation: N Lock mode requested: Intention Exclusive Lock
Yoo g by o Lock wait time (ms): 44941
Holder appl handle: 566 jetlock: -
| Tock absect tret how (oettoen) Lock escalation: N
Lock mode requested: Intention Exclusive Lock
Table name: SREES.Y

|-=---=1 Waiter appl handle: 602 (getlock)
| Holder appl handle: 598 (getlock) .
| Lock object type:  Row  \UEE B . 6 O 6

] Lock mode requested: Intention Exclusive Lock Walter appl handle . (ge thCk)
| Lock wait time (ms): 109058
I
I
I

Eom e o Holder appl handle: 552 (getlock)

|

|

|

|

|

|

|

|

| !
| e B Table name: SREES . W
i i
|

|

|

|

|

|

|




- éEurope #5. db2perf locktree

Notes:

« Recursive SQL/PL calls are an excellent choice here

- Maximum SQL/PL nesting depth currently caps length
of lockwait chains we can display at 16

 Like lock snapshot, captures instantaneous picture
when it's run, not cumulative

e Creates tables in the current schema
* scratch tables db2perf lockwait, db2perf appl info
* report table db2perf locktree

* Note - use ‘order by line’ if selecting from
db2perf locktree

* Report is overwritten by each run
 Content of scratch tables are deleted at end of run

34



#6: db2perf snapdiff

Purpose of db2perf_snapdiff:
 Collects snapshot data into DB2 tables

« Compares data from ‘before’ & “after’ intervals
* One ‘interval’ = the change between two snapshots

 Produces a report in table db2perf snapdiff report

e Supports:
- Normalization of results to overall system activity
- Thresholds (i.e., only report differences over X%)

» Currently handles the following snapshot types

1. Database Manager M
2. Database

3. Tablespace > Very easy to
4. Tables extend to other

5. Bufferpool ) snapshot types!

Implementation:
SQL/PL stored procedures




#6: db2perf snapdiff

How to use it:

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create stored procedures and snapshot storage tables

db2 -tdQR -f db2perf utils.db2
db2 -td@ -f db2perf snapdiff.db2

3. Turn on monitoring by default with DFT_MON_ xxx
database manager configuration switches



#6: db2perf snapdiff

How to use it - the basics:

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Call stored procedure — the easy way, with one parameter
db2 “call db2perf snapdiff (<operation>)”

Prints usage ‘start’ - collect ‘start of interval’ snapshot from table function
syntax if no and store it in one of our tables

operation is . : ,
Eassed in ‘stop’ - collect ‘end of interval’ snapshot and store

It in snapshot storage table

‘diff’ - compare two rows in the snapshot tables and report
what’s different

‘list’ - show what snapshot interval data has been
collected

‘delete’ - delete all snapshot interval data from storage tables



#6: db2perf snapdiff

How to use it - the basics:
Typical sequence of operations:

1. Get the first interval of data

db2 “call db2perf snapdiff(‘start’)”

sleep (30)

db2 “call db2perf snapdiff(‘stop’)”
2. Sometime later, get another interval of data

db2 “call db2perf snapdiff(‘start’)”

sleep (30)

db2 “call db2perf snapdiff(‘stop’)”
3. List the intervals we've got

db2 “call db2perf snapdiff(‘list’)”
4. Compare the latest 2 intervals

db2 “call db2perf snapdiff (‘diff’)”

38



#6: db2perf snapdiff

How to use it - more advanced...
db2 “call db2perf snapdiff (

<operation> , <shap_table name>
<'before’interval #> , <‘after’ interval #> :
<normalize to Tx> , <threshold_ pct> ) "

<snap_table name>
- chooses one snapshot storage table to act on (defaults to all)
<‘before’ interval>, <‘after’ interval>
- number of ‘before’ & ‘after’ snapshot intervals to compare
(default to the two most recent intervals)
<normalize>
-Y’, “T’, 1" means to normalize all data by the number

of transactions executed during the snapshot period (defaults to “Y’)
<threshold pct>

- ‘clip level’ below which we don’t report differences

Normalize

results to
(defaults to 5%) number of
t ti
db2 “call db2perf snapdiff (‘diff’, i

NULL, 11, 10, 'Y’ ,5)” show any
differences

smaller than

NULL or ‘‘ here

means compare all
snapshot tables

Compare data from intervals 10 & 11 5%



: iﬁumpe #6: db2perf snapdiff

How it works - collecting data:

« Qur tables contain rows saved from snapshot table
functions when ‘start’ & ‘stop’ are called

db2perf snapdiff toc

-‘.-he TOC Table maps INTERVAL START STOP DBM DB TBS TB BP
interval numbers 1o | R e e s vty
start/stop timestamps 2006-03-02-22.02.19 480432 2006-03-02-22.02.50.158643 Y Y Y Y Y

We create our first interval by SNAPSHOT TIMESTAMP SORT_HEAP_ ALLOCATED
i . 2006-02-27-00.18.04.259134 1000 ...
getting two SnapShOt_S' 2006-02-27-00.18.15. 695562 1000 ...
¢ ’ 2006-03-02-22.02.19.480432 1000 ...
call db2perf_spapd|ff( Stan) 2006-03-02-22.02.50.158643 1000 ...
... wait a while b db2perf_snapdb
call db2perf_snapd|ff(‘st0p’) -&=1 SNAPSHOT_TIMESTAMP ROWS_READ
s 2006-02-27-00.18.04.259134 504265 ...
. 2006-02-27-00.18.15. 695562 836199 ...
The sometime later, when we 2006-03-02-22.02.19.480432 4253835 . ..
. 2006-03-02-22.02.50.158643 4627251 ...
want to compare DB2 activity

with the first interval, we create
our second interval by getting

db2perf snaptb

SNAPSHOT TIMESTAMP ROWS_WRITTEN ... TABLE NAME ...

two more snapshots: 2006-02-27-00.18.04.259134 12460 ... DISTRICT
i , 2006-02-27-00.18.04.259134 124600 ... STOCK

call db2perf_snapdiff(‘start’) é 2006-02-27-00.18.15. 695562 20574 ... DISTRICT
. . 2006-02-27-00.18.15. 695562 205900 ... STOCK

... wait a while ... 2006-03-02-22.02.19.480432 104881 ... DISTRICT
e/ ) i 2006-03-02-22.02.19.480432 1048906 ... STOCK

call db2perf_snapd|ff( Stop) ot 2006-03-02-22.02.50.158643 114106 ... DISTRICT
2006-03-02-22.02.50.158643 1140702 ... STOCK




How it works - comparing:

#6: db2perf snapdiff

We're finding 4 times: start & stop for

each of interval 1 & 2

1. Finds the start/stop times for the intervals to be
compared from the TOC

2. For each snapshot table to be compared
a. Finds the pairs of rows from this table with:

Timestamps matching the ‘before’ & ‘after’ interval times

Matching ‘key column’ values (if applicable)
For example, rows with the same table name, the same bufferpool
name, etc.

) For each numeric column in the rows

Finds the normalized activity in intervals 1 & 2

(Interval 1 ' stop') - (Interval 1 ' start') (Interval 2 'stop') - (Interval 2 ' start')

(# transactionsininterval 1 / 1000) (# transactionsininterval 2 / 1000)

Calculates the difference between the normalized values for
interval 1 & 2 for this column

If the change between intervals is greater than the threshold
Write the column name, interval values & difference to the report



"Confusing”, you say?

- Furope

#6: db2perf snapdiff

db2 call db2perf snapdiff (‘diff’)

db2perf snapdiff toc

Ok, in pictures ..

All these changes
happen to be below

INTERVAL START

.18.04.259134 2006-02-27-00.18.15.695562 Y
.02.19.480432 2006-03-02-22.02.50.158643 Y

1 2006-02-27-00
2 2006-03-02-22

DBM DB TBS TB BP

2006...
2006...
2006...
2006...

259134
695562
480432
158643

db2perf snapdbm

SNAPSHOT TIMESTAMP

2006-02-27-00.18.04
2006-02-27-00.18.15
2006-03-02-22.02.19.480432
2006-03-02-22.02.50.158643

.259134
.695562

POST_THRESHOLD_ SORTS ..

/

db2perf snapdb

SNAPSHOT TIMESTAMP

2006-02-27-00.18.04.259134
2006-02-27-00.18.15.695562
2006-03-02-22.02.19.480432
2006-03-02-22.02.50.158643

ROWS_READ
504265
836199

4253835

4627251

COMMITS ..

45654 ..

}C&OCS
253236 ..

the default

threshold of 5%

db2iaerf_snaptb

SNAPSHOT TIMESTAMP ROWS_WRITTEN
2006-02-27-00.18.04.259134 12460
2006-02-27-00.18.04.259134 124600
2006-02-27-00.18.15.695562 20574
2006-02-27-00.18.15.695562 205900
2006-03-02-22.02.19.480432 104881
2006-03-02-22.02.19.480432 1048906
2006-03-02-22.02.50.158643 114106
2006-03-02-22.02.50.158643 1140702

TABLE NAME ..

DISTRICT
STOCK
DISTRICT ‘/:

STOCK .
DISTRICT ——
STOCK

DISTRICT : “.:

STOCK — ..

42

(Interval 1 post thersh sorts / 1k T )
0-0 =0 =~ 0-0=
(45,654 - 27,657) / 1000 = g change
etween
(Interval 2 post thresh sorts / 1k Tx )ad Intervals 1 & 2
L —» 0-0 =0
| (253,236 - 232,945) / 1000 )
Interval 1 rows read / 1k Tx e =
(836,199 - 504.265) _ =18443 |\ }fé“r%?,v - %g;‘d“? KTy
(45,654 - 27,657) / 1000 decrease between
Interval 2 rows read / 1k Tx / Intervals 1 & 2
(4,627,251 - 4,253,835) = 18,403 \(-0.2 %)
(253;2% = 232g945) / 1000
: (DISTRICT: )
Int. 1 DISTRICT rows written / 1k Tx 455 — 451 =
(20,574 — 12,460) = 451 | 4rows witten
(45,654 - 27,657) / 1000 ver 1k Tx
Int. 1 STOCK rows written / 1k Tx :Qt‘;rrflgfselbgt"z"ee”
(205,900 — 124,600) = 4,517 (0.8%)
(45,654 - 27,657) / 1000 & J
Int. 2 DISTRICT rows written / 1k Tx | \ ( STOCK: )
(114,106 — 104,881) =455 4,524 — 4,517 =
(253,236 - 232,945) / 1000 7 rmivks ¥vr|tten
per X
Int. 2 STOCK rows written / 1k Tx / increase between
(1,140,702 — 1,048,906) = 4,524 intervals 1 & 2

(253,236 — 232,945) / 1000

\(0. 1%) -




#6: db2perf snapdiff

Here we happen to be

sample OLI"'pU"' comparing intervals before &

after an index was dropped ...

$ db2 "call db2perf snapdiff('diff')"

Result set 1

MESSAGE .. many fewer transactions
.. many, many more rows read,

db2perf snapdiff called at 2006-03-04-22.47.50.316251

operation:.............. diff IOgiCGl data r'eads, PhYSiCGI
snap_table name:........

'before' interval:...... -1 dGTG r'eads :

'after' interval:....... -1 .. many fewer' index reads
normalize to 1lk Tx:..... Y

threshold $:............ 5 efc., etc., etc.

S 03/02/2006 03/02/2006
*** for > 100% difference 22:4t2:07 22:-’;0:49
*xx o o

. for > 33, 03/02/2006 03/02/2006
for > 10 22:43:08 22:51:35

Normalizing to 1K Tx per Interval 40.9 0.1 -99.5 %

*%*  ROWS_READ 18228.0 412066692.7  2260516.9 %

*%*  POOL DATA L READS 27898.6 10196246.9 36447.4 %

*%*  POOL DATA P_READS 1652.4 15433.7 833.9 %

**  POOL_DATA WRITES 1665.8 0.0 -100.0 %

* POOL_INDEX I_READS 108994.1 73801.2 -32.2 %

* POOL_INDEX P_READS 96.9 114.4 18.0 %

**  POOL_INDEX WRITES 262.7 0.0 -100.0 %

**  POOL READ TIME 3025.5 4753.0 57.0 %

**  POOL WRITE TIME 14882.7 0.0 -100.0 %

43



#6: db2perf snapdiff

Sample output cont'd

Table Snapshot (db2perf snaptb) -------------—-——-————————————

Table DISTRICT

Normalizing to 1K Tx per Interval
* ROWS_READ

Table HISTORY

Normalizing to 1K Tx per Interval
£ ROWS_WRITTEN

Buffer Pool Snapshot (db2perf snapbp) -—-—--——————— === -

Bufferpool IBMDEFAULTBP

Normalizing to K Tx per Interval
**%  POOL DATA L READS
**%  POOL DATA P READS
* % POOL_DATA WRITES

03/02/2006
22:42:07
to
03/02/2006
22:43:08

03/02/2006
22:42:07
to
03/02/2006
22:43:08

03/02/2006
22:42:07
to
03/02/2006
22:43:08
40.9
27893.9
1651.9
1663.9

03/02/2006
22:50:49
to
03/02/2006
22:51:35

0.1
1180.7

03/02/2006
22:50:49
to
03/02/2006
22:51:35

03/02/2006
22:50:49

to
03/02/2006
22:51:35
0.1
10196289.1
15433.7
0.0

-99.
-13.

-99.
-31.

-99.
36453.
834.
-100.

o U0

O N o WU,
d° d° o° o°




#6: db2perf snapdiff

Notes:

 Easily extended to compare numeric values in other
snapshot tables
...or pretty well any table with a timestamp column!
-+ Table definitions are derived ‘on the fly’, not built in

« Some snapshot fields don’t make sense to compare,
e.g. instantaneous values like ‘lock list used’, etc.

+ Snapdiff supports (hard-coded) ‘ignore lists’ to
overlook columns we’re not interested in

« Depends on DB2 v8.2.2 for snapshot table functions

45



- Europe

Agenda

* Motivation, goals & framework
* The tools

« Configuration analysis

« Snapshot analysis

* Plan analysis

« Event monitor analysis
* Wrap up

46

@



#7. db2perf plandiff

Purpose of db2perf_plandiff:

« Examines the contents of the explain tables to
identify plan changes

« Saves time in combing through db2exfmt output,
looking for non-trivial changes

« Useful for ‘bulk comparing’ plans across
migrations, system changes, etc.

Implementation:
Nested SQL/PL stored procedures

47



#/7. db2perf plandiff

How to use it:
Preparation

1.

Connect to the desired database
db2 connect to <dbname>

2. Create the db2perf quiet drop utility stored procedure
db2 -td@ -f db2perf utils.db2
3. Create the db2perf plandiff stored procedures
db2 -td@ -f db2perf plandiff.db2
4. Ensure the explain tables exist and are populated
Use
1. Connect to the desired database
db2 connect to <dbname>
2. Call the stored procedure to compare all plans with matching SQL &

matching patterns of requester, schema, source name & section

db2 “call db2perf plandiff (
<requester>, <schema>, <source name>, <section>)”

48



#/7. db2perf plandiff

How to use it, cont'd:

For example
db2 “call db2perf plandiff (‘SREES’,’SREES’,’'F00%’,0)"”

compares all pairs of plans in the explain tables where

* Original statement texts match

*  Requester and schema are ‘SREES’

« Source name (i.e. package name) starts with ‘FOO’

+ Section number is anything (O is wildcard, as in db2exfmt)

and displays the results

3. If differences are reported, use the contents of
db2perf plandiff report to determine which statements to
examine with db2exfmt

49



IDUG 2006

1. Opens acursor C1 on EXPLAIN STATEMENT
to find rows matching the patterns provided

2. Opens another cursor C2 on
EXPLAIN STATEMENT to find all other rows

that
Match the patterns, and
Match the statement text found in C1

3. For each pair of matching statements
Generates a ‘signature string’ for each from
the operators & operands in the explain
tables for that statement

db2perf plandiff version

db2exfmt version

Access Plan:

Total Cost: 25.7601
Query Degree:

N EEEEEEEEEEETSR

1

Rows
RETURN
( 1)
Cost

I/0

I

1
GRPBY
( 2)
25.7593
1.96576

I
900.254
IXSCAN
( 3)
69.031
5.268

I
450127

NDEX: SREES
NU_ORD_IDX1

Value of output parameters T

Parameter Name : PLAN STRING
Parameter Value :

$ db2 “call db2perf_planstring('SREES','2006—02—12—15.46.03.296586','SREES","DELS‘,l,")”

RETURN (1) <-Op (2) GRPBY (2)<-Op(3) IXSCAN(3)<-Object (NU ORD IDX1)




#7. db2perf plandiff

How it works, cont'd:

n) Compares the signature strings of the two plans

c) Writes the comparison result to db2perf plandiff
along with

« SQL statement text

« Schema name )
 Package name

e Section number

« Timestamp

 Estimated cost in timerons _

for both statements
being compared

4. Opens & return a result set cursor with the plan
comparison results

51



Sample output

« Looking for plan changes before & after a slowdown in our system

#/7. db2perf plandiff

Plan Package Name Section
Change?
Yes | SREES.DELS 1

| SREES.DELS

Cost of SELECT & DELETE on

Timestamp

2006-...296586
2006-...132561

NEW_ORDER

has skyrocketed - check out plans for these
statements in db2exfmt

Cost

Statement Text

(timerons)

Yes | SREES.DELS 2
| SREES.DELS 2
I
I
I

No | SREES.DELS 3

SREES .DELS

No apparent change in plan
for UPDATE on ORDERS

Report run at 2006-02-12-16.4
Compared 90 plan pairs (4 look different, 86 look unchanged). Unable to compare 0 plan(s) due
to length or complexity.

2006-...296586
2006-...132561
2006-...296586

132561

6.20.984718

38
28251

51
51

SELECT MIN( no_o_id ) INTO :H00009 :HO00010
FROM new_order WHERE

no w_id =:H00001 AND no_d id =
:H00008 WITH RR USE AND KEEP EX
CLUSIVE LOCKS

DELETE FROM new_prder WHERE no_w_id = :HO

0001 AND no_d id = :H00008 AN
D no o_id = :H00009

UPDATE orders SET o_carrier id = :H00002

WHERE o_id = :H00009 AN

D o w _id = :H00001 AND o d id = :H00008

« Based on this data, it's worthwhile digging into db2exfmt output,
especially for the DELETE & SELECT statements




#/7. db2perf plandiff

Notes:

« Assumes explain tables exist in current default schema
and are already populated
« Compares statements up to 30,000 characters in length

- Warns when statements are found that are too long /
complex to be compared

« Currently reports all plan comparison results — match or
non-match

« Tip - use more restrictive patterns to reduce scope &
Improve runtime
- E.g. ‘PROD%’ instead of just ‘%’
» Highly populated explain tables (especially with many

versions of the same statements) could cause long
runtimes for this tool

53



#8: db2perf plans

Purpose of db2perf_plans:

« Mines the explain tables for useful information
about SQL execution plans

- Most expensive statements

By total cost
By 1/O cost

«  Unreferenced indexes

Implementation:
SQL/PL stored procedure

54



#8. db2perf plans

How to use it:

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create the utility stored procedures
db2 -td@ -f db2perf utils.db2

3. Create the db2perf plans stored procedure
db2 -tdQ@ -f db2perf plans.db2

4. Ensure the explain tables exist and are populated

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Call the stored procedure
db2 “call db2perf plans()”

55



#8: db2perf plans

How it works:

1. Selects the 10 statements from EXPLAIN STATEMENT
with the greatest values for TOTAL cosT
* Write cost & SQL statement to db2perf plans report

Selects the 10 RETURN Operators from

RETURN is EXPLAIN OPERATOR With the greatest 1o cosT

erator - Join these with EXPLAIN STATEMENT to get the SQL text

the plan; . '
S T0 ot Write cost & SQL statement to db2perf plans report

represents

"5 13, For each table referenced in EXPLAIN OBJECT
plan *  Find all indexes on that table from SYSCAT . INDEXES

 If an index is not found in EXPLAIN OBJECT, write a
message to db2perf _plans_report

56



#8. db2perf plans

Sample output

$ db2 "call db2perf plans()"

Result set 1

Top 10 most expensive statements - total cost

Rank Cost Source Section
1 30035 SREES .NEWS 6
SELECT i _price, i name, i_data INTO :H00056 , :HO0055 , :H00043 FROM item

WHERE i_id = :H00049
2 7644 SREES . STKS 2

SELECT count(distinct S_I_ID) INTO :H00006 FROM ORDER LINE, STOCK WHERE OL_W_ID
= :H00001 AND OL D_ID = :H00002 AND OL O_ID < :

Top 10 most expensive statements - I/O cost

Rank Cost Source Section
1 2322 SREES .NEWS 6
SELECT i_price, i name, i_data INTO :H00056 , :HO0055 , :H00043 FROM item

WHERE i_id = :H00049

57



#8. db2perf plans

Sample output, cont'd

Comparative ranking by total cost & I/O cost

Total I/0O

Cost Cost

Rank Rank Statement

SELECT i_price, i name, i_data INTO :H00056, :H00055, :H00043

SELECT count(distinct S_I ID) INTO :H00006 FROM ORDER LINE, STOCK

UPDATE ORDER_LINE SET ol _delivery d = :H00012 WHERE ol _w_id = :H00001

DECLARE READ ORDERLINE CUR CURSOR FOR SELECT ol i_id, ol _supply w_id,

UPDATE stock SET s_quantity = :H00052, s_order_cnt = :HO

UPDATE customer SET c_balance = :H00015, c_delivery cnt =

UPDATE orders SET o_carrier_ id = :H00002 WHERE o_id = :H00009 AND

UPDATE customer SET c_datal = :H00039, c_data2 = :H00040

SELECT SUM( ol _amount ) INTO :H00011l FROM order line WHERE ol w_id =

0 SELECT s_quantity, s_dist 01, s _dist 02, s dlSt 03, s_dist 04, s_dls
9 DELETE FROM new_order WHERE no_w_id = :HO0001 AND no_d id = :H00008

R OowooJdoUl b WDNR
oo JWDNR

Tables with unreferenced indexes

Table: SREES.HISTORY
HIST 1

Table: SREES.ITEM
ITEM_ IDX1
ITEM 1

58



#8: db2perf plans

Notes:

db2perf plans doesn't currently ignore duplicate
SQL statements

It might be reasonable for it to go for the most recent
version of the plan

There is a huge amount of information about SQL
plans in the explain tables that could be mined!

- Types of joins / scans / etc. used

» Missing statistics
The fact that indexes are unreferenced in these plans
doesn’t mean that they can necessarily be dropped

- Extra digging likely required

59



- Europe

Agenda

* Motivation, goals & framework
* The tools

« Configuration analysis

« Snapshot analysis

* Plan analysis

« Event monitor analysis
* Wrap up

60

@



#9: db2perf procevmon

Purpose of db2perf_procevmon:

« Translates statement event monitor output
produced by WRITE TO FILE option and
db2evmon INto .DEL files to IMPORT / LOAD

back into DB2
+  Powerful tools in DB2 to mine this data!

« Creates a table with the same columns / layout as

produced by ‘WRITE TO TABLE option of CREATE
EVENT MONITOR

*  Queries built with ‘WRITE TO TABLE’ event

monitor data in mind will work with tables built by
db2perf procevmon

Implementation:
C program

61



#9: db2perf procevmon

How to use it:

Preparation
1. Compile db2perf procevmon
UNIX: cc -o db2perf procevmon \
db2perf procevmon.c \

-I $DB2PATH/include -L $DB2PATH/lib -1 db2
Windows: cl db2perf procevmon.c
rem 3INCLUDES, etc., must point to DB2 path

2. Capture statement event monitor output

db2 “create event monitor e for statements
write to file ‘/tmp’”

db2 set event monitor e state=1l
execute your workload ...

db2 set event monitor e state=0

db2evmon -path /tmp > db2evmon.out
62



#9: db2perf procevmon

How to use it, cont'd:

Use

1. Run db2perf procevmon

db2perf procevmon <output file from db2evmon>
<DEL file for statements> [ <DEL file for subsections> ]
for example

db2perf procevmon db2evmon.out stmt evt.del

2. Create the tables to hold the statement / subsection data

db2 connect to <dbname>
db2 -tvf db2perf procevmon.db2

3. LOAD / IMPORT the event monitor data into DB2 from
the DEL file(s).

db2 load from <DEL file for statements> of DEL replace into
db2perf evmon

db2 load from <DEL file for subsections> of DEL replace into
db2perf evmon subsect



#9: db2perf procevmon

How it works:

1. Reads lines from the input
file

2. When the beginning of a

statement event is seen

a) Collect values from the
following lines and save
them in an internal
structure

When a line is seen that is
not expected, dump what
we have to the .DEL
output file, and resume
looking for the next line

3. Similar processing happens
when a subsection event is
seen

It would
have been
simpler to

write
things out
as we find
them, but
we need to
change the
order of
some fields
to match
the WRITE
TO TABLE
format

64

23) Statement Event ...
Appl Handle: 13
Appl Id: *LOCAL.DB2.060226054531
Appl Seq number: 0020

Record is the result of a flush: FALSE

Type Dynamic
Operation: Open
Section 214
Creator : NULLID
Package : SQLC2E06

Consistency Token : AAAAACEU

Package Version ID

Cursor : CLP_CURSOR 4

Cursor was blocking: TRUE

Text : SELECT PARM MODE FROM ...
02/26/2006 00:55:06.286922
Stop Time: 02/26/2006 00:55:06.286962
Exec Time: 0.000040 seconds

Number of Agents created: 1

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

Start Time:




#9: db2perf procevmon

Notes:

« db2evmon output generally changes a bit from
release to release

- Compatible with v7.x, v8.2

65



#10: db2perf evmon

Purpose of db2perf_evmon:

« Mines statement event monitor data to identify
‘heavy hitters’
« Top 10 SQL statements (either static or dynamic)
« Execution time
* Physical reads

e Rows read
e Sorts

- COMMIT / ROLLBACK frequencies / times
Implementation:
SQL/PL stored procedure

66



#10: db2perf evmon

How to use it:

Preparation

1. Create the utility stored procedures
db2 -td@ -f db2perf utils.db2

2. Create the db2perf evmon Stored procedure
db2 -tdQR -f db2perf evmon.db2

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Collect statement event monitor data in DB2
- Either using WRITE TO TABLE' option, or WRITE TO FILE'’
followed by db2perf procevmon and LOAD S e
3. Call db2perf evmon( <tabname> [, <top N>])| 48
db2 “call db2perf evmon(‘evmon tbl’,620)” Sﬂﬂﬁﬁewm
67 evmon_tbl




#10: db2perf evmon

How it works:

1. Builds dynamic SQL ‘count (*)’ statements to
summarize overall event monitor data

- # of events
- # of transactions
« COMMIT time



#10: db2perf evmon

How it works, cont'd:

2. For each of our “Top N’ categories by
statement (elapsed time, rows read, etc.)

a) Builds dynamic SELECT to aggregate the
statistic we’re after, across all events with
matching SQL text/package/section.

* Fetches only the first N rows (default to 10)

« Translates statement type codes, operation
codes, etc., to words
e.g. statement type 2 = ‘Static SQL’

0) For each aggregate row fetched

If the statement is static, retrieves the SQL
text from SYSCAT . STATEMENTS

69



#10: db2perf evmon

Sample output

$ db2 "call db2perf evmon(‘e_stmt_ static’,5)"

Statistics on event monitor table e stmt static

Number of events:............ 189798

Number of connections:....... 21

Number of transactions:...... 5580

Number of rollbacks:......... 0

Start / stop timestamps:..... 2006-03-06-15.06.23.975777 to 2006-03-06-15.16.20.279026 (956.3 seconds)

Top 5 statements by elapsed time

Elapsed Package Section # Events CPU Time Type Statement
15.7 PAYS 2 2717 0.000 STATIC DECLARE CUST_CURSOR1 CURSOR FOR SELECT
5.7 SYSSN400 58 8856 0.000 DYNAMIC Select S_QUANTITY, S DIST 01, S DIST 0

Top 5 statements by total physical reads

Physical
Reads Package Section # Events Type Statement
5028 NEWS 7 14442 STATIC SELECT s_quantity, s dist 01, s_dist 02,
954 SYSSN400 58 8856 DYNAMIC Select S_QUANTITY, S DIST 01, S DIST 02, S DIST O,

Top 5 statements by rows read / written

Top 5 statements by sort time

70



#10: db2perf evmon

Notes:

» Aggregated CPU times are often zero on some
platforms due to minimum 10ms resolution supplied
by the operating system

* Opportunity to extend this to exploit time series
relationships
- Time spent in the client

- Synchronization / ordering of SQL statements
- ‘Pauses’ in execution

71



Summary

Ten sample tools to simplify performance work on DB2!
db2perf_sanity

Configuration sanity check

db2perf_utils

Translate numeric monitor elements to strings

db2perf_bufferpool

Bufferpool snapshot analysis

db2perf_dynsql

Dynamic SQL snapshot analysis

db2perf _locktree

“Graphical” lockwait display

db2perf_snapdiff

Collect / compare snapshots

db2perf_plandiff

Highlight differences in plans

db2perf_plans

Explain table analysis

db2perf_procevmon

Translate db2evmon output for import into DB2

db2perf_evmon

Statement event monitor analysis

72




Summary

» Source-based & easily extendible

* Many best practices built in, e.q.
« Basic configuration guidelines in db2perf_sanity
 Bufferpool hotspots in db2perf_bp
« Places to use parameter markers in db2perf _dynsql
 Finding unused indexes in db2perf plans

- Many tasks made easier, e.qg.
« Understanding lock wait dependencies in db2perf _locktree
 Finding plan differences in db2perf plandiff
 Finding changes in snapshot data in db2perf _snapdiff
« Simulating ‘static SQL snapshot’ in db2perf_evmon

- Many great technologies demonstrated, e.g.
« SQL/PL programming, nested & recursive calls, result sets
« Advanced SQL — SELECT from INSERT, etc.
 |Information in the explain tables
73



| like these — where do | get support?

* There is none — these are unsupported, as-is samples
...to show you what monitoring data DB2 can produce
...to show you how this data can be a great benefit to your
system
...to show you how to use DB2 monitoring interfaces

...to show you how to use various DBZ2 technologies, such as
SQL/PL stored procedures, and INSERT over SELECT, etc.

* You are welcome to use these, to study them, to modify them, etc.
(subject to the usual legal terms in license.txt)

« Comprehensive, robust, fully-supported, integrated performance
monitoring tools are available from both IBM and from 3" parties.
These work extremely well with DB2, and implement many of the
features shown in these samples.

74



Session C02
DB2 Performance Samples: Ten Tools for Faster Systems

Steve Rees

IBM Canada Laboratory
srees@ca.ilbm.com

75




