

TURBO PASCAL®
Owner's Handbook

Version 4.0

Borland International
4585 Scotts Valley Drive
Scotts Valley. CA 95066

This manual was produced in its entirety with
Sprint:@ The Professional Word Processor,

available from Borland.

All Borland products are trademarks or registered trademarks of
Borland International, Inc. or Borland/ Analytica, Inc. Other brand and product

names are trademarks or registered trademarks of their respective holders.
Copyright ©1987 Borland International.

Copyright ©1987
All rights reseNed

Printed in the U.S.A.

109876543

Table of Contents

Introduction 1
Understanding 4.0 .. 2

Integrated Environment and Command-Line Compilers 2
Separate Compilation ... 2
Programs and Units ... 2
Compile, Make, and Build 3
Pick File List ... 3
File Extensions ... 3

About This Manual .. .4
The User's Guide ... 5
The Reference Manual ... 6
Appendices .. 6

Typography .. 7
How to Contact Borland ... 7

Part 1

Chapter 1. Getting Started 11
What's On Your Disks .. 12
Installing Turbo Pascal On Your System 14

Setting Up On a Floppy Disk System 14
Setting Up On a Hard Disk 15

Choosing From Two Compilers 15
Using This Manual ... 16

Chapter 2. Beginning Turbo Pascal 19
Using the Integrated Environment 19

Using Hotkeys .. 21
Loading Turbo Pascal .. 25
Creating Your First Program 25

Analyzing Your First Program 26
Saving Your First Program 26
Compiling Your First Program 26
Running Your First Program 27
Checking the Files You've Created 28

Stepping Up: Your Second Program 28
Programming Pizazz: Your Third Program 29

The Turbo Pascal Compiler 31

So, What's a Compiler Anyway? 32
What Gets Compiled? .. 32
Where's the Code? ... 33

Compile, Make, and Build 34
Compile-Time Errors ... 35
Runtime Errors .. 35

Chapter 3. Programming in Turbo Pascal 37
The Seven Basic Elements of Programming 38

Data Types .. 39
Integer Data Types ... 39
Real Data Types .. .40
Character and String Data Types 41

Defining a String .. 42
Boolean Data Type ... 43
Pointer Data Type .. 44

Identifiers .. 45
Operators ... 45

Assignment Operators .. 46
Unary and Binary Operators 46
Bitwise Operators .. 47
Relational Operators ... 47
Logical Operators .. 48
Address Operators ... 49
Set Operators ... 49
String Operators ... 49

Output ... 49
The Writeln Procedure 49

Input ... 51
Conditional Statements ... 51

The If Statement ... 51
The Case Statement .. 52

Loops .. 53
The While Loop ... 53
The Repeat..Until Loop 54
The For Loop .. 55

Procedures and Functions 56
Program Structure ... 56
Procedure and Function Structure 57
Sample Program ... 58
Program Comments .. 59

Chapter 4. Units and Related Mysteries 61
What's a Unit, Anyway? .. 61

A Unit's Structure ... 62
Interface Section ... 62
Implementation Section 63
Initialization Section ... 64

How Are Units Used? .. 64
Referencing Unit Declarations 65

TURBO.TPL .. 68
Writing Your Own Units .. 70

Compiling a Unit .. 70
An Example ... 70
Units and Large Programs 71
TPUMOVER .. 72

Chapter 5. Getting the Most from Your PC 75
Writing Textbook Programs 75
Turbo Pascal Extensions .. 76

Data-Type Extensions .. 76
Built-In Procedures and Functions 76

Using MS-DOS Calls ... 77
Screen Routines ... 79
Graphics Routines ... 82
Getting Down to Assembly Language 82

The Inline Statement ... 82
The Inline Directive .. 83

External Procedures and Functions 83

Chapter 6. Project Management 85
Program Organization .. 85

Initialization .. 86
The Build and Make Options 87

The Make Option .. 88
The Build Option .. 88

The Stand-Alone Make Utility 89
A Quick Example .. 89

Creating a Makefile .. 90
Using MAKE .. 91

Conditional Compilation ... 91
The DEFINE and UNDEF Directives 92

Defining at the Command Line 92
Defining in the Integrated Environment 93

iii

Predefined Symbols .. 93
The VER40 Symbol ... 93
The MSDOS and CPU86 Symbols 93
The CPU87 Symbol .. 94
The IFxxx, ELSE, and ENDIF Symbols 94

The IFDEF and IFNDEF Directives 95
The IFOPT Directive ... 96

Optimizing Code .. 97

Chapter 7. Using the Unit Mover 99
A Review of Unit Files .. 99
Using TPUMOVER ... 100

TPUMOVER Commands 101
Moving Units into TURBO.TPL 102
Deleting Units from TURBO.TPL 103
Moving Units Between .TPL Files 103
Command-Line Shortcuts 104

Chapter S. Converting from Turbo Pascal 3.0 105
Using UPGRADE ... 105

13 Activate Turbo3 Unit 107
IJ Activate Journal File .. 108
IN No Source Markup .. 109
10 [d:][path] Output Destination 109
IU Unitize .. 109
What UPGRADE Can Detect 111
What UPGRADE Cannot Detect 113
An UPGRADE Checklist 113

Using Turbo3 and Graph3 114
The Turbo3 Unit .. 115
The Graph3 Unit .. 116

Primary Conversion Tasks 116
Predefined Identifiers ... 117
Data Types ... 117
Language Features .. 119
Input and Output ... 119
Program and Memory Organization 120
Compiler Directives and Error-Checking 121
Assembly Language Usage 122

Chapter 9. Debugging Your Turbo Pascal Programs 125
Compile-Time Errors ... 125
Runtime Errors " 126

iv

Input/Output Error-Checking 126
Range-Checking .. 128

Tracing Errors .. 130
Using .TPM and .MAP Files 132
Using a Debugger .. 135

Preparing to Use Periscope 135
Starting Periscope ... 136

Basic Periscope Commands 138
The Trace (T) Command 138
The Jump (J and JL) Commands 138
The Go (G) Command 138
The Unassemble (U, US, UB) Commands 139
The Display (D, Dx) Commands 140
The View (V) Command 140
The Enter (E) Command 140
The Registers (R) Command 141
The Breakpoint (BC, BR, BM) Commands 141

Chapter 10. The Turbo Pascal Menu Reference 143
Menu Structure ... 143

The Bottom Line .. 146
The Edit Window ... 146

How to Work with Source Files in the Edit Window 148
Creating a New Source File 148
Loading an Existing Source File 149
Saving a Source File 149
Writing an Output File 149

The Output Window .. 150
. The File Menu ... 150

Load .. 151
Pick ... 151
New .. 152
Save .. 152
Write to ... 152
Directory .. 152
Change dir ... 152
OS shell ... 153
Quit .. 153

The Edit Command ... 153
The Run Command ... 153
The Compile Menu ... 153

Compile ... 154
Make .. 154
Build .. 154

v

Destination .. 155
Find error .. 155
Primary file .. 155
Get info ... 155

The Options Menu .. 156
Compiler .. 156
Environment ... 159
Directories ... 160
Parameters ... 162
Load Options .. 162
Save Options ... 162

About the Pick List and Pick File 162
The Pick List ... 163
The Pick File ... 163
Loading a Pick File .. 163
Saving Pick Files .. 164
Configuration Files and the Pick File 164

Chapter 11~ Using the Editor 165
Quick In, Quick Out ... 165
The Edit Window Status Line 166
Editor Commands .. 166

Basic Movement Commands 168
Extended Movement Commands 169
Insert and Delete Commands 170
Block Commands ... 171
Miscellaneous Editing Commands 172

The Turbo Pascal Editor Versus WordStar 176

Chapter 12. Command-Line Reference 179
Using the Compiler ... 179
Compiler Options ... 180

The Compiler Directive (1$) Command 181
Compiler Mode Options 182

The Make (1M) Option 182
The Build All (lB) Option 183
The Quiet Mode (/Q) Option 183
The Find Error (IF) Option 183

Directory Options ... 185
The Executable Directory (IE) Option 186
The Include Directories (II) Option 186
The Object Directories (10) Option 186
The Turbo Directory (IT) Option 187

vi

The Unit Directories (lU) Option 187
Program Execution Options 188

The Run In Memory (lR) Option 188
The eXecute (IX) Option 189

The TPC.CFG File ... 189

Part 2

Chapter 13. Tokens and Constants 193
Special Symbols and Reserved Words 193
Identifiers ... 195
Labels ... 197
Numbers .. 197
Character Strings ... 198
Constant Declarations ... 199
Comments ... 200
Program Lines ... 200

Chapter 14. Blocks, Locality, and Scope 201
Syntax .. 201
Rules of Scope .. 203
Scope of Interface and Standard Identifiers 203

Chapter 15. Types 205
Simple Types ... 206

Ordinal Types .. 206
The Integer Type ... 207
The Boolean Type ... 208
The Char Type ... 208
The Enumerated Type 209
The Subrange Type .. 209

The Real Type .. 210
Software Floating Point 210
Hardware Floating Point 211

String Types ... 211
Structured Types ... 212

Array Types .. 212
Record Types .. 213
Set Types .. 215
File Types .. 216

Pointer Types .. 216
Identical and Compatible Types 217

Type Identity ... 217
Type Compatibility ... 218

vii

Assignment Compatibility 218
The Type Declaration Part 219

Chapter 16. Variables 221
Variable Declarations ... 221

The Data Segment .. 222
The Stack Segment .. 222
Absolute Variables .. 223

Variable References ... 223
Qualifiers .. 224

Arrays, Strings, and Indexes 225
Records and Field Designators 226
Pointers and Dynamic Variables 226

Variable Typecasts .. 226

Chapter 17. Typed Constants 229
Simple-Type Constants .. 230
String-Type Constants ... 230
Structured-Type Constants 230

Array-Type Constants ... 231
Record -Type Constants .. 232
Set-Type Constants ... 232

Pointer-Type Constants .. 233

Chapter 18. Expressions 235
Expression Syntax .. 236
Operators .. 239

Arithmetic Operators .. 239
Logical Operators ... 240
Boolean Operators .. 241
String Operator ... 242
Set Operators .. 242
Relational Operators .. 243

Comparing Simple Types 244
Comparing Strings .. 244
Comparing Packed Strings 244
Comparing Pointers ... 244
Comparing Sets .. 245
Testing Set Membership 245

The @ Operator ... 245
@ with a Variable ... 245
@with a Value Parameter 246
@ with a Variable Parameter 246

viii

@witha Procedure or Function 246
Function Calls .. 246
Set Constructors .. 247
Value Typecasts .. 248

Chapter 19. Statements 249
Simple Statements .. 249

Assignment Statements .. 250
Procedure Statements ... 250
Goto Statements .. 251

Structured Statements ... 251
Compound Statements .. 251
Conditional Statements .. 252

If Statements '. 252
Case Statements : 253

Repetitive Statements ... 254
Repeat Statements .. 255
While Statements ... 255
For Statements ... 256

With Statements .. 258

Chapter 20. Procedures and Functions 261
Procedure Declarations .. 261

Forward Declarations ... 263
External Declarations .. 263
Inline Declarations .. 264

Function Declarations ... 264
Parameters ... 266

Value Parameters ... 267
Variable Parameters ... 267
Untyped Variable Parameters 267

Chapter 21. Programs and Units 269
Program Syntax .. 269

The Program Heading ... 269
The Uses Clause .. 270

Unit Syntax .. 271
The Unit Heading ... 271
The Interface Part ... 271
The Implementation Part 272
The Initialization Part ... 273
Units that Use Other Units 274

ix

Chapter 22. Input and Output 275
An Introduction to I/O .. 275
Standard Procedures and Functions for All Files 276
Standard Procedures and Functions for Text Files 277
Standard Procedures and Functions for Untyped Files 279
FileMode Variable · 279
Devices in Turbo Pascal ... 280

DOS Devices ... 280
The CON Device ... 281
The LPT1, LPT2, and LPT3 Devices 281
The COM1 and COM2 Devices 281
The NUL Device .. 281

Text-File Devices ... 282

Chapter 23. Standard Procedures and Functions 283
Exit and Halt Procedures .. 283
Dynamic Allocation Procedures and Functions 283
Transfer Functions .. 284
Arithmetic Functions .. 284
Ordinal Procedures and Functions 285
String Procedures and Functions 286
Pointer and Address Functions 286
Miscellaneous Procedures and Functions 287

Chapter 24. Standard Units 289
Standard Unit Dependencies 290
The System Unit .. 290
The Printer Unit .. 292
The Dos Unit ... 292

Constants, Types, and Variables 292
Flags Constants ... 293
File Mode Constants .. 293
File Record Types ... 293
File Attribute Constants 294
The Registers Type .. 294
The DateTime Type ... 295
The SearchRec Type ... 295
The DosError Variable 296

Interrupt Support Procedures 296
Date and Time Procedures 296
Disk Status Functions ... 297
File-Handling Procedures 297
Process-Handling Procedures and Functions 297

x

The Crt Unit ... 298
The Input and Output Files 298
Windows .. 298

Special Characters .. 299
Line Input ... 299

Constants and Types .. 300
Crt Mode Constants ... 300
Text Color Constants .. 300
Crt Variables ... 301

CheckBreak .. 301
CheckEOF ... 301
CheckSnow .. 302
DirectVideo .. 302
LastMode .. 302
TextAttr ... 303
WindMin and WindMax 303

Proced ures ... 303
Functions .. 304

The Graph Unit ... 305
Drivers .. 305
Coordinate System .. 306
Current Pointer ... 306
Text ... 307
Figures and Styles .. 308
Viewports and Bit Images 308
Paging and Colors .. 308
Error Handling ... 308
Getting Started ... 310

User-Written Heap Management Routines 311
Graph Interface Section: Constants, Types, & Variables 313
Procedures ... 318
Functions .. 321

The Turbo3 Unit .. 322
Interface Section .. 322

Kbd ... 323
Cbreak .. 324

Procedures ... 324
Functions .. 324

The Graph3 Unit .. 324
Procedures ... 325

Chapter 25. Using the 8087 329
The 8087 Data Types .. 330
Extended Range Arithmetic 331

xi

Comparing Reals ... 332
The 8087 Evaluation Stack 332
Writing Reals with the 8087 334
Units Using the 8087 .. 334

Chapter 26. Inside Turbo Pascal 335
The Heap Manager ... 337

Disposal Methods ... 337
The Free List ... 341
The Heap Error Function 343

Internal Data Formats ... 344
Integer Types .. 344
Char Types .. 344
Boolean Types .. 344
Enumerated Types .. 344
Floating-Point Types .. 345

The Real Type .. 345
The Single Type .. 345
The Double Type ... 346
The Extended Type ... 346
The Comp Type .. 346

Pointer Types .. 347
String Types ... 347
Set Types .. 347
Array Types , ... 348
Record Types .. 348
File Types .. 348

Calling Conventions .. 349
Variable Parameters ... 350
Value Parameters ... 350
Function Results .. 351
Near and Far Calls .. 351
Entry and Exit Code ... 353
Register-Saving Conventions 353

Linking with Assembly Language 353
Examples of Assembly Language Routines 355
Inline Machine Code .. 358
Inline Statements ... 358
Inline Directives .. 360

Direct Memory and Port Access 361
The Mem, MemW, and MemL Arrays 361
The Port and PortW Arrays 361

Interrupt Handling ... 362
Writing Interrupt Procedures 362

xii

Text File Device Drivers ... 363
The Open Function ... 364
The InOut Function ... 365
The Flush Function ... 365
The Close Function ... 365
Examples of Text File Device Drivers 365

Exit Procedures ... 368
Automatic Optimizations .. 370

Constant Folding ... 370
Constant Merging .. 371
Short-Circuit Evaluation 371
Order of Evaluation ... 371
Range-Checking .. 372
Shift instead of Multiply 372
Dead Code Removal .. 372
Smart Linking .. 372

Chapter 27. Turbo Pascal Reference Lookup 373
Sample procedure .. 373
Abs function ... 374
Addr function " 374
Append procedure '" 374
Arc procedure .. 375
ArcTan function .. 376
Assign procedure ... 377
AssignCrt procedure .. 378
Bar procedure .. 378
Bar3D procedure ... 379
BlockRead procedure .. 380
BlockWrite procedure ... 381
ChDir procedure ... 382
Chr function ... 383
Circle procedure .. 383
Clear Device procedure .. 384
ClearViewPort procedure .. 384
Close procedure .. 385
CloseGraph procedure .. 386
Clr Eol procedure ... 386
ClrScr procedure ... 387
Concat function .. 387
Copy function .. 388
Cos function ... 388
CSeg function .. 389
Dec procedure .. 389

xiii

Delay procedure .. 389
Delete procedure ... 390
DelLine procedure .. 390
DetectGraph procedure .. 391
DiskFree function ... 392
DiskSize function ... 392
Dispose procedure .. 393
DosExitCode function ... 393
DrawPoly procedure .. 394
DSeg function .. 395
Ellipse procedure ... 395
Eof function (text files) .. 396
Eof function (typed, untyped files) 396
Eoln function ... 397
Erase procedure .. 397
Exec procedure ... 398
Exit procedure ... 399
Exp function ... 400
FilePos function .. 400
FileSize function .. 400
FillChar procedure .. 401
FillPoly procedure .. 402
FindFirst procedure ... 403
FindNext procedure .. .404
FloodFill procedure .. .404
Flush procedure .. 406
Frac function ... 406
FreeMem procedure .. .406
GetArcCoords procedure .. 407
GetAspectRatio procedure 408
GetBkColor function .. 409
GetColor function .. 410
GetDate procedure411
GetDir procedure ... 411
GetFAttr procedure .. .411
GetFillPattern procedure .. .412
GetFillSettings procedure .. 413
GetFfime procedure414
GetGraphMode function .. .414
GetImage procedure .. 416
GetIntVec procedure417
GetLineSettings procedure 417
GetMaxColor function .. .418
GetMaxX function .. 419

xiv

GetMax y function .. 419
GetMem procedure .. .420
GetModeRange procedure 421
GetPalette procedure421
GetPixel function ~ 422
GetTextSettings procedure423
GetTime procedure .. .424
GetViewSettings procedure 424
GetX function .. 425
Get Y function .. 426
GotoXY procedure427
GraphDefaults procedure .. 428
GraphErrorMsg function .. 428
GraphResult function ... 429
Halt procedure .. .431
Hi function .. 431
HighVideo procedure .. .432
ImageSize function .. 432
Inc procedure .. 433
InitGraph procedure434
Insert procedure .. 436
InsLine procedure .. 437
Int function .. 437
Intr procedure .. 437
IOResult function ... 438
Keep procedure .. 439
KeyPressed function .. 439
Length function .. 440
Line procedure ... 440
LineRel procedure .. 441
LineTo procedure ... 442
Ln function .. 443
Lo function .. 443
LowVideo procedure .. 444
Mark procedure .. 444
MaxAvail function .. 445
MemAvail function ... 445
MkDir procedure ... 446
Move procedure .. 447
MoveRel procedure ... 447
MoveTo procedure .. 448
MsDos procedure ... 449
New procedure ... 449
NormVideo procedure450

xv

NoSound procedure .. 450
Odd function ... 450
Ofs function ... 451
Ord function ... 451
OutText procedure451
OutTextXY procedure ... 453
PackTime procedure .. 455
ParamCount function ... 455
ParamStr function .. 455
Pi function ... 456
PieSlice procedure .. 456
Pos function ... 457
Pred function .. 457
Ptr function .. 458
PutImage procedure .. 458
PutPixel procedure .. 461
Random function ... 461
Randomize procedure ... 462
Read procedure (text files) 462
Read procedure (typed files) 464
ReadKey function ... 464
Readln procedure ... 465
Rectangle procedure .. 466
RegisterBGldriver function 467
RegisterBGIfont function .. 468
Release procedure .. 471
Rename procedure472
Reset procedure .. 472
RestoreCrtMode procedure 473
Rewrite procedure474
RmDir procedure ... 475
Round function ... 476
Seek procedure ... 476
SeekEof function .. 477
SeekEoln function .. 477
Seg function ... 477
SetActivePage procedure478
SetAllPalette procedure479
SetBkColor procedure ... 480
SetColor procedure ... 481
SetDate procedure482
SetFAttr procedure482
SetFillPattern procedure .. .483
SetFillStyle procedure .. .484

xvi

SetFfime procedure ... 485
SetGraphBufSize procedure 486
SetGraph~odeprocedure 486
SetIntVec procedure .. 488
SetLineStyle procedure .. 488
SetPalette procedure .. 490
SetTextBuf procedure ... 491
SetTextJustify procedure ... 493
SetTextStyle procedure .. 494
SetTime procedure .. 496
SetUserCharSize procedure 496
SetViewPort procedure .. 497
SetVisualPage procedure .. 499
Sin function .. 500
SizeOf function ... 500
Sound procedure ... 501
SPtr function ... 501
Sqr function .. 502
Sqrt function ... 502
SSeg function .. 502
Str procedure .. 502
Succ function ... 502
Swap function .. 503
TextBackgroundprocedure 504
TextColor procedure .. 504
TextHeight function ... 505
Text~ode procedure .. 506
TextWidth function ... 508
Trunc function ... 509
Truncate procedure ... 509
UnpackTime procedure .. 510
UpCase function .. 510
Val procedure .. 510
WhereX function ... 512
Where Y function ... 512
Window procedure ... 512
Write procedure (text files) 513
Write procedure (typed files) 516
Writeln procedure .. 516

Part 3

Appendix A. Differences Between Version 3.0 and 4.0 521
Program Declarations ... 521

xvii

Compiler Directives ... 522
Predeclared Identifiers .. 523
Programming Changes .. 525
Other Additions and Improvements 528

Appendix B. Comparing Turbo Pascal 4.0 with ANSI Pascal 531
Exceptions to ANSI Pascal Requirements 531
Extensions to ANSI Pascal 533
Implementation-Dependent Features 535
Treatment of Errors ... 536

Appendix C. Compiler Directives 537
Switch Directives ... 538

Boolean Evaluation ... 538
Debug Information .. 539
Force Far Calls ... 539
Input/Output Checking 540
Link Buffer .. 540
Numeric Processing ... 540
Range-Checking .. 541
Stack Overflow Checking 541
TPM File Generation .. 542
Var-String Checking .. 542

Parameter Directives .. 543
Include File .. 543
Link Object File ... 543
Memory Allocation Sizes 544
Unit File Name ... 544

Conditional Compilation .. 544
Conditional Symbols .. 545

The DEFINE Directive 547
The UNDEF Directive 547
The IFDEF Directive .. 547
The IFNDEF Directive 547
The IFOPT Directive .. 548
The ELSE Directive ... 548
The ENDIF Directive .. 548

xviii

Appendix D. The Turbo Pascal Utilities 549
The Stand-Alone MAKE Utility 549

Creating Makefiles .. 549
Comments ... 550
Explicit Rules .. 550
Implicit Rules .. 552
Command Lists .. 555
Macros .. 556

Defined Test Macro ($d) 559
Base File Name Macro ($*) 559
Full File Name Macro ($<) 560
File Name Path Macro ($:) 560
File Name and Extension Macro ($.) 560
File Name Only Macro ($&) 560

Directives .. 561
Using MAKE ... 565

The BUlL TINS.MAK File 566
How MAKE Searches for Files 566
MAKE Command-Line Options 566

MAKE Error Messages .. 567
Fatals ... 567
Errors ... 568

The TOUCH Utility ... 569
The GREP Utility ... 570

The GREP Switches ... 570
How to Search in GREP .. 571
Examples of Using GREP 572

The BINOB} Utility ... 575

Appendix E. Reference Materials 579
ASCII Codes ... 579
Extended Key Codes .. 582
Keyboard Scan Codes 583

Appendix F. Customizing Turbo Pascal 585
What Is TINST? .. 585
Running TINST .. 586

The Turbo Pascal Directories Option 587
Object directories, Include directories, and Unit directories 588
Executable directory and Turbo directory 588
Pick file name .. 588

The Editor Commands Option 589

xix

WordStar-Like Selection 591
Ignore Case Selection 592
Verbatim Selection .. 593

Allowed Keystrokes ... 593
Global Rules ... 594

Turbo Pascal Editor Keystrokes 594
The Options/Environment Option 596
The Display Mode Option 597
The Color Customization Option 598
The Resize Windows Option 600

Quitting the Program ... 600

Appendix G. A DOS Primer 601
What Is DOS? .. 601
How to Load a Program ... 602
Directories ... 603
Subdirectories .. 604
Where Am I? The $p $g Prompt 604
The AUTOEXEC.BAT File .. 605
Changing Directories .. 606

Appendix H. Glossary 609

Appendix I. Error Messages and Codes 619
Compiler Error Messages .. 619
Runtime Errors ... 634

DOS Errors .. 634
I/O Errors ... 636
Critical Errors .. 637
Fatal Errors .. 638

xx

N T R o o u c T I o N

Welcome to version 4.0 of Turbo Pascal! Turbo Pascal is designed to meet
the needs of all types of users of IBM pes and compatibles. It's a structured,
high-level language you can use to write programs for any type or size
application.

The current version of Turbo Pascal is the fourth generation of Borland's
flagship language product. With Turbo Pascal 1.0, Borland pioneered the
high-speed microcomputer language compiler; version 4.0 strengthens
Turbo Pascal in its role as a serious development language. With 4.0, you'll
get

• two to three times faster compilation speed (lines per minute) than
version 3.0 (on an 8MHz IBM AT).

• much improved code generation, producing faster execution.

• a smart built-in linker that removes unused code at link time, producing
smaller code.

• .EXE files that allow programs larger than 64K.

• the ability to perform separate compilation using units.

• built-in project management that performs automatic recompilation of
dependent source files (including units).

• several standard units, including System, Dos, Crt, and Graph.
• a more powerful assembly language interface and inline assembly

options.

• the ability to nest Include files to eight levels deep.

• several new data types, including longint, shortint, word, and IEEE
floating-point types (single, double, extended, and comp) if you're using
an 8087 chip.

• several new built-in procedures and functions, including IncO and DecO.

• ANSI standard compatibility.

• built-in 8087/80287 coprocessor support.

• short-circuit Boolean expression evaluation.

• conditional compilation directives.

Introduction

• a high degree of compatibility with version 3.0, and utilities and units to
aid in converting 3.0 programs to 4.0 .

• command-line and integrated environment versions of the compiler.

Understanding 4.0

As you're reading through this manual, several major concepts will be
introduced. To help clarify these ideas, here's a summary of some of 4.0's
highlights.

Integrated Environment and Command-Line
Compilers

The Turbo Pascal compiler is actually two compilers: a command-line
compiler and an integrated environment version. The traditional
command-line or batch mode compiler allows you to use your own editor
to create and modify program source code. You then run the compiler from
either the command line or a batch file, giving the file name and any other
compiler options. This compiler is the TPC.EXE file on your disk.

There is also a Borland-style integrated environment that combines a text
editor and compiler. The environment provides pull-down menus,
windows, input boxes, configuration control, and context-sensitive help.
This compiler is the TURBO.EXE file on your disk.

Separate Compilation

Separate compilation lets you break programs into parts and compile them.
That way you can test each part to make sure it works. You can then link all
the parts together to build a program. This is useful, since you don't have
to recompile everything that makes up a program each time you use it. In
addition, this feature lets you build up a toolbox of precompiled, tested
code that you can use in all your programs.

Programs and Units

A program is the main piece of Pascal source code that you write and
execute. In order to provide for separate compilation and still maintain
Pascal's strict checking among program parts, units are used. A unit is a

2 Turbo Pascal Owner's Handbook

piece of source code that can be compiled as a stand-alone entity. You can
think of units as a library of data and program code. They provide a
description of the interface between the unit's code and data and other
programs that will use that unit. Programs and other units can use units;
units don't use programs.

Compile, Make, and Build

It's probable that you may change the source code of several of the units
you're using without recompiling them; however, you'll definitely want
your main program to use the absolute latest units. How do you make sure
you're using the most recently modified units? We've provided two ways
for you to make sure the unit files are brought up to date.

The Make option tells the compiler to go and look at the date and time of
any source and compiled unit file used by your main program (or another
unit, since units can use units). If the source file was modified since the unit
was compiled, the compiler will recompile the unit to bring it up to date.

The Build option is similar to Make except that it will recompile all of the
units used by your main program (or unit) without checking date and time.
Use this option if you want to make absolutely sure you have all the latest
compiled units.

Pick File List

The pick file contains the state of the integrated environment so that when
you leave TURBO.EXE and return to it later, you are placed at the spot in
the file where you left off previously. The pick file list also offers you easy
access to files when you are editing multiple files. The last eight file names
and the state of each respective file that you've edited are kept in the pick
list. When you select a file from the pick list, the file is loaded and the
cursor is placed at the point in the file where you were when you left it. You
can enable or disable pick file (TURBO.PCK) generation.

File Extensions

There are all kinds of file name extensions used in the DOS world; most are
usually application- or program-specific. (Remember that a file name
consists of up to eight characters with an optional three-character
extension.) Turbo Pascal uses several different file name extensions:

Introduction 3

• .EXE: an executable file. The two compilers themselves are .EXE files. The
compiled programs you'll build with the compilers will be .EXE files.
(Turbo Pascal 3.0 created .COM files that were also executable files.)

• .TPU: a precompiled unit file. When you compile a Pascal unit, the
compiler generates a .TPU file with the same first eight characters of the
source file. A .TPU file contains the symbol information and compiled
code for the unit.

• .TPL: a Turbo Pascal library file. You can use only one of these at a time.
The standard library file on the disk is called TURBO.TPL. You can
modify TURBO.TPL to suit your needs .

•. TP and .CFG: configuration files for the two compilers. These files allow
you to override default settings in the compilers and customize compiler
default values to your own needs.

A .TP file is a binary file containing the options you set for the integrated
environment. You can have multiple .TP files for different settings.

TPC.CFG is the configuration file for the command-line version of the
compiler. There can be only one TPC.CFG file.· It is a text file that contains
directories to the compiler, command-line switches, etc.

• .TPM: a Turbo MAP file. This file is generated if you use the {$T +}
compiler option. It contains information about your program that can be
useful for finding runtime errors and doing source-level debugging. The
TPMAP.EXE utility on the disk will convert the .TPM file to a MAP file
that can be used with most standard symbolic debuggers.

• ~P AS: Use this for your Pascal source code files. You can use other file
name extensions, but traditionally .P AS is used.

• .BAK: backup source file extension. The editor in the integrated
environment renames the existing file on disk to a .BAK file when you
save a modified version of the file. You can enable or disable .BAK file
generation.

• .PCK: the Turbo Pascal pick file extension. The pick file contains the state
of the integrated environment so that when you leave TURBO.EXE and
return later on, you are placed at the spot in the file where you were last
working. You can enable or disable pick file generation.

About This Manual

This manual walks you through writing, compiling, and saving Turbo
Pascal programs. It explains in detail the many new features and how to
use them. It also teaches you how to take existing version 3.0 programs and
convert them to run under Turbo Pascal version 4.0.

4 Turbo Pascal Owner's Handbook

Sample programs are provided on your distribution disks for you to study.
You can also tailor these sample exercises to your particular needs.

Before you get started, you should be somewhat familiar with the basics of
operating an IBM PC (or compatible) under MS-DOS (or PC-DOS). You'll
need to know how to run programs, copy and delete files, and how to use
other basic DOS commands. If you're not sure about how to do these
things, spend some time playing with your PC and reviewing the MS-DOS
user's manual that came with it; you can also look at Appendix G, "A DOS
Primer," to learn some basics. Appendix H lists many of the terms
introduced in this manual.

This manual is divided into three main sections: "The User's Guide" (Part
I), "The Reference Section" (Part 2), and "The Appendices" (Part 3).

The User's Guide

"The User's Guide" introduces you to Turbo Pascal, shows you how to use
it, and includes chapters that focus on such specific features as units and
debugging. Here's a breakdown of the chapters:

• Chapter 1: Getting Started explains how to make backup copies of your
Turbo Pascal disks, describes the different files on the disks, and tells you
how to set up Turbo Pascal for your particular system.

• Chapter 2: Beginning Turbo Pascal leads you directly from loading
Turbo Pascal into writing simple programs, and then on to compiling
and running them. A discussion of a few common programming errors
and how to avoid them is also presented. You'll learn some basics about
getting around in the integrated environment. We then suggest how to
go about reading the rest of the manual, depending on your familiarity
with Pascal.

• Chapter 3: Programming in Turbo Pascal introduces you to the Pascal
programming language.

• Chapter 4: Units and Related Mysteries tells you what a unit is, how it's
used, what predefined units (libraries) Turbo Pascal provides, and how
to write your own. It also describes the general structure of a unit and its
interface and implementation portions, as well as how to initialize and
compile a unit.

• Chapter 5: Getting the Most from Your PC describes how to use units
and the built-in Turbo Pascal extensions, and also explains how to use
inline and external assembly language.

Introduction 5

• Chapter 6: Project Management tells how to develop large programs
using multiple source files and libraries, and discusses conditional
compilation.

• Chapter 7: Using the Unit Mover explains the use of TPUMOVER for
copying units from file to file.

• Chapter 8: Converting from Turbo Pascal 3.0 provides guidelines for
converting Turbo Pascal 3.0 programs to Turbo Pascal 4.0.

• Chapter 9: Debugging Your Turbo Pascal Programs gives suggestions
on how to track down and eliminate errors in your programs, and also
tells how to use Periscope, a symbolic debugger.

• Chapter 10: The Turbo Pascal Menu Reference is a complete guide to
the menu commands in Turbo Pascal's integrated environment.

• Chapter 11: Using The Editor explains how to use the built-in editor to
open, edit, change, save a file, and more.

• Chapter 12: The Command-Line Reference is a complete guide to the
command-line version of Turbo Pascal.

The Reference Manual

Part 2 of the manual offers technical information on the following features:

• Chapter 13: Tokens and Constants

• Chapter 14: Blocks, Locality, and Scope

• Chapter 15: Types

• Chapter 16: Variables

• Chapter 17: Typed Constants

• Chapter 18: Expressions

• Chapter 19: Statements

• Chapter 20: Procedures and Functions

• Chapter 21: Programs and Units

• Chapter 22: Input and Output

• Chapter 23: Standard Procedures and Functions

• Chapter 24: Standard Units

• Chapter 25: Using the 8087

• Chapter 26: Inside Turbo Pascal

• Chapter 27: Turbo Pascal Reference Lookup

6 Turbo Pascal Owner's Handbook

Appendices

Finally, Part 3 of this manual contains nine appendices that deal with the
following topics:

• Appendix A: Differences Between Version 3.0 and 4.0

• Appendix B: Comparing Turbo Pascal 4.0 with ANSI Pascal

• Appendix C: Compiler Directives

• Appendix D: The Turbo Pascal Utilities

• Appendix E: Reference Materials

• Appendix F: Customizing Turbo Pascal

• Appendix G: A DOS Primer

• Appendix H: A Glossary

• Appendix I: Error Messages and Codes

Typography

This manual was produced entirely by Borland's Sprint: The Professional
Word Processor, on an Apple LaserWriter Plus. The different typefaces
displayed are used for the following purposes:

Italics

Boldface

Monospace

Keycaps

In text, this typeface represents constant identifiers, field
identifiers, and formal parameter identifiers, as well as
unit names, labels, types, variables, procedures, and
functions.

Turbo Pascal's reserved words are set in this typeface.

This type represents text that appears on your screen.

This typeface indicates a key on your keyboard. It is
often used when describing a key you have to press to
perform a particular function; for example, "Press Esc to
exit from a menu."

How to Contact Borland

If, after reading this manual and using Turbo Pascal, you would like to
contact Borland with comments or suggestions, we suggest the following
procedures:

Introduction 7

• The best way is to log on to Borland's forum on CompuServe: Type GO
BORPRO at the main CompuServe menu and follow the menus to
section 4. Leave your questions or comments here for the support staff to
process.

• If you prefer, write a letter detailing your problem and send it to
Technical Support Department, Borland International, 4585 Scotts Valley
Drive, Scotts Valley, CA 95066 U.S.

• As a last resort, you can telephone our Technical Support department. To
help us handle your problem as quickly as possible have these items
handy before you call: product name and version number, product serial
number, computer make and model number, and operating system and
version number.

If you're not familiar with Borland's No-Nonsense License statement,
now's the time to read the agreement at the front of this manual and mail in
your completed product registration card.

8 Turbo Pascal Owner's Handbook

p A R T

1

9

10 Turbo Pascal Owner's Handbook

c H A p T E R

1

Getting Started

In this chapter, we'll get you started using Turbo Pascal by providing
instructions for loading it on systems with floppy disk or hard disk drives.
We'll also offer some guidance on how to go about reading this manual,
based on your programming experience.

The three distribution disks that accompany this manual are formatted for
standard 5 1/ 4-inch disks, 360K disk drives, and can be read by IBM pes
and compatibles (those with 3 1/2-inch disk, 720K disk drives will receive
two distribution disks). Now, before you do anything else, we want you to
make backup copies of these three disks and then put the originals away.
Since there's a replacement charge if you erase or damage the original
disks, take heed and use your originals only to make work or backup
copies. Here's how:

• Get three new (or unused) floppy disks.

• Boot up your computer.
• At the system prompt, type di skcopy A: B: and press Enter. The message

Insert source diskette in drive A: will be displayed on your screen.
Remove your system disk from drive A and put distribution disk 1 into
driveA.

• If your system has two floppy disk drives, your screen will also say
Insert destination diskette into drive B. In that case you'll need to
remove any disk in drive B, replacing it with a blank disk. If your system
only has one floppy drive, then you'll be swapping disks in drive A. Just
remember that the distribution disk is the source disk, the blank disk is
the destination disk.

• If you haven't done it already, press Enter. The computer will start
reading from the source disk in drive A.

Chapter 7, Getting Started 11

• If you have a two-drive system, it will then write out to the destination
disk in drive B and continue reading from A and writing to B until
copying is complete. If you have a one-drive system, you'll be asked to
put the destination disk in A, then the source disk, then the destination
disk, and so on and so forth until it's finished.

• When copying is completed, remove the distribution (source) disk from
drive A, and put it away. Remove the copy (destination) disk from drive
B and label it "Disk #1."

• Repeat the preceding process with the second and third distribution
disks and the other blank floppies.

Now that you've made your backup copies, we can get on to the meat of
this chapter.

What's On Your Disks

The two distribution disks that come with this manual include two
different versions of the Pascal compiler: an integrated environment
version and a stand-alone, command-line version.

You won't need to put all the files on your distribution disks onto your
Turbo Pascal system disk-in fact, you'll probably only need TURBO.TPL
(the resident library) and either TURBO.EXE (the integrated environment)
or TPC.EXE (the command-line compiler), depending on which compiler
you prefer to use. For your reference, here's a summary of most of the files
on disks and how to determine which ones to retain:

TURBO.EXE

TURBO.TPL

TINST.EXE

GRAPH.TPU

12

This is the integrated (menu-driven) environment
version of Turbo Pascal. If you want to use the
development environment of Turbo Pascal to edit,
compile, and run your program, be sure to copy this.

This contains the units (program libraries) that come
with Turbo Pascal, including System, Crt, Dos, Printer,
Turbo3, and Graph3-this is a must!

This utility allows you to customize certain features of
TURBO.EXE. If you're using TURBO.EXE, copy this file.
You can delete it once you've modified TURBO.EXE to
your liking.

This contains the Graph unit (the Borland Graphics
Interface unit).

Turbo Pascal Owner's Handbook

TPC.EXE

TPMAP.EXE

This is the command-line version of Turbo Pascal. If you
use a separate editor, make heavy use of batch files, and
so on, you'll probably want to copy this.

This utility creates a symbolic debugger-compatible
.MAP file from a .TPM file. TPMAP also creates a .DEP
file, which is a comprehensive list of all the unit, include,
and .OBJ file dependencies. If you aren't using a
symbolic debugger, then you don't need this file.

TPUMOVER.EXE This utility allows you to move units between .TPL files;
more specifically, you can use it to add units (that you
write) to TURBO.TPL or to remove units from that file.
Copy it if you plan to modify TURBO.TPL.

README.COM This is the program to display the README file. Once
you've read the README, you can delete this.

README To see any updated information, run this file by typing
README at the system prompt. (If you have a printer,
you can print it out.) Once you review this material, you
can delete this.

UPGRADE.EXE This utility does a quick upgrade of Turbo Pascal
version 3.0 source files, modifying them for compati
bility with Turbo Pascal version 4.0. If you don't have
3.0 programs to convert, don't copy it.

TPCONFIG.EXE This utility takes your integrated environment
configuration file and converts it to work with the
command-line compiler (as TPC.CFG). It's helpful if you
want to use the integrated environment to set all your
options, but want to compile with the command-line
version. This utility will also convert a TPC.CFG file to a
.TP file.

MAKE.EXE This is an intelligent program manager that allows you
to automatically update files (via assembly and
compilation) you've modified. It only works with the
command-line compiler (TPC.EXE).

TOUCH.COM This utility changes the date and time of one or more
files to the current date and time, making it "newer"
than the files that depend on it.

GREP.COM This is a powerful search utility that can look for several
files at once.

Chapter 7, Getting Started 13

*.PAS files

BlNOB].EXE

*.DOC files

*.BGl files

*.CHRfiles

These include the MicroCalc source files, as well as other
sample programs. You can ignore these unless you want
to read or experiment with them.

Use this utility to convert a binary file to an .OB] file.

These include the interface section listings for all the
standard units.

BGl graphics device drivers.

BGl graphics stroked character fonts.

Installing Turbo Pascal On Your System

Your Turbo Pascal package includes all the files and programs necessary to
run both the integrated environment and command-line versions of the
compiler. The files you copy depend on which version of the compiler you
want to use.

Setting Up On a Floppy Disk System

The basic files you need for Turbo Pascal are small enough to be easily run
from a one-floppy system; though, you may want to use only one version
of the compiler (TURBO.EXE or TPC.EXE), rather than have both on disk.

First, you're going to create a bootable (system) disk. Get yourself another
blank disk and at the DOS prompt, type

format b:/s

Your system will ask you to insert a DOS disk into drive A; just insert your
regular system boot disk. If you have a two-drive system, place a blank
disk into drive B and press Enter when prompted. If you have a one-drive
system, place your blank disk into the drive whenever you are asked to
insert a blank disk into drive B, and place your original boot disk into the
drive whenever you are asked to insert a DOS disk into drive A.

When you're finished, your blank disk will be formatted and will contain a
copy of MS-DOS (the operating system). Label it as your Turbo Pascal
system disk and continue to the next step.

Put your Turbo Pascal system disk into drive A. If you have a second drive,
put your Turbo Pascal distribution disk 1 into drive B and type

A>dir b:

14 Turbo Pascal Owner's Handbook

That will list all the files on the first distribution disk. You can copy them
one at a time from your Turbo Pascal distribution disk onto your system
disk by typing

A>copy b:filename a:

where filename is the name of the file you wish to copy. As mentioned, the
two files you absolutely must copy are TURBO.TPL, and either
TURBO.EXE or TPC.EXE (or both).

Setting Up On a Hard Disk

The first thing you want to do is to create a subdirectory called TP (or
whatever you choose) off of your root directory. Assuming that your hard
disk is designated as drive C, use the following commands:

c:
cd c:\
mkdir tp

Now place each Turbo Pascal distribution disk into drive A and type the
following command:

copy a:*.* c:\tp

Now put your distribution disks in a safe place. If you'd like, you can
delete from your hard disk any of the files you don't need. (Refer to the
preceding section for which files you might not need.)

Choosing From Two Compilers

Believe it or not, you've bought two complete versions of the Turbo Pascal
compiler. The first, TURBO.EXE, is known as the integrated environment. It
provides a pull-down menu- and keystroke-driven multiwindow
environment. You can load, edit, save, compile, and run your programs
without ever leaving it. Most of the chapters that follow this one are
devoted to using the integrated environment.

The second version, TPC.EXE, is known as the command-line compiler. It
presumes that you have created your Pascal program with some other
editor (MicroStar, BRIEF, EDLIN, even the integrated environment). You
run it from the MS-DOS system prompt; for example, if your program is in
a file named MYFIRST.PAS, you would type at the prompt

tpc myfirst

Chapter 7, Getting Started 15

and then press Enter. TPC.EXE compiles and links your program, producing
an .EXE file (just like TURBO.EXE). Command-line options allow you to
specify a number of things, such as where the system library (TURBO.TPL)
resides and whether to recompile any files upon which MYFIRST.PAS
depends.

Which version should you use? Chances are you'll find the integrated
environment best suits your needs. It provides a complete development
system in which you can quickly build and debug programs. On the other
hand, if you are currently using a command-line Pascal compiler, if you
have another editor that you prefer, or if you are making heavy use of an
assembler (for external subroutines), you may want to use the command
line compiler in conjunction with a batch file or Make utility.

Using This Manual

Now that you've loaded the Turbo Pascal files and libraries onto the
appropriate floppy disks or hard disk directories, you can start digesting
this manual and using Turbo Pascal. But, since this user's guide is written
for three different types of users, certain chapters are written with your
particular Turbo Pascal programming needs in mind. Take a few moments
to read the following, then take off programming.

• Programmers Learning Pascal: If you're a beginning Pascal programmer,
you will want to read Chapters 2 through 7. These are written in tutorial
fashion and take you through creating and compiling your first Pascal
programs. Along the way, they teach you how to use the integrated
environment. (You may want to also look at the Turbo Pascal Tutor
manual.)

• Experienced Pascal Programmers: If you're an experienced Pascal
programmer, you should have little difficulty porting your programs to
this implementation. You'll want to skim Chapters 10 and 11 to get
familiar with the integrated environment, and take some time to read
Chapter 4 to understand the role of units. You'll also want to study "Part
2: The Reference Section," and note the differences between Turbo Pascal
4.0 and your Pascal compiler. Appendix B, "Comparing Turbo Pascal 4.0
With ANSI Pascal," will offer you some additional insights.

• Turbo Pascal Programmers: Chapter 8, "Converting from 3.0 Programs,"
is written specifically for you; here's where we provide guidelines on the
things you'll need to convert your 3.0-produced programs to version 4.0.
(Appendix A highlights the differences between 3.0 and 4.0.) You'll also
need to glance at Chapter 10 to get familiar with the integrated
environment and Chapter 12 to learn the command-line version.

16 Turbo Pascal Owner's Handbook

Whatever your approach, welcome to the world of Turbo Pasca14.0!

Chapter 2, Beginning Turbo Pascal 17

18 Turbo Pascal Owner's Handbook

c H A p T E R

2

Beginning Turbo Pascal

Turbo Pascal is more than just a fast Pascal compiler; it is an efficient Pascal
compiler with an easy-to-Iearn and easy-to-use integrated development
environment. With Turbo Pascal, you don't need to use a separate editor,
compiler, and linker in order to create and run your Pascal programs
(although, you can use the command-line version). All these features are
built into Turbo Pascal, and they are all accessible from the Turbo Pascal
integrated environment~

Now that you're set up, you can begin writing your first Turbo Pascal
program using the integrated environment compiler. By the end of this
chapter, you'll have learned the basics of this development· environment,
written three small programs, saved them, and learned a few basic
programming skills.

Using the Integrated Environment

In this section, we describe the components of the Turbo Pascal main
screen, and explain briefly how to move around in the environment. For
greater detail, refer to Chapter 10, "The Turbo Pascal Menu Reference"; for
more on the editor, refer to Chapter lI.

Turbo Pascal provides context-sensitive on screen help at the touch of a
single key. You can get help at any point (except when executing a
program) by pressing Ft. The Help window details the functions of the
item on which you're currently positioned. Any Help screen can contain
one or more keywords (a highlighted item) on which you can get more
information. Use the arrow keys to move to any keyword, and press Enter to

Chapter 2, Beginning Turbo Pascal 19

get more detailed help on the selected item. You can use the Home and End
keys to go to the first and last keywords on the screen, respectively.

To get to the Help index, press F1 again once you're in the Help system. The
Help index lets you access both language and environment help. While
you're in the editor, you can also get help on a particular procedure,
function, variable, constant, type, or unit by positioning the cursor on the
item and pressing etrl-F1. (Note: etrl-F1 is an editor command that can be
redefined using TINST described in Appendix F.)

If you want to return to a previous Help screen while either in or out of the
Help system, press Alt-F1. (You can back up through 20 previous Help
screens.) Within a help group (a series of related help screens), AIt-F1
remembers the group as one screen .viewed rather than remembering each
screen individually. In a help group, wherever PgUp and pgOn occur, PgUp
takes you back a screen, and PgOn takes you forward. To exit from Help and
return to your menu selection, press Esc (or any of the hotkeys described in
the next section).

When youload Turbo Pascal (type turbo and press Enter at the DOS
prompt), the program's first screen includes the main screen and product
version information (pressing AIt-F10 any time will bring up this
information). When you press any key, the version information disappears,
but the main screen remains.

:~\\\'Illfi\\\ Edit Run Compile Edit Options

Line I ColI Insert Indent C:NONAME.PAS

Output

Fl-Help F2-Save F3-Load F5-Zoom FS-Edit F9-Make FlO-Main menu

Look closely at the main screen; it consists of four parts: the main menu, the
Edit window, the Output window, and the bottom line (which indicates
which keys do what at that particular instance).

To get familiar with the Turbo Pascal system, here are some navigating
basics.

20 Turbo Pascal Owner's Handbook

From within a menu:

• Use the highlighted capital letter to select a menu item or use the arrow
keys to move to the item and press Enter.

• Press Esc to leave a menu.

• Press Esc when in the main menu to go to the previously active window.
(When active, the window will have a double bar at its top, and its name
will be highlighted.)

• Press F6 to get from any menu level to the previously active window.

• Use the Right and Left arrow keys to move from one pull-down menu to
another.

From anywhere in Turbo Pascal:

• Press F1 to get information about your current position (help on running,
compiling, and so on).

• Press F10 to invoke the main menu.

• Pressing Alt plus the first letter of any main menu command (F, E, R, C,
0) invokes the command specified. For example, from anywhere in the
system, pressing Alt-E will take you to the Edit window; Aft-F takes you to
the File menu.

From within the Edit or Output window:

• Press F5 to zoom/ unzoom the active window.

• Press F6 to switch windows.

Note: To exit Turbo Pascal and return to DOS, press Alt-X or go to the File
menu and select Quit (press Q or move the selection bar to Quit and press
Enter). If you select Quit without saving your current work file, the editor
will query whether you want to save it.

Using Hotkeys

There are a number of hotkeys (shortcuts) you can use. Hotkeys are keys set
up to perform a certain function. For example, as discussed previously,
pressing Aft and the first letter of a main menu command will take you to
the specified option's menu or perform an action (see Figure 2.1 for a
graphic example); these are all considered hotkeys. The only other Alt! first
letter command is Alt-X, which is really just a shortcut for File/Quit.

In general, hotkeys work from anywhere; but there are two exceptions.

Chapter 2, Beginning Turbo Pascal 21

One is that hotkeys are disabled in error boxes and verify boxes. In these
cases, you are required to press the key specified.

The second exception is in the editor. If you use TIN5T to install editor key
commands, you can define hotkeys as edit commands. This means that
while you are in the editor, the hotkey will behave as an edit command,
and when you are not in the editor, the hotkey will work as originally
defined. For example, if you define Alt-R to be PgUp in the editor, it will not
run your programs from the editor. 50 you must somehow exit the editor
(F10 or F6) before Alt-R will run your program. This gives you the flexibility
to define the keys you prefer to use when editing. (Refer to Appendix F for
a complete discussion of redefining the editor keys.)

22 Turbo Pascal Owner's Handbook

Alt-E to go
from any

menu level to
Edit window

The Active Window (Active window is either Edit or Output
window; when active, it has a double bar

above it)

Edit Window Output Window

E

~""-F6

I
F10from

either
window

~
Main Menu Bar (F10 takes you here

from anywhere)

Pull-down Menus
and Submenus

The initial
(highlighted) letter

always selects
the menu item.

Press Esc
to exit a

menu

F6 to go from any
menu level to

previo~sly active
WIndow

From anywhere in Turbo Pascal, Alt plus the first letter of any main menu command (F, E, R, C, or 0)
invokes that command, and F1 calls up context-sensitive help information. Press Alt and hold for

a list of Alt-key shortcuts.

Figure 2.1: A Sample Use of Hotkeys

Chapter 2, Beginning Turbo Pascal 23

Table 2.1 lists all the hotkeys you can use while in Turbo Pascal. Remember
that when these keys are pressed, their specific function is carried out no
matter where you are in the Turbo Pascal environment.

Key(s)

F1

F2
F3
FS
F6
F9
F10
Alt-F1
Alt-F3
Alt-FS
Alt-F9
Alt-F10
AIt-C
AIt-E
AIt-F
Alt-O
Alt-R
Alt-X
Ctrl-F6

Table 2.1: Turbo Pascal's Hotkeys

Function

Brings up a Help window with information about
your current position
Saves the file currently in the editor
Lets you load a file (an input box will appear)
Zooms and unzooms the active window
Switches to the active window
Performs a "Make"
Invokes the main menu
Brings up the last Help screen you referenced
Lets you pick a file to load
Takes y'0u to the saved screen
CompIles your program
DispIays the version screen
Takes you to the Compile menu
Puts you in the editor
Takes you to the File menu
Takes you to the Options menu
Runs your program
Quits Turbo Pascal and takes you to DOS
Next window

In this book, we will refer to all menu items by an abbreviated name. The
abbreviated name for a given menu item is represented by the sequence of
letters you type to get to that item from the main menu. For example:

• At the main menu, the menu offering compile-time options related to
memory sizes is the Options/Compiler/Memory sizes; we'll tell you to
select O/C/Memory (press 0 C M) .

• At the main menu, the menu for specifying the name of the Include di
rectories is the Options/Directories/Include directories; we'll tell you to
select OlD/Include (press 00 /).

If you feel like you need more help using the integrated environment, look
at Chapter 10. If you're comfortable with what you've learned to date, let's
get on to actually writing some programs in Turbo Pascal.

24 Turbo Pascal Owner's Handbook

Loading Turbo Pascal

If you're using a floppy disk drive, put your Turbo Pascal system disk into
drive A: and type the following command at the system prompt:

A>turbo

and press Enter. This runs the program TURBO.EXE, which brings up the
integrated environment, placing you in the main menu.

If you're using a hard disk, get into the Turbo Pascal subdirectory you
created in the previous chapter and run TURBO.EXE by typing the
following:

C>cd tp
C:\TP>turbo

You're now ready to write your first Turbo Pascal program.

Creating Your First Program

When you first get into Turbo Pascal, you're placed at the main menu.
Press E to get to the Edit window (or you can use the arrow keys and press
Enter when positioned at the Edit command). You'll be placed in the editor
with the cursor in the upper left-hand corner. You can start typing in the
following program, pressing Enter at the end of each line:

program MyFirst;
var

A,B : integer;
Ratio : real;

begin
Write ('Enter two numbers: ');
Readln(A,B);
Ratio := A / B;
Writeln('The ratio is ' ,Ratio)

end.

To move around in the Edit window, you can use the arrow keys. (If you're
unfamiliar with editing commands, Chapter 11 discusses all the editing
commands you have at your disposal.) Note the semicolon at the end of
most lines, as well as the period at the end of the last line-these are
necessary. If you make any errors, you can use the arrows keys on the
keyboard to move around; you can use the Backspace key to make deletions;
and you can simply type new text to make insertions.

Chapter 2, Beginning Turbo Pascal 25

Analyzing Your First Program

You can type in and run this program without ever knowing how it works,
but here's a brief explanation. The first line gives the program the name
MyFirst. This is an optional statement, but it's a good practice to include it.

The next three lines declare some variables, with the word var signaling the
start of variable. declarations. A and B are declared to be of type integer;
that is, they can contain whole numbers, such as 52, -421, 0, 32283, and so
on. Ratio is declared to be of type real, which means it can hold fractional
numbers such as 423.328, -0.032, and so on (in addition to all integer values
as well).

The rest of the program contains the statements to be executed. The word
begin signals the start of the program. The statements are separated by
semicolons and contain instructions to write to the screen (Write and
Writeln), to read from the keyboard (Readln), and to perform calculations
(Ratio := A / B). Execution starts with the first instruction after begin and
continues until end. is encountered.

Saving Your First Program

Having entered your first program, it's a good idea to save it to disk. To do
this, press F2 while you're still in the Edit window. By default, your file will
have been been given the name NONAME.P AS. You can rename it now by
typing in MYFIRST.PAS, and then pressing Enter. Any time you press F2
after that, your program will be saved as MYFIRST.P AS.

An alternate method of saving your program uses the File menu. Press FlO
(or Ctrl-K D) to get out of the Edit window and invoke the main menu. Then
press F to bring up the File menu and S to select the Save command. Like
pressing F2, you'll be queried whether you want to save this file as
NONAME.PAS. Again, enter in the name MYFIRST.PAS as your file name.

Compiling Your First Program

To compile your first program, get back to the main menu; if you're still in
the Edit window, press FlO (or Ctrl-K D) to do so. Press C to bring up the
Compile menu, then press C again to select the Compile command from
that menu; otherwise press F9. (The Compile menu has several options; see
Chapter 10.)

26 Turbo Pascal Owner's Handbook

Turbo Pascal compiles your program, changing it from Pascal (which you
can read) to 8086 machine code for the microprocessor (which your PC can
execute). You don't see the 8086 machine code; it's stored in memory
somewhere (or on disk).

When you start compiling, a box appears in the middle of the screen, giving
information about the compilation taking place. A message flashes across
the box to press etr/-Break to quit compilation. If compilation is successful,
the message Success: Press any key flashes across the box. The box
remains visible until you press a key. See how fast that went?

If an error occurs during compilation, Turbo Pascal stops, positions the
cursor at the point of error in the editor, and displays an error message at
the top of the editor. Press any key to clear the error message. (Note: The
keystroke you select is used by the editor.) Then make the correction, save
the updated file, compile it again.

Running Your First Program

After you've fixed any errors that might have occurred, go to the main
menu and select Run to run it.

The Output window is displayed full screen, and the message

Enter two numbers:

appears on the screen. Type in any two integers (whole numbers), with a
space between them, and press Enter. The following message will appear:

The ratio is

followed by the ratio of the first number to the second.

Once your program has finished running, the prompt

Press any key to return to Turbo Pascal

appears at the bottom of the screen. Notice that your program output is
displayed in the Output window so you can refer to it while looking at
your program.

If an error occurs while your program is executing, you'll get a message on
the screen that looks like this:

Runtime error <errnum> at <segment>:<offset>

where <errnum> is the appropriate error number (see Appendix I), and
<segment>:<offset> is the memory address where the error occurred.(If you
need this number later, look for it in the Ouptput window.} The rest of the
program is skipped over, and you'll be asked to press any key to return to

Chapter 2, Beginning Turbo Pascal 27

Turbo Pascal. Once you're there, Turbo Pascal automatically finds the
location of the error and displays it to you. If you need to find the error
location again, select the Find error command from the Compile menu.

When your program has finished executing, you press any key and the PC
returns control to Turbo Pascal, and you're back where you started. You
can now modify your program if so desired. If you select the Run com
mand before you make any changes to your program, Turbo Pascal
immediately executes it, without recompiling.

Checking the Files You've Created

If you exit Turbo Pascal (select Quit from the File menu), you can see a
listing of the source (Pascal) file you've created. Press 0 for as shell in the
File menu or, alternatively, press Q and type the following command at the
DOS prompt:

dir myfirst. *

You'll get a listing that looks something like this:

MYFIRST PAS 171 7-10-87 11:07a

The file MYFIRST.P AS contains the Pascal program you just wrote.

(Note: You'll only see the executable file if you've changed your default
Destination setting in the Compile menu to Disk. You would then get a file
called MYFIRST.EXE, which would contain the machine code that Turbo
Pascal generated from your program. You could then execute that program
by typing MYFIRST followed by Enter at the DOS system prompt.)

Stepping Up: Your Second Program

Now you're going to write a second program, building upon the first. If
you've exited from Turbo Pascal, return to the integrated environment by
typing the following command at the prompt:

turbo myfirst.pas

This will place you directly into the editor. Now, modify your
MYFIRST.P AS program to look like this:

program MySecond;
var

A,B
Ratio
Ans

begin

28

integer;
real;
char;

Turbo Pascal Owner's Handbook

repeat
Write('Enter two numbers: ');
Readln (A, B) ;
if B = 0 then

Writeln('Division by zero is not allowed.')
else
begin

Ratio := A / B;
Writeln('The ratio is ' ,Ratio:8:2)

end;
Write('Are you done? ');
Readln (Ans)

until UpCase(Ans) = 'Y'
end.

You want to save this as a separate program, so go to the main menu (press
F10), select the File menu (press F), and then Write to (press W). When
prompted for a new name, type MYSECOND.P AS and press Enter. Exit
from the File menu by pressing Esc.

Now here's a shortcut: To compile and run your second program, just press
R for Run (at the main menu). This tells Turbo Pascal to run your updated
program. And since you've made changes to the program, Turbo Pascal
knows to compile the program before running it.

Two major changes have been made to the program. First, most of the
program has been enclosed in the repeat..untilloop. This causes all the
statements between repeat and until to be executed until the expression
following until is True. Also, a test is made to see if B has a value of zero or
not. If B has a value of zero, then the message

Division by zero is not allowed

appears; otherwise, the ratio is calculated and displayed. Note that the ratio
has a more readable format now; it looks like this:

The ratio is 2.43

rather than this:

The ratio is 2.4338539929E+00

If you enter Y to the Are you done? message, you'll get the Press any key
to return to Turbo Pascal message at the bottom of the screen.
Press any key and you'll be returned to Turbo's main menu.

Programming Pizazz: Your Third Program

For the last program, let's get a little fancy and dabble in graphics. This
program assumes that you have some type of graphics card or adapter for

Chapter 2, Beginning Turbo Pascal 29

your system, and that you are currently set up to use that card or adapter. If
in doubt, try the program and see what happens. If an error message
appears, then you probably don't have a graphics adapter (or you have one
that's not supported by our Graph unit). In any case, pressing Enter twice
should get you back to the integrated environment.

At the main menu, press File/Load. Enter the program MYTHIRD.P AS at
the prompt, and you'll be placed in the editor. Here's the program to enter:

program MyThird;
uses

Graph;
const

Start 25;
Finish 175;
Step 2;

var
GraphDriver
GraphMode
ErrorCode
Xl,Yl,X2,Y2

begin

integer;
integer;
integer;
integer;

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

{ Stores graphics driver number
Stores graphics mode for the driver

{ Reports an error condition

{ Try to autodetect Graphics card

{ Error?)

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Writeln(' (You probably don"t have a graphics card!)');
Writeln('Program aborted ... ');
Halt (1) ;

end;
Yl := Start;
Y2 := Finish;
Xl := Start;
while Xl <= Finish do
begin

X2 := (StarttFinish) - Xl;
Line (Xl, Yl, X2, Y2);
Xl := Xl t Step;

end;
Xl := Start;
X2 := Finish;
Yl := Start;
while Yl <= Finish do
begin

Y2 := (StarttFinish) - Yl;
Line(Xl, Yl, X2, Y2);
Yl := Yl t Step;

end;
OutText('Press <RETURN> to quit:');
Readln;
CloseGraph;

end. { MyThird)

30 Turbo Pascal Owner's Handbook

After you finish entering this program, press F2 to save it and then G to
compile. If you have no errors during compilation, press R to run it. This
program produces a square with some wavy patterns along the edges.
When execution is over, you'll get the message Press any key to
return to Turbo Pascal at the bottom of your screen. Let's look at
how it works.

The uses statement says that the program uses a unit named Graph. A unit
is a library, or collection, of subroutines (procedures and functions) and
other declarations. In this case, the unit Graph contains the routines you
want to use: InitGraph, Line, CloseGraph.

The section labeled const defines three numeric constants-Start, Finish,
and Step-that affect the size, location, and appearance of the square. By
changing their values, you can change how the square looks.

Warning: Don't set Step to anything less than 1; if you do, the program will
get stuck in what is known as an infinite loop (a loop that circles endlessly).
You won't be able to exit except by pressing Gtrl-Alt-Oel or by turning your
PC off.

The variables Xl, Yl, X2, and Y2 hold the values of locations along
opposite sides of the square. The square itself is drawn by drawing a
straight line from Xl,Yl to X2,Y2. The coordinates are then changed, and
the next line drawn. The coordinates always start out in opposite corners:
The first line drawn goes from (25,25) to (175,175).

The program itself consists primarily of two loops. The first loop draws a
line from (25,25,) to (175,175). It then moves the X (horizontal) coordinates
by two, so that the next line goes from (27,25) to (173,175). This continues
until the loop draws a line from (175,25) to (25,175).

The program then goes into its second loop, which pursues a similar
course, changing the Y (vertical) coordinates by two each time. The routine
Line is from the Graph unit and draws a line between the endpoints given.

The final Readln statement causes the program to wait for you to press a
key before it goes back into text mode and exits to the integrated
environment.

The Turbo Pascal Compiler

You now know how to enter, compile, and run your programs. And
because of Turbo Pascal's method of locating errors and high compilation
speed, the cycle of entering, testing, and correcting your program takes
little time. Let's look at the different aspects of that cycle in more detail.

Chapter 2, Beginning Turbo Pascal 31

So, What's a Compiler Anyway?

Your PC, like most microcomputers, has a central processing unit (CPU)
that is the workhorse of the machine. On your PC, the CPU is a single chip
from a IIfamily" of chips: the iAPx86, a series of microprocessors designed
by Intel. The actual chip in your machine could be an 8088, an 8086, an
80186, an 80286, or even an 80386; it doesn't matter, since the code Turbo
Pascal produces will run on all of them.

The iAPx86 family has a set of binary-coded instructions that all the chips
can execute. By giving the iAPx86 the right set of instructions, you can
make it put text on the screen, perform math, move text and data around,
draw pictures-in short, do all the things that you want it to do. These
instructions are known collectively as machine code.

Since machine code consists of pure binary information, it's neither easy to
write nor easy to read. You can use a program known as an assembler to
write machine-level instructions in a form that you can read, which means
you would then be programming in assembly language. However, you still
have to understand how the iAPx86 microprocessors work. You'll also find
that to perform simple operations-such as printing out a number-often
requires a large number of instructions.

If you don't want to deal with machine code or assembly language, you use
a high-level language such as Pascal. You can easily read and write
programs in Pascal because it is designed for humans, not computers. Still,
the PC understands only machine code. The Turbo Pascal compiler
translates (or compiles) your Pascal program into instructions that the
computer can understand. The compiler is just another program that moves
data around; in this case, it reads in your program text and writes out the
corresponding machine code.

What Gets Compiled?

You can only edit one Turbo Pascal program at a time, and under normal
circumstances that's the only program that would be compiled. So when
you select the Compile, Make, or Build commands from the Compile
menu, or the Run command from the main menu, Turbo Pascal compiles
the program you're currently editing, producing an .EXE file, a .TPU file, or
code in memory.

There are two exceptions to this rule. First, you can specify a primary file,
using the Primary file command in the Compile menu. Once you've done
that, then the primary file will be compiled for Makes and Builds, but the
edit file will be compiled for Compiles.

32 Turbo Pascal Owner's Handbook

Second, you can ask Turbo Pascal to recompile any units that the program
you're compiling might use. You actually have two options here:

1. You can tell Turbo Pascal to recompile any units that have been changed
since the last time you compiled your program. This is called a "make."

2. You can tell Turbo Pascal to recompile all units that your program uses.
This is called a "build."

Where's the Code?

When you use the Run command, Turbo Pascal (by default) saves the
resulting machine code in memory (RAM). This has several advantages.
First, the compiler runs much faster because it takes less time to write the
machine code out to RAM than out to a floppy or hard disk. Second, since
your program is already loaded into RAM, Turbo Pascal tells the PC to
execute your code. Third, the PC more easily returns to Turbo Pascal once
your program stops executing, since Turbo Pascal also stays in RAM the
whole time.

If compiling to RAM is so wonderful, why wouldn't you want to do it
every time? Two reasons. First, because the resulting machine code is never
saved on disk, you could only run your programs from Turbo Pascal. There
would be no way to execute your program from MS-DOS, nor would you
be able to copy your program.

The second problem is memory-you might not have enough. This could
happen if your system doesn't have much memory, if your program is very
large, or if your program uses a lot of memory for dynamic data allocation.

It's easy to produce an .EXE file (application) you can run from outside
Turbo Pascal: Select the Destination option from the Compile menu. This
option allows you to toggle between Disk and Memory for your desti
nation. If you select Disk and then recompile, Turbo Pascal produces a code
file that you can run from MS-DOS by typing its name at the prompt.

The file produced has the same name as your source file but with the
extension .EXE; for example, the resulting code file of a program named
MYFIRST.P AS would be MYFIRST.EXE.

Regardless of whether you are compiling to disk or to memory, the Run
command still executes the resulting program once the compilation is done.

Chapter 2, Beginning Turbo Pascal 33

Compile, Make, and Build

The Compile menu has many options, three of which are compilation
commands: Compile, Make, and Build. All three take a source file and
produce an .EXE file (if Destination is set to Disk) or a .TPU file. Let's look
at the differences between them.

The Compile command compiles the file in the editor.

The Make command checks to see whether you have specified a primary
file. Once it has determined that, it checks the time and date of the .P AS
and .TPU (precompiled unit files) files for every unit referenced in the uses
statement (if there is one) in the program being compiled. (A unit is a
collection of constants, data types, variables, and procedures and functions;
see Chapter 4 for more information.) If the .P AS file has been modified
since the corresponding .TPU file was created, then Turbo Pascal will
automatically recompile that unit's .PAS file, creating a new .TPU file.
Turbo also recompiles any unit that uses a unit whose interface has
changed, whose include files have been changed, or any unit that links an
.OBJ file that has been modified since the unit's .TPU file was built. In short,
Turbo Pascal ensures that all units your program depends on are up to
date. Once it's done that, Turbo Pascal compiles and links your program,
producing an .EXE file.

The Build command acts just like the Make command but with one
important exception: It recompiles all units used by your program (and all
units used by those units, and so on), regardless of whether they are
current.

Here are some notes you should know about using Make and Build:

• If Make or Build cannot find the .P AS file corresponding to a given unit,
then the unit is considered valid. That way, if your program uses any of
the standard units, Turbo Pascal won't try to recompile them .

• When Turbo looks for a unit called unitname, it assumes that it is located
in a file called unitname.P AS. However, you can store the unit in a file
with another name by using the {$U othernamel compiler directive in
your code. For example, if your program uses a unit called
UtilityRoutines, but you store it in a file called MYUTILS.P AS, then you
would put the following in your program (assuming that your program
also uses Dos and Crt):

34

uses Dos, Crt, {$U MYUTILS.PAS} UtilityRoutines;

Note that the $U directive comes right before the corresponding unit
name.

Turbo Pascal Owner's Handbook

Compile-Time Errors

Like English, Pascal has rules of grammar you must follow. However,
unlike English, Pascal's structure isn't lenient enough to allow for slang or
poor syntax-the compiler won't understand what you want. In Pascal,
when you don't use the appropriate words or symbols in a statement or
when you organize them incorrectly, it results in a compile-time (syntax)
error.

What compile-time errors are you likely to get? Probably the most common
error novice Pascal programmers will get is Unknown identifier or
, ; , expected. Pascal requires that you declare all variables, data types,
constants, and subroutines-in short, all identifiers-before using them. If
you refer to an undeclared identifier or if you misspell it, you'll get this
error. Other common errors are unmatched begin .. end pairs, assignment of
incompatible data types (such as assigning reals to integers), parameter
count and type mismatches in procedure and function calls, and so on.

Runtime Errors

In programming, sometimes just following the rules governing correct
syntax isn't enough. For example, suppose you write a simple program that
prompts you for two integer values, adds them together, then prints out the
result. The entire program might look something like this:

program AddSum;
var

A,B,Sum : integer;
begin

Write('Enter two integer values: ');
Readln(A,B) ;
Sum := A + B;
Writeln('The sum is ',Sum,' .')

end.

In response to the prompt, Enter two integer values:, say you type in real
numbers (numbers with decimal points), integer values that are too large,
or even character strings instead of numbers. What happens? You'll get a
message that looks something like this:

Runtime error 106 at IF9C:0062

and your program will halt.

Chapter 2, Beginning Turbo Pascal 35

If you are running from within Turbo Pascal, you'll get the Press any key to
return to Turbo Pascal prompt; after pressing any key, you'll be returned to
Turbo Pascal's integrated environment, which will then automatically
locate the error for you in the Edit window.

What if the runtime error occurred in a unit used by your program? Turbo
Pascal can still locate the error if the unit was compiled with the $D+
compiler option. (This is the Debug info toggle in the Options/Compile
menu; it is on by default.)

In either case, Turbo Pascal loads that source code file into the editor and
positions the cursor at the appropriate spot. (You may be prompted to save
the current .edit file.) You can then make the appropriate changes,
recompile, and run it again.

If you need to relocate the error after having moved to another section of
your file, use the Ctrl-Q W command. If you change files, you can find the
error again by loading the main program and using the Find error
command in the Compile menu. It will ask you for the segment and offset
values displayed when the error occurred, but will default to the last error
address that was found.

36 Turbo Pascal Owner's Handbook

c H A p T E R

3

Programming in Turbo Pascal

The Pascal language was designed by Niklaus Wirth in the early 1970s to
teach programming. Because of that, it's particularly well-suited as a first
programming language. And if you've already programmed in other
languages, you'll find it easy to pick up Pascal.

To get you started on the road to Pascal programming, in this chapter we'll
teach you the basic elements of the Pascal language, and show you how to
use them in your programs. Of course, we won't cover everything about
programming in Pascal in this chapter. So if you're a Pascal novice, your
best bet would be to pick up a copy of the Turbo Pascal Tutor, a complete
book-pIus-disk tutorial about programming in Pascal and using version 4.0
of Turbo Pascal.

Before you work through this chapter, you might want to read Chapters 10
and 11 to learn how to use the menus and text editor in Turbo Pascal. You
should have installed Turbo Pascal (made a working copy of your Turbo
Pascal disk or copied the files onto your hard disk) as described in Chapter
1. Make sure that you've created the file TURBO.TP or installed the .EXE
file using TINST.EXE (see Appendix F); otherwise, Turbo Pascal won't
know the location of the standard units in TURBO.TPL and the
configuration file. (Unless you happen to own MS-DOS 3.x and you have
those files in the same directory as TURBO.EXE.)

Once you've done all that, get ready to learn about programming in Turbo
Pascal.

Chapter 3, Programming in Turbo Pascal 37

The Seven Basic Elements of Programming

Most programs are designed to solve a problem. They solve problems by
manipulating information or data. What you as the programmer have to do
is

• get the information into the program-input.

• have a place to keep it-data.

• give the right instructions to manipulate the data-operations.

• be able to get the data back out of the program to the user (you,
usually)-output.

You can organize your instructions so that

• some are executed only when a specific condition (or set of conditions) is
True-conditional execution.

• others are repeated a number of times-loops.

• others are broken off into chunks that can be executed at different
locations in your program-subroutines.

We've just described the seven basic elements of programming: input, data,
operations, output, conditional execution, loops, and subroutines. This list is not
comprehensive, but it does describe those elements that programs (and
programming languages) usually have in common.

Many programming languages, including Pascal, have additional features
as well. And when you want to learn a new language quickly, you can find
out how that language implements these seven elements, then build from
there. Here's a brief description of each element:

Input
This means reading values in from the keyboard, from a disk, or from an
I/O port.

Data
These are constants, variables, and structures that contain numbers (integer
and real), text (characters and strings), or addresses (of variables and
structures).

Operations
These assign one value to another, combine values (add, divide, and so
forth), and compare values (equal, not equal, and so on).

Output
This means writing information to the screen, to a disk, or to an I/O port.

38 Turbo Pascal Owner's Handbook

Conditional Execution
This refers to executing a set of instructions if a specified condition is True
(and skipping them or executing a different set if it is False) or if a data item
has a specified value or range of values.

Loops
These execute a set of instructions some fixed number of times, while some
condition is True or until some condition is True.

Subroutines
These are separately named sets of instructions that can be executed any
where in the program just by referencing the name.

Now we'll take a look at how to use these elements in Turbo Pascal.

Data Types

When you write a program, you're working with information that
generally falls into one of five basic types: integers, real numbers, characters
and strings, boolean, and pointers.

Integers are the whole numbers you learned to count with (1, 5, -21, and
752, for example).

Real numbers have fractional portions (3.14159) and exponents
(2.579x1024

). These are also sometimes known as floating-point numbers.

Characters are any of the letters of the alphabet, symbols, and the numbers
0-9. They can be used individually (a, Z, !, 3) or combined into character
strings ('This is only a test.').

Boolean expressions have one of two possible values: True or False. They
are used in conditional expressions, which we'll discuss later.

Pointers hold the address of some location in the computer's memory,
which in turn holds information.

Integer Data Types

Standard Pascal defines the data type integer as consisting of the values
ranging from -MaxInt through 0 to MaxInt, where MaxInt is the largest
possible integer value allowed by the compiler you're using. Turbo Pascal
supports type integer, defines MaxInt as equal to 32767, and allows the
value -32768 as well. A variable of type integer occupies 2 bytes.

Turbo Pascal also defines a long integer constant, MaxLongInt, with a value
of 2,147,483,647.

Chapter 3, Programming in Turbo Pascal 39

Turbo Pascal also supports four other integer data types, each of which has
a different range of values. Table 3.1 shows all five integer types.

Type

byte
shortint
integer
wora
longint

Table 3.1: Integer Data Types

Range Size in Bytes

0 .. 255 1
-128 .. 127 1

-32768 .. 32767 2
0 .. 65535 2

-2147483648 .. 2147483647 4

A final note: Turbo Pascal allows you to use hexadecimal (base-16) integer
values. To specify a constant value as hexadecimal, place a dollar sign ($) in
front of it; for example, $27 = 39 decimal.

Real Data Types

Standard Pascal defines the data type real as representing floating-point
values consisting of a significand (fractional portion) multiplied by an
exponent (power of 10). The number of digits (known as significant digits) in
the significand and the range of values of the exponent are compiler
dependent. Turbo Pascal defines the type real as being 6 bytes in size, with
11 significant digits and an exponent range of 10-38 to 1038•

In addition, if you have an 8087 math coprocessor and enable the numeric
sURport compiler directive or environment option ({$N+}), Turbo Pascal
also supports the IEEE Standard 754 for binary floating-point arithmetic.
This includes the data types single, double, extended, and com~. Single
uses 4 bytes, with 7 significant digits and an exponent range of 10- 8 to 1038;

double uses 8 bytes, with 15 significant digits and an exponent range of
10-38 to 1038; and extended uses 10 bytes, with 19 significant digits and an
exponent range of 10-4931 to 104931

•

Table 3.2: Real Data Types

Type Range

real 2.9 x 10E-39 .. 1.7 x 10E38
single 1.5 x 10E-45 .. 3.4 x 10E38
double 5.0 x 10E-324 .. 1.7 x 10E308
extended 1.9 x 10E-4951 .. 1.1 x 10E4932
comp* -2E+63+ 1..2E+63-1
* comp only holds integer values.

40

Significant Digits Size in Bytes

11-12
7- 8

15-16
19-20
19-20

6
4
8

10
8

Turbo Pascal Owner's Handbook

Get into the Turbo Pascal editor and enter the following program:

program DoRatio;
var

A,B : integer;
Ratio : real;

begin
Write ('Enter two numbers: ');
Readln(A,B) ;
Ratio := A div B;
Writeln('The ratio is ' ,Ratio)

end.

Save this as DORATIO.PAS by bringing up the main menu and selecting
the File/Write to command. Then press R to compile and run the program.
Enter two values (such as 10 and 3) and note the result (3.000000).

You were probably expecting an answer of 3.3333333333, and instead you
received a 3. That's because you used the div operator, which performs
integer division. Now go back and change the div statement to read as
follows:

Ratio := A / B;

Save the code (press F2), then compile and run. The result is now
3.3333333333, as you expected. Using the division operator U) gives you
the most precise result-a real number.

Character and String Data Types

You've learned how to store numbers in Pascal, now how about characters
and strings? Pascal offers a predefined data type char that is 1 byte in size
and holds exactly one character. Character constants are represented by
surrounding the character with single quotes (for example, 'A', 'e', '?', '2').
Note that '2' means the character 2, while 2 means the integer 2 (and 2.0
means the real number 2).

Here's a modification of DORATIO that allows you to repeat it several
times (this also uses a repeat..untilloop, which we'll discuss a little later):

program DoRatio;
var

A,B integer;
Ratio : real;
Ans char;

begin
repeat

Write('Enter two numbers: ');
Readln (A, B) ;
Ratio := A / B;
Writeln('The ratio is ' ,Ratio);

Chapter 3, Programming in Turbo Pascal 41

Write (' Do it again? (YIN) ') ;
Readln(Ans)

until UpCase(Ans) = 'N'
end.

After calculating the ratio once, the program writes the message

Do it again? (YIN)

and waits for you to type in a single character, followed by pressing Enter. If
you type in a lowercase n or an uppercase N, the until condition is met and
the loop ends; otherwise, the program goes back to the repeat statement
and starts over again.

Note that n is not the same as N. This is because they have different ASCII
code values. Characters are represented by the ASCII code: Each character
has its own 8-bit number (characters take up 1 byte, remember). Appendix
E lists the ASCII codes for all characters.

Turbo Pascal gives you two additional ways of representing character
constants: with a caret (1\) or a number symbol (#). First, the characters
with codes 0 through 31 are known as control characters (because historically
they were used to control teletype operations). They are referred to by their
abbreviations (CR for carriage return, LF for linefeed, ESC for escape, and
so on) or by the word Ctrl followed by a corresponding letter (meaning the
letter produced by adding 64 to the control code). For example, the control
character with ASCII code 7 is known as BEL or Ctr/-G. Turbo Pascal lets you
represent these characters using the caret (1\), followed by the corre
sponding letter (or character). Thus, I\C is a legal representation in your
program of Ctrl-G, and you could write statements such as Writeln (1\ C),
causing your computer to beep at you. This method, however, only works
for the control characters.

You can also represent any character using the number symbol (#), followed
by the character's ASCII code. Thus, #7 would be the same as I\C, #65
would be the same as I A', and #233 would represent one of the special IBM
PC graphics characters.

Defining a String

Individual characters are nice, but what about strings of characters? After
all, that's how you will most often use them. Standard Pascal does not
support a separate string data type, but Turbo Pascal does. Take a look at
this program:

42 Turbo Pascal Owner's Handbook

program Hello;
var

Name : string[30];
begin

Write('What is your name? ');
Readln(Name);
Writeln('Hello, ',Name)

end.

This declares the variable Name to be of type string, with space set aside to
hold 30 characters. One more byte is set aside internally by Turbo Pascal to
hold the current length of the string. That way, no matter how long or short
the name is you enter at the prompt, that is exactly how much is printed
out in the Writeln statement. Unless, of course, you enter a name more than
30 characters long, in which case only the first 30 characters are used, and
the rest are ignored.

When you declare a string variable, you can specify how many characters
(up to 255) it can hold. Or you can declare a variable (or parameter) to be of
type string with no length mentioned, in which case the default size of 255
characters is assumed.

Turbo Pascal offers a number of predefined procedures and functions to
use with strings; they can be found in Chapter 27.

Boolean Data Type

Pascal's predefined data type boolean has two possible values: True and
False. You can declare variables to be of type boolean, then assign the
variable either a True or False value or (more importantly) an expression
that resolves to one of those two values.

A Boolean expression is simply an expression that is either True or False. It is
made up of relational expressions, Boolean operators, Boolean variables,
and/ or other Boolean expressions. For example, the following while
statement contains a Boolean expression:

while (Index <= Limit) and not Done do '"

The Boolean expression consists of everything between the keywords while
and do, and presumes that Done is a variable (or possibly a function) of
type boolean.

Chapter 3, Programming in Turbo Pascal 43

Pointer Data Type

All the data types we've discussed until now hold just that-data. A pointer
holds a different type of information-addresses. A pointer is a variable
that contains the address in memory (RAM) where some data is stored,
rather than the data itself. In other words, it points to the data, like an
address book or an index.

A pointer is usually (but not necesarily) specific to some other data type.
Consider the following declarations:

type
Buffer = string[255];
BufPtr = ABuffer;

var
Bufl
Buf2

Buffer;
: BufPtr;

The data type Buffer is now just another name for string[255], while the
type BufPtr defines a pointer to a Buffer. The variable Bufl is of type Buffer;
it takes up 256 bytes of memory. The variable Buf2 is of type BufPtr; it
contains a 32-bit address and only takes up 4 bytes of memory.

Where does Buf2 point to? Nowhere, currently. Before you can use BufPtr,
you need to set aside (allocate) some memory and store its address in Buf2.
You do that using theNew procedure:

New(Buf2);

Since Buf2 points to the type Buffer, this statement creates a 256-byte buffer
somewhere in memory, then puts its address into Buf2.

How do you use the data pointed to by Buf2? Via the indirection operator
A. For example, suppose you want to store a string in both Bufl and the
buffer pointed to by Buf2. Here's what the statements would look like:

Bufl := 'This string gets stored in Bufl.'
Buf2 A := 'This string gets stored where Buf2 points.'

Note the difference between Buf2 and BUf2/\. Buf2 refers to a 4-byte pointer
variable; Buf2/\ refers to a 256-byte string variable whose address is stored
in Buf2.

How do you free up the memory pointed to by Buf2? Using the Dispose
procedure. Dispose makes the memory available for other uses. After you
use Dispose on a pointer, it's good practice to assign the (predefined) value
nil to that pointer. That lets you know that the pointer no longer points to
anything:

44 Turbo Pascal Owner's Handbook

Dispose(Buf2);
Buf2 := nil;

Note that you assign nil to Buf2, not to BUf2I\.

This ends our brief discussion on pointers; a good Pascal text will tell you
how and when they're useful.

Identifiers

Up until now, we've given names to variables without worrying about
what restrictions there might be. Let's talk about those restrictions now.

The names you give to constants, data types, variables, and functions are
known as identifiers. Some of the identifiers used so far include

integer, real, string Predefined data types
Hello,DoSum,DoRatio Main function of program
Name, A, B, Sum, Ratio User-defined variables
Write, Writeln,Readln Predeclared procedures

Turbo Pascal has a few rules about identifiers; here's a quick summary:

• All identifiers must start with a letter (a ... z or A .. . 2). The rest of an
identifier can consist of letters, underscores, and/or digits (0 ... 9); no
other characters are allowed.

• Identifiers are case-insensitive, which means that lowercase letters (a ... z)
are considered the same as uppercase letters (A ... 2). For example, the
identifiers indx, Indx, and INDX are identical.

• Identifiers can be of any length, but only the first 63 characters are
significant.

Operators

Once you get that data into the program (and into your variables), you'll
probably want to manipulate it somehow, using the operators available to
you. There are eight types: assignment, unary/binary, bitwise, relational,
logical, address, set, and string.

Most Pascal operators are binary, taking two operands; the rest are unary,
taking only one operand. Binary operators use the usual algebraic form, for
example, a + b. A unary operator always precedes its operand, for example,
-b.

Chapter 3, Programming in Turbo Pascal 45

In more complex expressions, rules of precedence clarify the order in which
operations are performed (see Table 3.3).

Table 3.3: Precedence of Operators

Operators

@,not
*, /, div, mod, and, shl, shr
+,-, or, xor
=,<>,<, >, <=,>=,in

Precedence Categories

First (high)
Second
Third
Fourth (low)

Unary operators
MultIplying operators
Adding operators
Relational operators

Operations with equal precedence are normally performed from left to
right, although the compiler may at times rearrange the operands to
generate optimum code.

Sequences of operators of the same precedence are evaluated from left to
right. Expressions within parentheses are evaluated first and independently
of preceding or succeeding operators.

Assignment Operators

The most basic operation is assignment, as in Ratio := A / B. In Pascal, the
assignment symbol is a colon followed by an equal sign (:=). In the example
given, the value of A / B on the right of the assignment symbol is assigned
to the variable Ratio on the left.

Unary and Binary Operators

Pascal supports the usual set of binary arithmetic operators-they work
with type integer and real values:

• Multiplication (*)

• Integer division (div)
• Real division (/)
• Modulus (mod)
• Addition (+)

• Subtraction (-)

Also, Turbo Pascal supports both unary minus (a + (-b», which performs a
two's complement evaluation, and unary plus (a + (+b», which does nothing
at all but is there for completeness.

46 Turbo Pascal Owner's Handbook

Bitwise Operators

For bit-level operations, Pascal has the following operators:

• shl (shift left) Shifts the bits left the indicated number of bits,
filling at the right with 0' s.

• shr (shift right) Shifts the bits right the indicated number of bits,
filling at the left with 0' s.

• and Performs a logical and on each corresponding pair
of bits, returning 1 if both bits are I, and 0
otherwise.

• or Performs a logical or on each corresponding pair of
bits, returning 0 if both bits are 0, and 1 otherwise.

• xor Performs a logical, exclusive or on each
corresponding pair of bits, returning 1 if the two
bits are different from one another, and 0
otherwise.

• not Performs a logical complement on each bit,
changing each 0 to a I, and vice versa.

These allow you to perform very low-level operations on type integer
values.

Relational Operators

Relational operators allow you to compare two values, yielding a Boolean
result of True or False. Here are the relational operators in Pascal:

> greater than
>= greater than or equal to
< less than
<= less than or equal to

equal to
<> not equal to
in is a member of

So why would you want to know if something were True or False? Enter
the following program:

program TestGreater;
var

A,B : integer;
Test : boolean;

Chapter 3, Programming in Turbo Pascal 47

begin
Write('Enter two numbers: ');
Readln(A,B);
Test := A > B;
Writeln('A is greater than B', Test);

end.

This will print True if A is greater than B or False if A is less than or equal
to B.

Logical Operators

There are four logical operators-and, xor, or, and not-which are similar
to but not identical with the bitwise operators. These logical operators work
with logical values (True and False), allowing you to combine relational
expressions, Boolean variables, and Boolean expressions.

They differ from the corresponding bitwise operators in this manner:

• Logical operators always produce a result of either True or False (a
Boolean value), while the bitwise operators do bit-by-bit operations on
type integer values.

• You cannot combine boolean and integer-type expressions with these
operators; in other words, the expression Flag and Indx is illegal if Flag is
of type boolean, and Indx is of type integer (or vice versa).

• The logical operators and and or will short-circuit by default; xor and not
will not. Suppose you have the expression expl and exp2. If expl is False,
then the entire expression is False, so exp2 will never be evaluated.
Likewise, given the expression expl or exp2, exp2 will never be evaluated
if expl is True. You can force full Boolean expression using the {$B+}
compiler directive or environment option.

Address Operators

Pascal supports two special address operators: the address-of operator (@)
and the indirection operator (").

The @ operator returns the address of a given variable; if Sum is a variable
of type integer, then @Sum is the address (memory location) of that
variable. Likewise, if ChrPtr is a pointer to type char, then ChrPtr" is the
character to which ChrPtr points.

48 Turbo Pascal Owner's Handbook

Set Operators

Set operators perform according to the rules of set logic. The set operators
and operations include:

+

*

union
difference
multiplication

String Operators

The only string operation is the + operator, which is used to concatenate
two strings.

Output

It may seem funny to talk about output before input, but a program that
doesn't output information isn't of much use. That output usua~ly takes the
form of information written to the screen (words and pictures), to a storage
device (floppy or hard disk), or to an I/O port (serial or printer ports).

The Writeln Procedure

You've already used the most common output function in Pascal, the
Writeln routine. The purpose of Writeln is to write information to the screen.
Its format is both simple and flexible:

Writeln (item, item, ...);

where each item is something you want to print to the screen. item can be a
literal value, such as an integer or a real number (3, 42, -1732.3), a character
('a', 'Z'), a string ('Hello, world'), or a Boolean value (True). It can also be a
named constant, a variable, a dereferenced pointer, or a function call, as
long as it yields a value that is of type integer, real, char, string, or boolean.
All the items are printed on one line, in the order given. The cursor is then
moved to the start of the next line. If you wish to leave the cursor after the
last item on the same line, then use the statement

Write (item, item, ...);

When the items in a Writeln statement are printed,blanks are not
automatically inserted; if you want spaces between items, you'll have to
put them there yourself, like this:

Chapter 3, Programming in Turbo Pascal 49

Writeln (item,' ',item,' ', ...);

So, for example, the following statements produce the indicated output:

A := 1; B := 2; C := 3;
Name := 'Frank';
WriteIn(A,B,C) ;
WriteIn(A,' ',B,' ',C);
WriteIn('Hi' ,Name);
Writeln (' Hi, , ,Name,' .');

123
123
HiFrank
Hi, Frank.

You can also use field-width specifiers to define a field width for a given item.
The format for this is

WriteIn(item:width, ...);

where width is an integer expression (literal, constant, variable, function
call, or combination thereoO specifying the total width of the field in which
item is written. For example, consider the following code and resulting
output:

A := 10; B := 2; C := 100;
WriteIn(A,B,C);
WriteIn(A:2,B:2,C:2);
WriteIn(A:3,B:3,C:3);
WriteIn(A,B:2,C:4);

102100
10 2100
10 2100

10 2 100

Note that the item is padded with leading blanks on the left to make it
equal to the field width. The actual value is right-justified.

What if the field width is less than what is needed? In the second Writeln
statement given earlier, C has a field width of 2 but has a value of 100 and
needs a width of 3. As you can see by the output, Pascal simply expands
the width to the minimum size needed.

This method works for all allowable items: integers, reals, characters,
strings, and booleans. However, real numbers printed with the field-width
specifier (or with none at all) come out in exponential form:

x := 421.53;
Write In (X);
WriteIn(X:8);

4.2153000000E+02
4.2E+02

Because of this, Pascal allows you to append a second field-width specifier:
item:width:digits. This second value forces the real number to be printed out
in fixed-point format and tells how many digits to place after the decimal
point:

50 Turbo Pascal Owner's Handbook

X := 421. 53;
Writeln(X:6:2);
Writeln(X:8:2);
Writeln(X:8:4);

Input

421. 53
421.53

421.5300

Standard Pascal has two basic input functions, Read and Readln, which are
used to read data from the keyboard. The general syntax is

Read (item, item, ...);

or

Readln (item, item, ...);

where each item is a variable of any integer, real, char, or string type.
Numbers must be separated from other values by spaces or by pressing
Enter.

Conditional Statements

There are times when you want to execute some portion of your program
when a given condition is True or not, or when a particular value of a given
expression is reached. Let's look at how to do this in Pascal.

The If Statement

Look again at the if statement in the previous examples; note that· it can
take the following generic format:

if expr
then statement!
else statement2

where expr is any Boolean expression (resolving to True or False), and
statementl and statement2 are legal Pascal statements. If expr is True, then
statementl is executed; otherwise, statement2 is executed.

We must explain two important points about if/then/ else statements:

First, else statement2 is optional; in other words, this is a valid if statement:

if expr
then statement!

Chapter 3, Programming in Turbo Pascal 51

In this case, statementl is executed if and only if expr is True. If expr is False,
then statementl is skipped, and the program continues.

Second, what if you want to execute more than one statement if a particular
expression is True or False? You would use a compound statement. A
compound statement consists of the keyword begin, some number of
statements separated by semicolons (;), and the keyword end.

The ratio example uses a single statement for the if clause

if B = 0.0 then
Writeln('Division by zero is not allowed.')

and a compound statement for the else clause

else
begin

Ratio = A / B;
Writeln('The ratio is ' ,Ratio)

end;

You might also notice that the body of each program you've written is
simply a compound statement followed by a period.

The Case Statement

This statement gives your program the power to choose between
alternatives without having to specify lots of if statements.

The case statement consists of an expression (the selector) and a list of
statements, each preceded by a case label of the same type as the selector. It
specifies that the one statement be executed whose case label is equal to the
current value of the selector. If none of the case labels contain the value of
the selector, then either no statement is executed or, optionally, the
statements following the reserved word else are executed. (else is an
extension to standard Pascal.)

A case label consists of any number of constants or subranges, separated by
commas and followed by a colon; for example:

case BirdSight of
'e' , , c' Curlews
'H' , 'h' Herons
'E' , 'e' Egrets

:= Curlews + 1;
:= Herons + 1;
:= Egrets + 1;

'T', 't' Terns := Terns + 1;
end; (case)

A subrange is written as two constants separated by the subrange delimiter
' .. '. The constant type must match the selector type. The statement that

52 Turbo Pascal Owner's Handbook

follows the case label is executed if the selector's value equals one of the
constants or if it lies within one of the subranges.

Loops

Just as there are statements (or groups of statements) that you want to
execute conditionally, there are other statements that you may want to
execute repeatedly. This kind of construct is known as a loop.

There are three basic kinds of loops: the while loop, the repeat loop, and
the for loop. We'll cover them in that order.

The While Loop

You can use the while loop to test for something at the beginning of your
loop. Enter the following program:

program Hello;
var

Count : integer;
begin

Count := 1;
while Count <= 10 do
begin

Write1n('Hello and goodbye!');
Inc (Count)

end;
Writeln('This is the end!')

end.

The first thing that happens when you run this program is that Count is set
equal to 1, then you enter the while loop. This tests to see if Count is less
then or equal to 10. Count is, so the loop's body (begin .. end) is executed.
This prints the message Hello and goodbye! to the screen, then increments
Count by 1. Count is again tested, and the loop's body is executed once
more. This continues as long as Count is less than or equal to 10 when it is
tested. Once Count reaches 11, the loop exits, and the string This is the
end! is printed on the screen.

The format of the while statement is

while expr do statement

where expr is a Boolean expression, and statement is either a single or a
compound statement.

Chapter 3, Programming in Turbo Pascal 53

The while loop evaluates expr. If it's True, then statement is executed, and
expr is evaluated again. If expr is False, the while loop is finished and the
program continues.

The Repeat .. Until Loop

The second loop is the repeat .. untilloop, which we've seen in the program
DORATIO.P AS:

program DoRatio;
var

A,B integer;
Ratio : real;
Ans char;

begin
repeat

Write('Enter two numbers: ');
Readln(A,B);
Ratio := A I B;
Writeln('The ratio is ' ,Ratio);
Write('Do it again? (YIN) ');
Readln (Ans)

until UpCase(Ans) = 'N'
end.

As described before, this program repeats until you answer n or N to the
question Do it again? (YIN). In other words, everything between repeat
and until is repeated until the expression following until is True.

Here's the generic format for the repeat .. untilloop:

repeat
statement;
statement;

statement
until expr

There are three major differences between the while loop and the repeat
loop. First, the statements in the repeat loop always execute at least once,
because the test on expr is not made until after the repeat occurs. By
contrast, the while loop will skip over its body if the expression is initially
False.

Next, the repeat loop executes until the expression is True, where the while
loop executes while the expression is True. This means that care must be
taken in translating from one type of loop to the other. For example, here's
the HELLO program rewritten using a repeat loop:

54 Turbo Pascal Owner's Handbook

program Hello;
var

Count : integer;
begin

Count := 1;
repeat

Writeln{'Hello and goodbye!');
Inc (Count)

until Count > 10;
Writeln{'This is the end!')

end.

Note that the test is now Count> 10, where for the while loop it was Count
<= 10.

Finally, the repeat loop can hold multiple statements without using a
compound statement. Notice that you didn't have to use begin .. end in the
preceding program, but you did for the earlier version using a while loop.

Again, be careful to note that the repeat loop will always execute at least
once. A while loop may never execute depending on the expression.

The For Loop

The for loop is the one found in most major programming languages,
induding Pascal. However, the Pascal version is simultaneously limited
and powerful.

Basically, you execute a set of statements some fixed number of times while
a variable (known as the index variable) steps through a range of values. For
example, modify the earlier HELLO program to read as follows:

program Hello;
var

Count : integer;
begin

for Count := 1 to 10 do
Writeln{'Hello and goodbye!');

Writeln{'This is the end!')
end.

When you run this program, you can see that the loop works the same as
the while and repeat loops already shown and, in fact, is precisely
equivalent to the while loop. Here's the generic format of the for loop
statement:

for index := exprl to expr2 do statement

Chapter 3, Programming in Turbo Pascal 55

where index is a variable of some scalar type (any integer type, char,
boolean, any enumerated type), exprl and expr2 are expressions of some
type compatible with index, and statement is a single or compound
statement. Index is incremented by one after each time through the loop.

You can also decrement the index variable instead of incrementing it by
replacing the keyword to with the keyword downto.

The for loop is equivalent to the following code:

index := exprl;
while index <= expr2 do
begin

statement;
Inc (index)

end;

The main drawback of the for loop is that it only allows you to increment
or decrement by one. Its main advantages are conciseness and the ability to
use char and enumerated types in the range of values.

Procedures and Functions

You've learned how to execute code conditionally and iteratively. Now, what
if you want to perform the same set of instructions on different sets of data
or at different locations in your program? Well, you simply put those
statements into a subroutine, which you can then call as needed.

In Pascal, there are two types of subroutines: procedures and functions. The
main difference between the two is that a function returns a value and can
be used in expressions, like this:

x : = Sin (A) ;

while a procedure is called to perform one or more tasks:

Writeln('This is a test');

However, before you learn any more about procedures and functions, you
need to understand Pascal program structure.

Program Structure

In Standard Pascal, programs adhere to a rigid format:

56 Turbo Pascal Owner's Handbook

program ProgName;
label

labels;
const

constant declarations;
type

data type definitions;
var

variable declarations;
procedures and functions;
begin

main body of program
end.

The five declaration sections-label, const, type, var, and procedures and
functions-do not all have to be in every program. But in standard Pascal,
if they do appear, they must be in that order, and each section can appear
only once. The declaration section is followed by any procedures and
functions you might have, then finally the main body of the program,
consisting of some number of statements.

Turbo Pascal gives you tremendous flexibility in your program structure.
All it requires is that your program statement (if you have one) be first and
that your main program body be last. Between those two, you can have as
many declaration sections as you want, in any order you want, with
procedures and functions freely mixed in. But things must be defined
before they are used, or else a compile-time error will occur.

Procedure and Function Structure

As mentioned earlier, procedures and functions-known collectively as
subprograms-appear anywhere before the main body of the program.
Procedures use this format:

procedure ProcName(parameters);
label

labels;
const

constant declarations;
type

data type definitions;
var

variable declarations;
procedures and functions;
begin

main body of procedure;
end;

Chapter 3, Programming in Turbo Pascal 57

Functions look just like procedures except that they start with a function
header and end with a data type for the return value of the function:

function FuncName(parameters) : data type;

As you can see, there are only two differences between this and regular
program structure: Procedures or functions start with a procedure or
function header instead of a program header, and they end with a semi
colon instead of a period. A procedure or function can have its own
constants, data types, and variables, and even its own procedures and
functions. What's more, all these items can only be used with the procedure
or function in which they are declared.

Sample Program

Here's a version of the DORATIO program that uses a procedure to get the
two values, then uses a function to calculate the ratio:

program DoRatio;
var

A,B : integer;
Ratio : real;

procedure GetData(var X,Y integer);
begin

Write('Enter two numbers: ');
Readln(X,Y)

end;

function GetRatio(I,J : integer) real;
begin

GetRatio := I/J
end;

begin
GetData (A, B) ;
Ratio := GetRatio(A,B);
Writeln('The ratio is ' ,Ratio)

end.

This isn't exactly an improvement on the original program, being both
larger and slower, but it does illustrate how procedures and functions
work.

When you compile and run this program, execution starts with the first
statement in the main body of the program: GetData (A, B). This type of
statement is known as a procedure call. Your program handles this call by
executing the statements in GetData, replacing X and Y (known as formal
parameters) with A and B (known as actual parameters). The keyword var in
front of X and Y in GetData's procedure statement says that the actual

58 Turbo Pascal Owner's Handbook

parameters must be variables and that the variable values can be changed
and passed back to the caller. So you can't pass literals, constants,
expressions, and so on to GetData. Once GetData is finished, execution
returns to the main body of the program and continues with the statement
following the call to GetData.

That next statement is a function call to GetRatio. Note that there are some
key differences here. First, GetRatio returns a value; which must then be
used somehow; in this case, it's assigned to Ratio. Second, a value is
assigned to GetRatio in its main body; this is how a function determines
what value to return. Third, there is no var keyword in front of the formal
parameters I and J. This means that the actual parameters could be any two
integer expressions, such as Ratio := GetRatio(A + B,300); and that even if
you change the values of the formal parameters in the function body, the
new values will not be passed back to the caller. This, by the way, is not a
distinction between procedures and functions; you can use both types of
parameters with either type of subprogram.

Program Comments

Sometimes you want to insert notes into your program to remind you (or
inform someone else) of what certain variables mean, what certain
functions or statements do, and so on. These notes are known as comments.
Pascal, like most, other programming languages, lets you put as many
comments as you want into your program.

You can start a comment with the left curly brace (0, which signals to the
compiler to ignore everything until after it sees,the right curly brace 0).

Comments can even extend across multiple lines, like this:

{ This is a long
comment, extending
over several lines.

Pascal also allows an alternative form of comment, beginning with a left
parenthesis and an asterisk, (*, and ending with a right parenthesis and an
asterisk, *). This allows for a limited form of comment nesting, because a
comment beginning with (* ignores all curly braces, and vice versa.

Now that we've gotten you off to a fine start, we recommend that you buy
a good tutorial on Turbo Pascal (for instance, Turbo Pascal Tutor).

Chapter 3, Programming in Turbo Pascal 59

60 Turbo Pascal Owner's Handbook

c H A p T E R

4

Units and Related Mysteries

In Chapter 3, you learned how to write standard Pascal programs. What
about non-standard programming-more specifically, PC-style program
ming, with screen control, DOS calls, and graphics? To write such
programs, you have to understand units or understand the PC hardware
enough to do the work yourself. This chapter explains what a unit is, how
you use it, what predefined units are available, how to go about writing
your own units, and how to compile them.

What's a Unit, Anyway?

Turbo Pascal gives you access to a large number of predefined constants,
data types, variables, procedures, and functions. Some are specific to Turbo
Pascal; others are specific to the IBM PC (and compatibles) or to MS-DOS.
There are dozens of them, but you seldom use them all in a given program.
Because of this, they are split into related groups called units. You can then
use only the units your program needs.

A unit is a collection of constants, data types, variables, procedures, and
functions. Each unit is almost like a separate Pascal program: It can have a
main body that is called before your program starts and does whatever
initialization is necessary. In short, a unit is a library of declarations you can
pull into your program that allows your program to be split up and
separately compiled.

All the declarations within a unit are usually related to one another. For
example, the Crt unit contains all the declarations for screen-oriented
routines on your PC.

Chapter 4, Units and Related Mysteries 61

Turbo Pascal provides seven standard units for your use. Five of
them-System, Graph, Dos, Crt, and Printer-provide support for your
regular Turbo Pascal programs. The other two-Turbo3 and Graph3 are
designed to help maintain compatibility with programs and data files
created under version 3.0 of Turbo Pascal. All but Graph are stored in the
file TURBO.TPL. Some of these are explained more fully in Chapter 5, but
we'll look at each one here and explain its general function.

A Unit's Structure

A unit provides a set of capabilities through procedures and functions
with supporting constants, data types, and variables-but it hides how
those capabilities are actually implemented by separating the unit into two
sections: the interface and the implementation. When a program uses a unit,
all the unit's declarations become available, as if they had been defined
within the program itself.

A unit's structure is not unlike that of a program, but with some significant
differences. Here's a unit, for example:

unit <identifier>;
interface
uses <list of units>; {Optional

{ public declarations }
implementation

{ private declarations }
{ procedures and functions

begin
{ initialization code

end.

The unit header starts with the reserved word unit, followed by the unit's
name (an identifier), exactly like a program has a name. The next item in a
unit is the keyword interface. This signals the start of the interface section
of the unit-the section visible to any other units or programs that use this
unit.

A unit can use other units by specifying them in a uses clause. If present,
the uses clause appears immediately after the keyword interface.

Interface Section

The interface portion-the "public" part-of a unit starts at the reserved
word interface, which appears after the unit header and ends when the
reserved word implementation is encountered. The interface determines

62 Turbo Pascal Owner's Handbook

what is "visible" to any program (or other unit) using that unit; any
program using the unit has access to these "visible" items.

In the unit interface, you can declare constants, data types, variables,
procedures, and functions. As with a program, these can be arranged in
any order, and sections can repeat themselves (for example, type ... var ...
<procs> ... const ... type ... const ... var).

The procedures and functions visible to any program using the unit are
declared here, but their actual bodies-implementations-are found in the
implementation section. forward declarations are neither necessary nor
allowed. The bodies of all the regular procedures and functions are held in
the implementation section after all the procedure and function headers
have been listed in the interface section.

Implementation Section

The implementation section-the "private" part-starts at the reserved
word implementation. Everything declared in the interface portion is
visible in the implementation: constants, types, variables, procedures, and
functions. Furthermore, the implementation can have additional
declarations of its own, although these are not visible to any programs
using the unit. The program doesn't know they exist and can't reference or
call them. However, these hidden items can be (and usually are) used by
the "visible" procedures and functions-those routines whose headers
appear in the interface section.

If any procedures have been declared external, one or more {$L filename}
directive(s) should appear anywhere in the source file before the final end
of the unit.

The normal procedures and functions declared in the interface-those that
are not inline-m ust rea ppear in the im plemen ta tion. The
procedure/ function header that appears in the implementation should
either be identical to that which appears in the interface or should be in the
short form. For the short form, type in the keyword (procedure or
function), followed by the routine's name (identifier). The routine will then
contain all its local declarations (labels, constants, types, variables, and
nested procedures and functions), followed by the main body of the routine
itself. Say the following declarations appear in the interface of your unit:

procedure ISwap(var Vl,V2 : integer);
function IMax(Vl,V2 : integer) : integer;

The implementation could look like this:

Chapter 4, Units and Related Mysteries 63

procedure ISwap;
var

Temp : integer;
begin

Temp := VI; VI := V2; V2 := Temp
end; {of proc ISwap }
function IMax(VI,V2 : integer) : integer;
begin

if VI > V2 then
IMax := VI

else IMax := V2
end; {of func IMax }

Routines local to the implementation (that is, not declared in the interface
section) must have their complete procedure/function header intact.

Initialization Section

The entire implementation portion of the unit is normally bracketed within
the reserved words implementation and end. However, if you put the
reserved word begin before end, with statements between the two, the
resulting compound statement-looking very much like the main body of a
program-becomes the initialization section of the unit.

The initialization section is where you initialize any data structures
(variables) that the unit uses or makes available (through the interface) to
the program using it. You can use it to open files for the program to use
later. For example, the standard unit Printer uses its initialization section to
make all the calls to open (for output) the text file Lst, which you can then
use in your program's Write and Writeln statements.

When a program using that unit is executed, the unit's initialization section
is called before the program's main body is run. If the program uses more
than one unit, each unit's initialization section is called (in the order
specified in the program's uses statement) before the program's main body
is executed.

How Are Units Used?

The units your program uses have already been compiled, stored as
machine code not Pascal source code; they are not Include files. Even the
interface section is stored in the special binary symbol table format that
Turbo Pascal uses. Furthermore, certain standard units are stored in a
special file (TURBO.TPL) and are automatically loaded into memory along
with Turbo Pascal itself.

64 Turbo Pascal Owner's Handbook

As a result, using a unit or several units adds very little time (typically less
than a second) to the length of your program's compilation. If the units are
being loaded in from a separate disk file, a few additional seconds may be
required because of the time it takes to read from the disk.

As stated earlier, to use a specific unit or collection of units, you must place
a . uses clause at the start of your program, followed by a list of the unit
names you want to use, separated by commas:

program MyProgi
uses thisUnit,thatUnit,theOtherUniti

When the compiler sees this uses clause, it adds the interface information in
each unit to the symbol table and links the machine code that is the
implementation to the program itself.

The ordering of units in the uses clause is not important. If thisUnit uses
thatUnit or vice versa, you can declare them in either order, and the
compiler will determine which unit must be linked into MyProg first. In
fact, if thisUnit uses thatUnit but MyProg doesn't need to directly call any of
the routines in thatUnit, you can "hide" the routines in thatUnit by omitting
it from the uses clause:

unit thisUniti
uses thatUniti

program MyProgi
uses thisUnit, theOtherUniti

In this example, this Unit can call any of the routines in that Unit, and
MyProg can call any of the routines in thisUnit or theOtherUnit. MyProg
cannot, however, call any of the routines in that Unit because that Unit does
not appear in MyProg's uses clause.

If you don't put a uses clause in your program, Turbo Pascal links in the
System standard unit anyway. This unit provides some of the standard
Pascal routines as well as a number of Turbo Pascal-specific routines.

Referencing Unit Declarations

Once you include a unit in your program, all the constants, data types,
variables, procedures, and functions declared in that unit's interface
become available to you. For example, suppose the following unit existed:

Chapter 4, Units and Related Mysteries 65

unit MyStuff;
interface

const
MyValue = 915;

type
MyStars = (Deneb,Antares,Betelgeuse);

var
MyWord : string[20];

procedure SetMyWord(Star : MyStars);
function TheAnswer: integer;

What you see here is the unit's interface, the portion that is visible to (and
used by) your program. Given this, you might write the following
program:

program TestStuff;
uses MyStuff;
var

I : integer;
AStar : MyStars;

begin
Writeln(MyValue);
AStar := Deneb;
SetMyWord(AStar);
Writeln(MyWord);
I := TheAnswer;
Writeln (I)

end.

Now that you have included the statement uses MyStuff in your program,
you can refer. to all the identifiers declared· in the interface section in the
interface of MyStuff (MyWord, MyValue, and so on). However, consider the
following situation:

program TestStuff;
uses MyStuff;
const

MyValue = 22;
var

I integer;
AStar : MyStars;

function TheAnswer integer;
begin

TheAnswer := -1
end;

begin
Writeln(MyValue);
AStar := Deneb;
SetMyWord(AStar);
Writeln(MyWord);
I := TheAnswer;
Writeln (I)

end.

66 Turbo Pascal Owner's Handbook

This program redefines some of the identifiers declared in MyStuff. It will
compile and run,but will use its own definitions- for MyValue and The
Answer, since those were declared more recently than the ones in MyStuff.

You're probably wondering whether there's some way in this situation to
still refer to the identifiers in MyStuff? Yes, preface each one with the
identifier MyStuff and a period (.). For example, here's yet another version
of the earlier program:

program TestStuff;
uses MyStuff;
const

MyValue = 22;
var

I : integer;
AStar : MyStars;

function TheAnswer integer;
begin

TheAnswer := -1;
end;

begin
Writeln(MyStuff.MyValue);
AStar := Deneb;
SetMyWord(AStar);
Writeln(MyWord);
I := MyStuff.TheAnswer
Writeln(I)

end.

This program will give you the same answers as the first one, even though
you've redefined MyValue and TheAnswer. Indeed, it would have been.
perfectly legal (although rather wordy) to write the first program as
follows:

program TestStuff;
uses MyStuff;
var

I : integer;
AStar : MyStuff.MyStars;

begin
Writeln(MyStuff.MyValue);
AStar := MyStuff.Deneb;
MyStuff.SetMyWord(AStar);
Writeln(MyStuff.MyWord);
I := MyStuff.TheAnswer;
Writeln(I)

end.

Note that you can preface any identifier-constant, data type, variable, or
subprogram-with the unit name.

Chapter 4, Units and Related Mysteries 67

TURBO.TPL

The file TURBO.TPL contains all the standard units except Graph: System,
Crt, Dos, Printer, Turbo3, and Graph3. These are the units loaded into
memory with Turbo Pascal; they're always readily available to you. You
will normally keep the file TURBO.TPL in the same directory as
TURBO.EXE (or TPC.EXE). However, you can keep it somewhere else, as
long as that "somewhere else" is defined as the Turbo directory. That's
done using TINST.EXE to install the Turbo directory directly in the
TURBO.EXE file.

System Units used: none
System contains all the standard and built-in procedures and functions of
Turbo Pascal. Every Turbo Pascal routine that is not part of standard Pascal
and that is not in one of the other units is in System. This unit is always
linked into every program.

Dos Units used: none

Dos defines numerous Pascal procedures and functions that are equivalent
to the most commonly used DOS calls, such as GetTime, SetTime, DiskSize,
and so on. It also defines two low-level routines, MsDos and Intr, which
allow you to directly invoke any MS-DOS call or system interrupt. Registers
is the data type for the parameter to MsDos and Intr. Some other constants
and data types are also defined.

Crt Units used: none

Crt provides a set of PC-specific declarations for input and output:
constants, variables, and routines. You can use these to manipulate your
text screen (do windowing, direct cursor addressing, text color and
background). You can also do "raw" input from the keyboard and control
the PC's sound chip. This unit provides a lot of routines that were standard
in version 3.0.

68 Turbo Pascal Owner's Handbook

Printer Units used: none

Printer declares the text-file variable Lst and connects it to a device driver
that (you guessed it) allows you to send standard Pascal output to the
printer using Write and Writeln. For example, once you include Printer in
your program, you could do the following:

Write(Lst,'The sum of ' ,A:4,' and' ,B:4,' is ')i
C := A + Bi

Writeln(Lst,C:8)i

Graph3 Units used: Crt

Graph3 supports the full set of graphics routines-basic, advanced, and
turtlegraphics-from version 3.0. They are identical in name, parameters,
and function to those in version 3.0.

Turbo3 Units used: Crt

This unit contains two variables and several procedures that are no longer
supported by Turbo Pascal. These include the predefined file variable Kbd,
the Boolean variable CBreak, and the original integer versions of MemAmil
and MaxAvail (which return paragraphs free instead of bytes free, as do the
current versions).

Graph Units used: none

The Graph unit is not built into TURBO.TPL, but instead resides on the
same disk with the .BGI and .CHR support files. Place GRAPH.TPU in the
current directory or use the unit directory to specify the full path to
GRAPH.TPU.

Graph supplies a set of fast, powerful graphics routines that allow you to
make full use of the graphics capabilities of your PC. It implements the
device-independent Borland graphics handler, allowing support of CGA,
EGA, Hercules, AT &T 400, MCGA, 3270 PC, and VGA graphics.

Now that you've been introduced to units, let's see about writing your
own.

Chapter 4, Units and Related Mysteries 69

Writing Your Own Units

Say you've written a unit called IntLib, stored it in a file called INTLIB.PAS,
and compiled it to disk; the resulting code file will be called INTLIB.TPU.
To use it in your program, you must include a uses statement to tell the
compiler you're using that unit. Your program might look like this:

program MyProg;
uses IntLib;

Note that Turbo Pascal expects the unit code file to have the same name (up
to eight characters) of the unit itself. If your unit name is MyUtilities, then
Turbo is going to look for a file called MYUTILIT.P AS. You can override
that assumption with the $U compiler directive. This directive is passed the
name of the .P AS file and must appear just before the unit's name in the
uses statement. For example, if your program uses Dos, Crt, and
MyUtilities, and the last one is stored in a file called UTIL.P AS, then you
would write

uses Dos, Crt, ($U UTIL.PAS) MyUtilities;

Compiling a Unit

You compile a unit exactly like you'd compile a program: Write it using the
editor and select the Compile/Compile command (or press Alt-C). However,
instead of creating an .EXE file, Turbo Pascal will create a .TPU (Turbo
Pascal Unit) file. You can then leave this file as is or merge it into
TURBO.TPL using TPUMOVER.EXE (see Chapter 7).

In any case, you probably want to move your .TPU files (along with their
source) to the unit directory you specified with the 0 /D /Unit directories
command. That way, you can reference those files without having to give a
{$U} directive (The Unit directories command lets you give multiple
directories for the compiler to search for in unit files.)

You can only have one unit in a given source file; compilation stops when
the final end statement is encountered.

An Example

Okay, now let's write a small unit. We'll call it IntLib and put in two simple
integer routines-a procedure and a function:

70 Turbo Pascal Owner's Handbook

unit IntLib;
interface
procedure ISwap(var I,J : integer);
function IMax(I,J: integer) : integer;
implementation
procedure ISwap;
var

Temp : integer;
begin

Temp := I; I := J; J := Temp
end; {of proc ISwap

function IMax;
begin

if I > J then
IMax := I

else IMax := J
end; {of func IMax }
end. {of unit IntLib

Type this in, save it as the file INTLIB.P AS, then compile it to disk. The
resulting unit code file is INTLIB.TPU. Move it to your unit directory
(whatever that might happen to be).

This next program uses the unit IntLib:

program IntTest;
uses IntLib;
var

A,B : integer;
begin

Write('Enter two integer values: ');
Readln(A,B);
ISwap(A,B);
Writeln('A = ' ,A,' B = ' ,B)i
Writeln('The max is ' ,IMax(A,B))i

end. {of program IntTest }

Congratulations! You've just created your first unit!

Units and Large Programs

Up until now, you've probably thought of units only as libraries-
collections of useful routines to be shared by several programs. Another
function of a unit, however, is to break up a large program into modules.

Two aspects of Turbo Pascal make this modular functionality of units work:
(1) its tremendous speed in compiling and linking and (2) its ability to
manage several code files simultaneously, such as a program and several
units.

Chapter 4, Units and Related Mysteries 71

Typically, a large program is divided into units that group procedures by
their function. For instance, an editor application could be divided into
initialization, printing, reading and writing files, formatting, and so on.
Also, there could be a "global" unit-one used by all other units, as well as
the main program-that defines global constants, data types, variables,
procedures, and functions.

The skeleton of a large program might look like this:

program Editor;
uses

Dos,Crt,Printer
EditGlobals,
EditInit,
EditPrint,
EditRead,EditWrite,
EditFormat;

Standard units from TURBO.TPL }
{ User-written units }

{ Program's declarations, procedures, and functions}
begin {main program }
end. {of program Editor }

Note that the units in this program could either be in TURBO.TPL or in
their own individual .TPU files. If the latter is true, then Turbo Pascal will
manage your project for you. This means when you recompile the program
Editor, Turbo Pascal will check the last update for each of the .TPU files and
recompile them if necessary.

Another reason to use units in large programs has to do with code segment
limitations. The 8086 (and related) processors limit the size of a given
chunk, or segment, of code to 64K. This means that the main program and
any given segment cannot exceed a 64K size. Turbo Pascal handles this by
making each unit a separate code segment. Your upper limit is the amount
of memory the machine and operating system can support-640K on most
PCs. Without units, you're limited to 64K of code for your program. (See
Chapter 6, "Project Management," for more information about how to deal
with large programs.)

TPUMOVER

You don't have to use a {$U <filename>} directive when using the standard
runtime units (System, Dos, and so on). That's because all those units have
been moved into the Turbo Pascal unit file (TURBO.TPL). When you
compile, those units are always ready to be used when you want them.

Suppose you want to add a well-designed and thoroughly debugged unit
to the standard units so that it's automatically loaded into memory when

72 Turbo Pascal Owner's Handbook

you run the compiler. Is there any way to move it into the Turbo Pascal
standard unit library file? Yes, by using the TPUMOVER.EXE utility.

You can also use TPUMOVER to remove units from the Turbo Pascal
standard unit library file, reducing its size and the amount of memory it
takes up when loaded. (More details on using TPUMOVER can be found in
Chapter 7.)

As you've seen, it's really quite simple to write your own units. A well
designed, well-implemented unit simplifies program development; you
solve the problems only once, not for each new program. Best of all, a unit
provides a clean, simple mechanism for writing very large programs.

Chapter 4, Units and Related Mysteries 73

74 Turbo Pascal Owner's Handbook

c H A p T E R

5

Getting the Most from Your PC

Now that you've learned about Pascal and units, it's time to see how to put
it all together.

In this chapter, you'll start off learning about writing "textbook" programs
in Turbo Pascal, then move on to some of the extensions that Turbo Pascal
offers over standard Pascal. After that, we'll look at the standard units,
giving some sample programs of how to use the routines in them. Finally,
we'll touch on how to access machine and assembly language in your
Pascal program.

Writing Textbook Programs

Turbo Pascal supports most aspects of ANSI standard Pascal (refer to
Appendix B, "Comparing Turbo Pascal 4.0 With ANSI Pascal"). As a result,
it's easy for you to use Turbo Pascal with most Pascal textbooks. All you
need to do is type in the program found in your textbook, compile it, and
run it.

The only major difference between Turbo Pascal and standard Pascal you
are likely to encounter is in reading from and writing to typed files. Turbo
Pascal does not support the original Get and Put procedures, nor does it
support file window variables. It does fully support (as defined in standard
Pascal) Read and Write for typed file I/O.

Another area of clarification also deals with file I/O. Standard Pascal does
not define any mechanism for associating a file variable (of any type) with
an actual disk file. As a result, every Pascal compiler has its own means of

Chapter 5, Getting the Most from Your PC 75

performing this task. In Turbo Pascal, you use the Assign procedure, which
has the format

Assign(filevar,filestr);

where fiZevar is a file variable of any type, and fiZestr any string expression
containing the name of a disk file (including its path name if desired or
necessary) .

Turbo Pascal Extensions

Turbo Pascal offers a large number of built-in extensions to standard
Pascal. Here's a quick look at some of them.

Data-Type Extensions

Turbo Pascal 4.0 has some significant data-type extensions to standard
Pascal. These consist of new integer and floating-point data types that give
you greater control over variable precision and size.

In addition to the standard type integer (-32768 .. 32767), Turbo Pascal
supports shortint (-128 .. 127), byte (0 .. 255), word (0 .. 65535), and longint
(-2147483648 .. 2147483647). This variety of integer types allows you to
precisely define the variables and data structures you need, rather than
having to fit everything into the type integer.

Turbo Pascal 4.0 now has an option to support the 8087/80287/80387 math
coprocessor. When you enable the {$N+} compiler directive or environment
option, you then have access to four new data types: single (4-byte real),
double (8-byte real), extended (lO-byte real), and comp (8-byte integer). All
floating-point operations are compiled as calls to the 8087 coprocessor, so
that a program compiled using the {$N+} option can run only on a
computer equipped with that processor.

Built-In Procedures and Functions

Besides supporting all the defined procedures and functions in standard
Pascal, Turbo Pascal 4.0 offers many additional built-in procedures and.
functions for your use. These are documented in Chapter 24. Also, note that
many of the procedures and functions that were "standard" in version 3.0
are now in the various units found in TURBO.TPL.

76 Turbo Pascal Owner's Handbook

Using MS-DOS Calls

One of the units found in TURBO.TPL is Dos, which contains definitions,
procedures, and functions designed to help you make greater use of MS
DOS. To use this unit, place the statement

uses Dos;

at the start of your program, after your program statement but before any
of your declarations. If you are using more than this one unit, you can list
all the units in this uses statement, separated by commas.

Let's start by writing a directory program. Here's the initial main body:

program GetOirectory;
uses Dos;
var

Path : string;
SRec : SearchRec;

{ Rest of program }
begin

repeat
Write('Enter path name: '); Readln(Path);
if Path <> " then
begin

FindFirst(Path,AnyFile,SRec);
while OosError = 0 do
begin

PutSRec(SRec);
FindNext(SRec)

end;
Writeln

end
until Path = "

end. { of proc GetOirectory

Note that the uses Dos statement is after the program statement, and also
that the global variables Path and SRec are declared. In this program
fragment, you are using five items from Dos: SearchRec, AnyFile, FindFirst,
Dos Error, and FindNext.

The procedure PutSRec is user-defined; it'll go right where the Rest of
program comment is. Let's look at that procedure:

procedure PutSRec(SRec : SearchRec);
var

OT : OateTime;
begin

with SRec do
begin

PutName(Name);

Chapter 5, Getting the Most from Your PC 77

if (Attr and Directory) <> 0 then
Write (' <D1R>')

else
begin

Write(Size:10,' ');
UnpackTime(Time,DT);
PutDateTime(DT)

end;
Writeln

end
end; { of proc PutSRec

Again, you borrow from Dos: the data types SearchRec and DateTime, the
constant Directory, and the procedure UnpackTime. Name, Attr, Size, and
Time are all fields of SRec.

PutName and PutDateTime are both user-defined procedures. They, and
their support routines, all go in front of PutSRec and look like this:

procedure PutLead(1 : integer);
begin

if I >= 10 then
Write (I: 2)

else Write('O' ,1:1)
end; {of proc PutLead

procedure PutDateTime(DT DateTime);
var

H : integer;
Ch : char;

begin
with DT do
begin

Write(Month:2,'-');
PutLead(Day); Write('-');
PutLead(Year mod 100); Write(' ');
if Hour >= 12 then

Ch := 'p'
else Ch := 'a';

H := Hour mod 12;
if H = a then

H := 12;
Write(H:2,':');
PutLead(Min); Write(Ch);

end
end; { of proc PutDateTime }

procedure PutName(Name : string);
var

Dotpos
Ext

begin
DotPos

78

: integer;
: string[3];

:= Pos(' .',Name);

Turbo Pascal Owner's Handbook

if DotPos <> 0 then
begin

Ext := Copy(Name,DotPostl,Length(Name)-DotPos);
Delete (Name,DotPos, ItLength (Name)-DotPos)

end
else Ext := ";
Write(Name,' ': (lO-Length(Name)),Ext,' ': (5-Length(Ext)))

end;

PutLead writes out an integer with a leading zero if it's less than 10.
PutDateTime prints out the date and time in the same format used by the
Dir command. Likewise, PutName writes out the file (or directory) name
using a Dir-like format.

This is just a small sample of what Turbo Pascal allows you to do with the
Dos unit. In addition to the file and clock manipulation routines, Dos offers
two general routines that let you make any DOS call or system software
interrupt: MsDos and Intr. Full details on this unit are found in Chapter 24.

Screen Routines

Another unit, Crt, gives you full control over your text display. It contains
many of the routines offered in version 3.0, but adds a number of new,
powerful routines. As with other features of Turbo Pascal, the emphasis is
on flexibility and user control. For example, you can now enable (or dis
able) program abort on Ctr/-Break, end-of-file recognition of Ctrl-Z, direct
output to video RAM (as opposed to using BIOS calls), and limiting direct
video RAM output to the period during horizontal retrace to avoid "snow"
onscreen.

To show you what you can do with the Crt unit, here's a simple "editing"
program that brings up a window on the screen and lets you type in text,
including some very simple editing commands. The main body of the pro
gram looks like this:

program Edit;
uses Crt;
const

Xl = 50;
Y1 = 5;
X2 = 75;
Y2 = 22;

var
Ch : char;

{ More code goes here
begin

CheckBreak := False;
CheckEOF := False;
DirectVideo := True;

Chapter 5, Getting the Most from Your PC 79

SetWindow(X1,Y1,X2,Y2);
GoToXY(l,l);
repeat

Ch := ReadKey;
if Ch <> #0 then

HandleKey(Ch)
else HandleFuncKey(ReadKey)

until Ch = "Z;
Window (1, 1, 80,25);
ClrScr

end.

{ End of file character }

First, you turn off CheckBreak and CheckEOF and turn on DirectVideo. You
then set up your own window (Set Window is a user-defined routine) and
enter an input/output loop. This consists of reading in a character straight
from the keyboard (using ReadKey), checking to see if it's a function key or
not, then handling it appropriately. Note that if ReadKey returns a #0 (NUL
character), it means the user has pressed a function key, and the next call to
ReadKey gives the scan code. This loop continues until the user types a Ctrl
Z, at which point the program resets the screen.

The Set Window procedure (which follows) uses the special line-drawing
characters of the IBM PC to draw a border around the requested window
area. It clears that window and then sets the cursor in the upper left-hand
corner of the actual text area.

Note that once you've called Window, GotoXY (1,1) always goes to the
upper left screen. Here's the code:

procedure SetWindow(X1,Y1,X2,Y2 : integer);
const

UpLeftCorner = #201;
HorzBar = #205;
UpRightCorner = #187;
VertBar = #186;
LowLeftCorner = #200;
LowRightCorner = #188;

var
I : integer;

begin
Window(X1-1,Y1-1,X2+1,Y2+1);
ClrScr;
Window(1,1,80,25};
GotoXY(X1-1,Y1-1};
Write(UpLeftCorner);
for I := Xl to X2 do

Write(HorzBar};
Write(UpRightCorner};
for I := Y1 to Y2 do
begin

GoToXY(X1-1,I}; Write(VertBar};
GoToXY(X2+1,I); Write (VertBar)

end;

80 Turbo Pascal Owner's Handbook

GoToXY(Xl-l,Y2+l);
Write(LowLeftCorner);
for I := Xl to X2 do

Write(HorzBar);
Write(LowRightCorner);
Window(Xl,Yl,X2,Y2)

end; (of proc SetWindow

The last two procedures called in the main program are HandleKey and
HandleFuncKey. These execute an action based on the character value or
scan code. Note that only the arrow keys are used for HandleFuncKey, and
the user-defined routines SetXY and Condition limit the movement of the
cursor. These routines appear before the main body of the program.

procedure HandleKey(Ch : char);
const

BEL = #7;
BS = #8;
CR = #13;
SP = #32;

begin
if Ch = BS

then Write(BS,SP,BS)
else if Ch = CR

then Writeln
else if Ch >= SP

then Write (Ch)
else if Ch <> AZ

then Write (BEL)
end; { of proc HandleKey

procedure Condition(Low : integer; var X integer; High integer);
begin
if X < Low then

X := Low
else if X > High then

X := High
end; (of proc Condition

procedure SetXY(NewX,NewY : integer);
begin

Condition (l,NewX, (1+X2-Xl));
Condition (l,NewY, (1+Y2-Yl));
GotoXY(NewX,NewY)

end; {of proc SetXY }

procedure HandleFuncKey(Ch char);
const

UpArrow = #72;
LeftArrow = #75;
RightArrow = #77;
DownArrow = #80;

Chapter 5, Getting the Most from Your PC

{ Bell
Backspace

{ Enter
Space bar

{ Enter }

81

begin
case Ch of

UpArrow
LeftArrow
RightArrow
DownArrow

end

SetXY(WhereX,WhereY-l)
SetXY(WhereX-l,WhereY)
SetXY(WhereXtl,WhereY)
SetXY(WhereX,WhereYtl)

end; { of proe HandleFuneKey }

Again, this is only a sample of what you can achieve using the Crt unit. For
full documentation, see Chapter 24.

Graphics Routines

Turbo Pascal 4.0 contains the Graph unit, which supports the new Borland
device-independent standard for graphics devices; Graph implements more
than 50 graphics procedures and functions.

For an example of the use of graphics, take a look at the sample program
with Graph in Chapter 2. Also, several example programs are given on your
distribution disks; full documentation can be found in Chapter 24.

Getting Down to Assembly Language

Turbo Pascal isa powerful, flexible language, but for those times when you
want to perform very low-level operations with direct control of the
machine's hardware, the answer is to write them in assembly language.
That way you can give small, precise instructions to the computer's
microprocessor. Turbo Pascal, of course, allows you to do just that, and in
fact gives you three ways to do it: inline statements, inline directives, and
external procedures and functions. Full details on these methods are given
in Chapter 26, but here's a quick discussion of each.

The Inline Statement

The inline statement lets you put machine instructions into your program.
You can use the inline statement anywhere you can use a regular
statement-in the main body of your program or inside any procedure or
function.

The format of the inline statement is

inline(item/item/item/ ... /item);

82 Turbo Pascal Owner's Handbook

where item is an expression that resolves to either' an 8-bit (byte) or 16-bit
(word) value. Each item is composed of the following:

• An optional size specifier, either < or >. < means only the least-significant
byte of the expression's value is in use; > means the expression is always
treated as a word, with 0 in the most-significant byte if necessary.

• A constant or a variable identifier. A constant can be either decimal or
hexadecimal-the latter is usually more convenient-and resolves to
either a byte or word value. A variable identifier is the name of any
global variable, typed constant, or local variable, and resolves to the
offset (within the appropriate segment) of that variable.

• Zero or more offset specifiers, which consist of either + or - followed by a
constant.

See Chapter 26 for more details and examples.

The Inline Directive

Turbo Pascal 4.0 allows a new use of the inline keyword: to create inline
directives. These are like procedures and functions that consist entirely of
an inline statement; they have no local declarations, and no begin .. end
block. They consist only of the procedure (or function) header, followed by
an inline statement:

procedure procname(parms);
inline(item/ ... /item);

function funcname(parms) ftype;
inline(item/ ... /item);

You can then use these procedures and functions as you would any others.
However, you are not actually calling subroutines. Instead, the Turbo
Pascal compiler replaces each call with the given inline code. Because of
that, inline directives are typically not very large. See Chapter 26 for more
details and examples.

External Procedures and Functions

Yes, Turbo Pascal now lets you link in external subroutines written in 8086
assembly language. The full details, including how to pass parameters and
return function values, can be found in Chapter 26. Here's a quick
explanation of how to call assembly language routines.

Chapter 5, Getting the Most from Your PC 83

Before using an external procedure or function in a program, you must
define it by writing its procedure or function header, followed by the
keyword external:

procedure LowToUp(var Str : string); external;
function RotLeft(var L : longint; D : integer) : longint; external;

Note that there is no body to the procedure or function, only the header
statement.

The procedure/function headers go wherever a regular procedure or
function can go. If they're in a program, you can place them anywhere (as
long as you define them before you use them). If they're in a unit, they can
go either in the interface (if you want the user to be able to call them) or in
the implementation (if you don't) section.

Next, write the appropriate routines using an assembler that generates
standard .OBJ files. Two assemblers that Turbo Pascal works. with are A86
.and MASM. (A86 is a shareware assembler available from Eric Isaacson of
Bloomington, Indiana. A86 is downloadable from CompuServe and many
bulletin board systems. MASM is Microsoft's macro-assembler.) Refer to
Chapter 26 for details on how Turbo Pascal passes parameters to external
routines, and how external functions should pass values back.

Finally, you must tell the compiler what file to link to it, using the {$L}
compiler directive. If you had assembled your assembly language routines
into a file called MYSTUFF.OBJ, then you'd put the following directive
somewhere in your program:

{$L MyStuff}

This directive can appear anywhere before the begin of the main body of
your program or the begin of the initialization section in your unit (if
you're writing your own unit).

When you compile your program, Turbo Pascal goes to MYSTUFF.OBJ,
copies the machine code into your application file, and creates the
necessary links.

This chapter gave you an idea of the kinds of programs you can write for
the IBM PC; what you actually decide to write is limited only by your
system memory and your imagination. There are more examples on the
distribution disks and in Chapter 27.

84 Turbo Pascal Owner's Handbook

c H A p T E R

6

Project Management

So far, you've learned how to write Turbo Pascal programs, how to use the
predefined units, and how to write your own units. At this point, your
program has the capability of becoming large and separated into multiple
source files. How do you manage such a program? This chapter suggests
how to organize your program into units, how to take advantage of the
built-in Make and Build options, how to use the stand-alone Make utility,
how to use conditional compilation within a source code file, and how to
optimize your code for speed.

Program Organization

Turbo Pascal 4.0 allows you to divide your program into code segments.
Your main program is a single code segment, which means that after
compilation, it can have no more than 64K of machine code. However, you
can exceed this limit by breaking your program up into units. Each unit can
also contain up to 64K of machine code when compiled. The question is
how should you organize your program into units?

The first step is to collect all your global definitions-constants, data types,
and variables-into a single unit; let's call it MyGlobals. This is necessary if
your other units reference those definitions. Unlike include files, units can't
"see" any definitions made in your main program; they can only see what's
in the interface section of their own unit and other units they use. Your
units can use MyGlobals and thus reference all your global declarations.

A second possible unit is MyUtils. In this unit you could collect all the
utility routines used by the rest of your program. These would have to be

Chapter 6, Project Management 85

routines that don't depend on any others (except possibly other routines in
MyUtils).

Beyond that, you should collect procedures and functions into logical
groups. In each group, you'll often find a few procedures and functions
that are called by the rest of the program, and then several (or many)
procedures/functions that are called by those few. A group like that makes
a wonderful unit. Here's how to convert it over:

• Copy all those procedures and functions into a separate file and delete
them from your main program.

• Open that file for editing.

• Type the following lines in front of those procedures and functions:

unit unitname;
interface
uses MyGlobals;
implementation

where unitname is the name of your unit (and also the name of the file
you're editing).

• Type end. at the very end of the file.

• Into the space between interface and implementation, copy the proce
dure and function headers of those routines called by the rest of the
program. Those headers are simply the first line of each routine, the one
that starts with procedure (or function).

• If this unit needs to use any others, type their names (separated by
commas) between MyGlobals and the semicolon in the uses statement.

• Compile the unit you've created.

• Go back to your main program and add the unit's name to the uses
statement at the start of the program.

Ideally, you want your program organized so that when you are working
on a particular aspect of it, you are modifying and recompiling a single
segment (unit or main program). This minimizes compile time; more
importantly, it lets you work with smaller, more manageable chunks of
code.

Initialization

Remember in all this that each unit can (optionally) have its own
initialization code. This code is automatically executed when the program
is first loaded. If your program uses several units, then the initialization
code for each unit is executed. The order of execution follows in which the

86 Turbo Pascal Owner's Handbook

units are listed in your program's uses statement; thus, if your program
had the statement

uses MyGlobals,MyUtils,EditLib,GraphLib;

then the initialization section (if any) of MyGlobals would be called first,
followed by that of MyUtils, then EditLib, then GraphLib.

To create an initialization section for a unit, put the keyword begin above
the end that ends the implementation section. This defines the initialization
section of your unit, much as the begin .. end pair defines the main body of
a program, a procedure, or a function. You can then put any Pascal code
you want in here. It can reference everything declared in that unit, in both
the public (interface) and private (implementation) sections; it can also
reference anything from the interface portions of any units that this unit
uses.

The Build and Make Options

Turbo Pascal has an important feature to aid you in project management: a
built-in Make utility. To discuss its significance, let's look at the previous
example again.

Suppose you have a program, MYAPP.PAS, which uses four units:
MyGlobals, MyUtils, EditLib, and GraphLib. Those four units are contained in
the four text files MYGLOBAL.P AS, MYUTILS.P AS, EDITLIB.P AS, and
GRAPHLIB.PAS, respectively. Furthermore, MyUtils uses MyGlobals, and
EditLib and GraphLib use both MyGlobals and MyUtils.

When you compile MYAPP.PAS, it looks for the files MYGLOBAL.TPU,
MYUTILS.TPU, EDITLIB.TPU, and GRAPHLIB.TPU, loads them into
memory, links them with the code produced by compiling MYAPP.PAS,
and writes everything out to MYAPP.EXE (if you're compiling to disk). So
far, so good.

Suppose now you make some modifications to EDITLIB.P AS. In order to
recreate MYAPP .EXE, you need to recompile both EDITLIB.P AS and
MYAPP.P AS. A little tedious, but no big problem.

Now, let's suppose you modify the interface section of MYGLOBAL.PAS.
To update MYAPP.EXE, you have to recompile all four units, as well as
MYAPP.PAS. That means five separate compilations each time you make a
change to MYGLOBAL.P AS-which could be enough to discourage you
from using units to any great extent. But wait. ..

Chapter 6, Project Management 87

The Make Option

As you probably guessed, Turbo Pascal offers a solution. By using the
Make option (in the Compile menu), you can get Turbo Pascal to do all the
work for you. The process is simple: After making any changes to any units
and/or the main program, just recompile the main program.

Turbo Pascal then makes three kinds of checks.

• First, it checks and compares the date and time of the .TPU file for each
unit used by the main program against the unit's corresponding .P AS
file. If the .PAS file has been modified since the .TPU file was created,
Turbo Pascal recompiles the .P AS file, creating an updated .TPU file. So,
as in the first example, if you modified EDITLIB.P AS and then
recompiled MYAPP.PAS (using the Make option), Turbo Pascal would
automatically recompile EDITLIB.PAS before compiling MYAPP.PAS.

• The second check is to see if you changed the interface portion of the
modified unit. If you did, then Turbo Pascal recompiles all other units
using that unit.

Like in the second example, if you modified the interface portion of
MYGLOBAL.PAS and then recompiled MYAPP.PAS, Turbo Pascal
would automatically recompile MYGLOBAL.PAS, MYUTILS.P AS,
EDITLIB.PAS, and GRAPHLIB.PAS (in that order) before compiling
MYAPP.PAS. However, if you only modified the implementation
portion, then the other dependent units don't need to be recompiled,
since (as far as they're concerned) you didn't change that unit.

• The third check is to see if you changed any Include or .OB} files
(containing assembly language routines) used by any units. If a given
.TPU file is older than any of the Include or .OB} files it links in, then that
unit is recompiled. That way, if you modify and assemble some routines
used by a unit, that unit is automatically recompiled the next time you
compile a program using that unit.

To use the Make option under the integrated environment, either select the
Make command from the Compile menu, or press F9. To invoke it with the
command-line compiler, use the option /M. Note that the Make option
does not apply to any units found in TURBO.TPL.

The Build Option

The Build option is a special case of the Make option. When you compile a
program using Build, it automatically recompiles all units used by that

88 Turbo Pascal Owner's Handbook

program (except, of course, those units in TURBO.TPL). This is an easy way
of ensuring everything is up to date.

To use the Build option under the integrated environment, select the Build
command from the Compile menu. To invoke it with the command-line
compiler, use the option lB.

The Stand-Alone Make Utility

Turbo Pascal places a great deal of power and flexibility at your fingertips.
You can use it to manage large, complex programs that are built from
numerous unit, source, and object files. And it can automatically perform a
Build or a Make operation, recompiling units as needed. Understandably,
though, Turbo Pascal has no mechanism for recreating .OBI files from
assembly code routines (.ASM files) that have changed. To do that, you
need to use a separate assembler. The question then becomes, how do you
keep your .ASM and .OBI files updated?

The answer is simple: You use the MAKE utility that's included on the disk.
MAKE is an intelligent program manager that-given the proper
instructions-does all the work necessary to keep your program up to date.
In fact, MAKE can do far more than that. It can make backups, pull files out
of different subdirectories, and even automatically run your programs
should the data files that they use be modified. As you use MAKE more
and more, you'll see new and different ways it can help you to manage
your program development.

MAKE is a stand-alone utility; it is different from the Make and Build
options that are part of both the integrated environment and the
command-line compiler. Full documentation of MAKE is given in
Appendix D, but we'll give an example here to show how you might use it.

A Quick Example

Suppose you're writing some programs to help you display information
about nearby star systems. You have one program-GETSTARS.P AS-that
reads in a text file listing star systems, does some processing on it, then
produces a binary data file with the resulting information in it.

GETSTARS.P AS uses three units: STARDEFS.TPU, which contains the
global definitions; STARLIB.TPU, which has certain utility routines; and
STARPROC.TPU, which does the bulk of the processing. The source code
for these units are found in STARDEFS.PAS, STARLIB.PAS, and
STARPROC.P AS, respectively.

Chapter 6, Project Management 89

The next issue is dependencies. STARDEFS.PAS doesn't use any other
units; STARLIB.P AS uses STARDEFS; STARPROC.P AS uses STARDEFS
and STARLIB; and GETSTARS.PAS uses STARDEFS, STARLIB, and
STARPROC.

Given that, to produce GETSTARS.EXE you would simply compile
GETSTARS.P AS. Turbo Pascal (in either the integrated. environment or the
command-line version) would recompile the units as needed.

Suppose now that you convert a number of the routines in STARLIB.PAS
into assembly language, creating the files SLIB1.ASM and SLIB2.ASM.
When you assemble these files, you create SLIBl.OBJ and SLIB2.0BJ. Each
time STARLIB.P AS is compiled, it links in those .OBJ files. And, in fact,
Turbo Pascal is smart enough.to recompile STARLIB.PAS if STARLIB.TPU
is older than either of those .OBJ files.

However, what if either .OBJ file is older than the .ASM file upon which it
depends? That means that the particular .ASM file needs to be re
assembled. Turbo Pascal can't assemble those files for you, so what do you
do?

You create a make file and let· MAKE do the work for you. A make file
consists of dependencies and commands. The dependencies tell MAKE which
files a given file depends upon; the commands tell MAKE how to create
that given file from the other ones.

Creating a Makefile

Your makefile for this project might look like this:

getstars.exe: getstars.pas stardefs.pas starlib.pas slibl.asm \
slib2.asm slibl.obj slib2.obj

tpc getstars 1m

slibl.obj: slibl.asm
A86 slibl.asm slibl.obj

slib2.obj: slib2.asm
A86 slib2.asm slib2.obj

Okay, so this looks a bit cryptic. Here's an explanation:

• The first two lines tell MAKE that GETSTARS.EXE depends on three
Pascal, two assembly language, and two .OBJ files (the backslash at the
end of line 1 tells· MAKE to ignore the line break and continue the
dependency definition on the next line).

90 Turbo Pascal Owner's Handbook

• The third line tells MAKE how to build a new GETSTARS.EXE. Notice
that it simply invokes the command-line compiler on GETSTARS.PAS
and uses the built-in Turbo Pascal Make facility (/ M option).

• The next two lines (ignoring the blank line) tell MAKE that SLIB1.0BJ
depends on SLIB1.ASM and show MAKE how to build a new SLIB1.0BJ.

• Similarly, the last two lines define the dependencies (only one file,
actually) and MAKE procedures for the file SLIB2.0BJ.

Using MAKE

Let's suppose you've created this file using the Turbo Pascal integrated
environment editor (or any other ASCII editor) and saved it as the file
STARS.MAK. You would then use it by issuing the command

make -fstars.mak

where - f is an option telling MAKE which file to use. MAKE works from
the bottom of the file to the top. First, it checks to see if SLIB2.0BJ is older
than SLIB2.ASM. If it is, then MAKE issues the command

A86 SLIB2.asm SLIB2.obj

which assembles SLIB2.ASM, creating a new version of SLIB2.0BJ. It then
makes the same check on SLIB1.ASM and issues the same command if
needed. Finally, it checks all of the dependencies for GETSTARS.EXE and, if
necessary, issues the command

tpc getstars 1m

The / M option tells Turbo Pascal to use its own internal MAKE routines,
which will then resolve all unit dependencies, including recompiling
STARLIB.PAS if either SLIB1.0BJ or SLIB2.0BJ is newer than
STARLIB.TPU.

This is only a simple example using MAKE; more complete documentation
can be found in Appendix D.

Conditional Compilation

To make your job easier, Turbo Pascal version 4.0 offers conditional
compilation. This means that you can now decide what portions of your
program to compile based on options or defined symbols.

The conditional directives are similar in format to the compiler directives
that you're accustomed to; in other words, they take the format

Chapter 6, Project Management 91

{$directive arg}

where directive is the directive (such as DEFINE, IFDEF, and so on), and arg
is the argument, if any. Note that there must be a separator (blank, tab)
between directive and argo Table 6.1 lists all the conditional directives, with
their meanings.

{$DEFINE symbol}
{$UNDEF symbol}
{$IFDEF symbol}
{$IFNDEF symbol}
{$IFOPTx+}
{$IFOPTx-}
{$ELSE}
{$ENDIF}

Table 6.1: Summary of Compiler Directives

Defines symbol for other directives .
Removes definition of symbol
Compiles following code if symbol is defined
Compiles following code if symbol is not defined
Compiles following code if directive x is enabled
Compiles following code if directive x is disabled
Compiles following code if previous IFxxx is not True
Marks end of IFxxx or ELSff section

The DEFINE and UNDEF Directives

The IFDEF and IFNDEF directives test to see if a given symbol is defined.
These symbols are defined using the DEFINE directive and undefined
UNDEF directives. (You can also define symbols on the command line and
in the integrated environment.)

To define a symbol, insert the directive

{$DEFINE symbol}

into your program. symbol follows the usual rules for identifiers as far as
length, characters allowed, and other specifications. For example, you
might write

{$DEFINE debug}

This defines the symbol debug for the remainder of the program, or until the
statement

{$UNDEF debug}

is encountered. As you might guess, UNDEF "undefines" a symbol. If the
symbol isn't defined, then UNDEF has no effect at all.

Defining at the Command Line

If you're using the command-line version of Turbo Pascal (TPC.EXE), you
can define conditional symbols on the command line itself. TPC accepts a
/ D option, followed by a list of symbols separated by semicolons:

92 Turbo Pascal Owner's Handbook

tpc myprog /Odebug;test;dump

This would define the symbols debug, test, and dump for the program
MYPROG.P AS. Note that the / D option is cumulative, so that the following
command line is equivalent to the previous one:

tpc myprog /Odebug /Otest /Odump

Defining in the Integrated Environment

Conditional symbols can be defined by using the 0/ C/ Conditional defines
option. Multiple symbols can be defined by entering them in the input box,
separated by semicolons. The syntax is the same as that of the command
line version.

Predefined Symbols

In addition to any symbols you define, you also can test certain symbols
that Turbo Pascal has defined. Table 6.2 lists these symbols; let's look at
each in a little more detail.

VER40
MSDOS
CPU86
CPU87

Table 6.2: Predefined Conditional Symbols

Always defined (TP 4.1 will define VER41, etc.)
Always defined
Always defined
Defined if an 8087 is present at compile time

The VER40 Symbol

The symbol VER40 is always defined (at least for Turbo Pascal version 4.0).
Each successive version will have a corresponding predefined symbol; for
example, version 4.1 would have VER41 defined, version 5.0 would have
VER50 defined, and so on. This will allow you to create source code files
that can use future enhancements while maintaining compatibility with
version 4.0.

The MSDOS and CPU86 Symbols

These symbols are always defined (at least for Turbo Pascal version 4.0
running under MS-DOS). The MSDOS symbol indicates you are compiling
under the MS-DOS operating system. The CPU86 symbol means you are

Chapter 6, Project Management 93

compiling on a computer using an Intel iAPx86 (8088, 8086, 80186, 80286,
80386) processor.

As future versions of Turbo Pascal for other operating systems and
processors become available, they will have similar symbols indicating
which operating system and/or processor is being used. Using these
symbols, you can create a single source code file for more than one
operating system or hardware configuration.

The CPU87 Symbol

Turbo Pascal 4.0 supports floating-point operations in two ways: hardware
and software. If you have an 80x87 math coprocessor installed in your
computer system, you can use the IEEE floating-point types (single, double,
extended, comp), and Turbo Pascal will produce direct calls to the math
chip. If you don't, then you can use the floating-point type real (6 bytes in
size), and Turbo Pascal will support all your operations with software
routines. You can use the $N directive to indicate which you wish to use.

When you load the Turbo Pascal compiler, it checks to see if an 80x87 chip
is installed. If it is, then the CPU87 symbol is defined; otherwise, it's un
defined. You might then have the following code at the start of your
program:

{$IFDEF CPU87}
{$N+}
{$ELSE}
{$N-}
{$ENDIF}

{ If there's an 80x87 present
{ Then use the inline 8087 code

{ Else use the software library }

You can use a similar construct to define variables, or you could use the
{$IFOPT N+} directive to handle those.

The IFxxx, ELSE, and ENDIF Symbols

The idea behind conditional directives is that you want to select some
amount of source code to be compiled if a particular symbol is (or is not)
defined or if a particular option is (or is not) enabled. The general format
follows:

{$IFxxx}
source code

{$ENDIF}

where IFxxx is IFDEF, IFNDEF, or IFOPT, followed by the appropriate
argument, and source code is any amount of Turbo Pascal source code. If the

94 Turbo Pascal Owner's Handbook

expression in the IFxxx directive is True, then source code is compiled;
otherwise, it is ignored as if it had been commented out of your program.

Quite often you have alternate chunks of source code. If the expression is
True, you want one chunk compiled, and if it's False, you want the other
one compiled. Turbo Pascal lets you do this with the $ELSE directive:

{$IFxxx}
source code A

{$ELSE}
source code B

{$ENDIF}

If the expression in IFxxx is True, then source code A is compiled, else source
code B is compiled.

Note that all IFxxx directives must be completed within the same source
file, which means they cannot start in one source file and end in another.
However, an IFxxx directive can encompass an include file:

{$IFxxx}
{$I filel.pas}
{$ELSE}
{$I file2.pas}
{$ENDIF}

That way, you can select alternate include files based on some condition.

You can nest IFxxx .. ENDIF constructs so that you can have something like
this:

{$IFxxx} { First IF directive

{$IFxxx} { Second IF directive

{$ENDIF} Terminates second IF directive

{$ENDIF} { Terminates first IF directive

Let's look at each of the IFxxx directives in more detail.

The IFDEF and IFNDEF Directives

You've learned how to define a symbol, and also that there are some pre
defined symbols. The IFDEF and IFNDEF directives let you conditionally
compile code based on whether those symbols are defined or undefined.
You saw this example earlier:

{$IFDEF CPUS7} { If there's an SOxS7 present}

Chapter 6, Project Management 95

{$N+}
{$ELSE}
{$N-}
{$ENDIF}

{ Then use the inline 8087 code }

{ Else use the software library }

By putting this in your program, you can automatically select the $N option
if an 8087 math coprocessor is present when your program is compiled.
That's an important point: This is a compile-time option. If there is an 8087
coprocessor in your machine when you compile, then your program will be
compiled with the $N+ compiler directive or environment option, selecting
direct calls to the 8087 and allowing you to use only the IEEE floating-point
types. Otherwise, it will be compiled with the $N- directive or option, using
the software floating-point package and allowing you to use only the usual
Turbo Pascal 6-byte real data type. If you compile this program on a
machine with an 8087, you can't run the resulting .EXE file on a machine
without an 8087.

Another typical use of the IFDEF and IFNDEF directives is debugging. For
example, you could put the following code at the start of each procedure:

{$IFDEF debug}
Writeln('Now entering proc name');
Readln;

{$ENDIF}
{ Pause until user presses Enter }

where proc name is the name of that procedure. If you put the following
directive at the start of your program:

{$DEFINE debug}

and compile your program, then those statements will be included at the
start of each procedure. If you remove the DEFINE directive or follow it
with an UNDEF directive, then those statements at the start of each
procedure won't be compiled. In a similar fashion, you may have sections
of code that you want compiled only if you are not debugging; in that case,
you would write

{$IFNDEF debug}
source code

{$ENDIF}

where source code will be compiled only if debug is not defined at that point.

The IFOPT Directive

You may want to include or exclude code, depending upon which compiler
options (range-checking, I/O-checking, numeric processing, and so on)

96 Turbo Pascal Owner's Handbook

have been selected. Turbo Pascal lets you do that with the IFOPT directive,
which takes two forms:

($IFOPT Xi}

and

($IFOPT x-}

where x is one of the compiler options: B, D, F, I, L, N, R, 5, T, or V (see
Appendix C for a complete description). With the first form, the following
code is compiled if the compiler option is currently enabled; with the
second, the code is compiled if the option is currently disabled. So, as an
example, you could have the following:

var
($IFOPT N+}

Radius,Cire,Area : double;
($ELSE}

Radius,Cire,Area : real;
($ENDIF}

This selects the data type for the listed variables based on whether or not
8087 support is desired. If you combine this with the {$IFDEF CPU87}
example given earlier, then your source code will automatically select the
proper compiler option and data type(s) based on whether there's an 8087
coprocessor in the machine on which you're compiling.

An alternate example might be

Assign(F,Filename);
Reset(F);
($IFOPT I-}
IOCheek;
($ENDIF}

where IOCheck is a user-written procedure that gets the value of IOResuit,
and prints out an error message as needed. There's no sense calling 10Check
if you've selected the $1+ option since, if there's an error, your program will
halt before it ever calls IOCheck.

Optimizing Code

A number of compiler options influence both the size and the speed of the
code. This is because they insert error-checking and error-handling code
into your program. They are best left enabled while you are developing
your program, but you may want to disable them for your final version.
Here are those options, with their settings for optimization:

Chapter 6, Project Management 97

• {$B-} uses short-circuit Boolean evaluation. This produces code that can
run faster, depending upon how you set up your Boolean expressions.
The default equals B-.

• {$I-} turns off I/O error-checking. By calling the predefined function
IOResuit, you can handle I/O errors yourself. The default equals 1+.

• {$R-} turns off range-checking. This prevents code generation to check for
array subscripting errors and assignment of out-of-range values. The
default equals R-.

• {$S-} turns off stack-checking. This prevents code generation to ensure
that there is enough space on the stack for each procedure or function
call. The default equals 5+.

• {$V-} turns off checking of var parameters that are strings. This lets you
pass actual parameters strings that are of a different length than the type
defined for the formal var parameter. The default equals V+.

Disabling each of these options has two advantages. First, it usually makes
your code smaller and faster. Second, it allows you to get away with
something that you couldn't normally. However, they all have corre
sponding risks as well, so use them carefully, and reenable them if your
program starts behaving strangely.

Note that besides embedding the compiler options in your source code
directly, you can also set them using the Options/Compiler menu in the
integrated environment or the /$x option in the command-line compiler
(where x represents a letter for a compiler directive).

98 Turbo Pascal Owner's Handbook

c H A p T E R

7

Using the Unit Mover

When you write units, you want to make them easily available to any
programs that you develop. Chapter 4 explains what a unit is and tells how
to create your own units. This chapter shows you how to use TPUMOVER
to remove seldom-used units from TURBO.TPL, and how to insert of ten
used units into TURBO.TPL.

A Review of Unit Files

There are two types of unit files: .TPU files and .TPL files. When you
compile a unit, Turbo Pascal puts the resulting object code in a .TPU (Turbo
Pascal Unit) file, which always contains exactly one unit.

A .TPL (Turbo Pascal Library) file, on the other hand, can contain multiple
units. For example, all the units that come on your Turbo Pascal disk are in
the file TURBO.TPL. The file TURBO.TPL is currently the only library file
Turbo Pascal will load units from.

The naming distinction becomes important during compilation. If a
particular unit used is not found in TURBO.TPL, then Turbo Pascal looks
for the file unitname.TPU; if that file is not found, then compilation halts
with an error. If you are using the Build option, then Turbo Pascal first
looks for unitname.P AS and recompiles it, using the resulting .TPU file. If
you are using the Make option, then Turbo Pascal looks for both
unitname.P AS and unitname.TPU, compares their latest modification dates
and times, and recompiles the .P AS file if it has been modified since the
.TPU file was created.

Chapter 7, Using the Unit Mover 99

Normally, when you write your own unit, it gets saved to a .TPU file; to use
that unit, you must tell Turbo Pascal where to find it. If you're using the
integrated environment, you must set the Unit directories option in the
Options/Directories menu. (TURBO.TPL is loaded from the Turbo
directory in the same menu.) If you're using the command-line environ
ment, you must use the /U option. (Use the /T option to load the Turbo
library from another subdirectory in the command-line compiler.)

You may have noticed, though, that you can use the standard Turbo Pascal
units without giving a file name. That's because these units are stored in
the Turbo Pascal standard unit file-TURBO.TPL on your distribution disk.
Because the units are in that file, any program can use them without
"knowing" their location.

Suppose you have a unit called TOOLS.TPU, and you use it in many
different programs. Though adding Tools to TURBO.TPL takes up memory
(TURBO.TPL is automatically loaded into memory by the compiler),
adding it to the resident library makes "using" Tools faster because the unit
is in memory instead of on disk.

There are six standard units already in TURBO.TPL: System, Printer, Crt,
Dos, Turbo3, and Graph3.

You probably won't ever use Turbo3 or Graph3 unless you have a lot of
programs written with version 3.0 and haven't yet converted them. So, you
might as well use TPUMOVER to remove them from TURBO.TPL and
recover about 10K of memory.

Using TPUMOVER

TPUMOVER is a display-oriented program, much like the integrated
environment. It shows you the units contained in two different files and
allows you to copy units back and forth between them or to delete units
from a given file. It's primarily used for moving files in and out of
TURBO.TPL, but it has other useful functions.

Note that the TPUMOVER display consists of two side-by-side windows.
The name of the file appears at the top of the window, followed by a list of
the units in that file. Each line in a window gives information for a single
unit: unit name, code size, data size, symbol table size, and the name(s) of
any unit(s) that this unit uses. The sizes are all in bytes, and the unit names
are all truncated to seven characters. If the list of units being used is too
long to fit, it ends with three dots; press F4 to see a pop-up window to see
the names of the other unit dependencies. Finally, two lines of information

100 Turbo Pascal Owner's Handbook

appear in that window, giving (in bytes) the current size of that file and the
amount of free space on the disk drive containing that file.

At any time, one of the two windows is the "active" window. This is
indicated by a double line around the active window. Also, only the active
window contains a highlighted bar that appears within the list of units in
that file; the bar can be moved up or down using the arrow keys All
commands apply to the active window; pressing F6 switches back and forth
between the two windows.

To use TPUMOVER, simply type

TPUMOVER filel file2

where filel and file2 are .TPL or .TPU files. The extension .TPU is assumed,
so you must explicitly add .TPL for .TPL files.

TPUMOVER loads and displays two windows-with filel in the left
window of the display and file2 in the right window. Note that both filel
and file2 are optional. If you only specify filel, then the right window has
the default name NONAME.TPU. If you don't specify either file,
TPUMOVER will attempt to load TURBO.TPL (in the left window with
nothing in the right window). If that file cannot be found, TPUMOVER will
display a directory of all files on the current disk that end in .TPL.

TPUMOVER Commands

The basic commands are listed at the bottom of the screen. Here's a brief
description of each:

• F1 brings up a help screen.

• F2 saves the current file (the file associated with the active window) to
disk.

• F3lets you select a new file for the active window.

• F4 displays a pop-up window showing you all the unit dependencies for
that unit. Only the first unit dependency is shown in the main window. If
there are three dots following it, there are additional ones to be found by
pressing F4.

• F6 allows you to switch between the two windows, making the inactive
window the active window (and vice versa).

• + (plus sign) marks a unit (for copying or deletion). You can have
multiple units marked simultaneously; also, you can unmark a marked
unit by pressing the + key again.

Chapter 7, Using the Unit Mover 101

• Ins copies all marked units from the active window to the inactive
window .

• Del deletes all marked units from the active window .

• Esc lets you exit from TPUMOVER. Note that this does not automatically
save any changes that were made; you must explicitly use F2 to save
modifications before leaving TPUMOVER.

Moving Units into TURBO.TPL

Let's suppose you've created a unit Tools, which you've compiled into a file
named TOOLS.TPU. You like this unit so much you want to put it into
TURBO.TPL. How do you do this? To start, type the command

A>tpumover turbo tools

This will bring up the TPUMOVER display with TURBO.TPL in the left
window (the active one) and TOOLS.TPU in the right window. Note that
this example assumes that TURBO.TPL and TOOLS.TPU are both in the
current directory; if they are not, then you need to supply the appropriate
path name for each.

N ow perform the following steps:

1. Press F6to make the right window (TOOLS.TPU) active.

2. Press + to mark IntLib (the only unit in the right-hand window).

3. Press Ins to copy IntLib into TURBO.TPL.

4. Press F6 to make the left window (TURBO.TPL) active.

5. Press F2to save the changes in TURBO.TPL to disk.

6. Press Esc to exit TPUMOVER.

The unit Tools is now part of TURBO.TPL and will be automatically loaded
whenever you use Turbo Pascal.

If you want to add other units to TURBO.TPL, you can do so without
exiting TPUMOVER. After pressing F2 to save TURBO.TPL to disk,
perform the following steps:

1. Press F6 to make the right window active.

2. Press F3 to select a new file for the right window.

3. Repeat the preceding steps two through five to mark the appropriate
unit, copy it into TURBO.TPL, make the left window active, and save
TURBO.TPL to disk.

102 Turbo Pascal Owner's Handbook

You can repeat this as many times as desired in order to build up your
library.

Deleting Units from TURBO.TPL

Now let's remove those unused units from TURBO.TPL: Turbo3 and
Graph3. To do this, first type

tpumover turbo

This brings up TPUMOVER with TURBO.TPL in the left window and
NONAME.TPU (the default name) in the right. The left window is the
active one, so do the following:

• Use the Down arrow key to move the highlighted bar over Turbo3.

• Press + to select Turbo3.

• Press Del to delete Turbo3.

• Press F2to save the changes to TURBO.TPL.

• Press Esc to exit TPUMOVER.

You can repeat this procedure to remove Graph3.

Moving Units Between .TPL Files

Suppose a friend has written a number of units and has given you the file
(MYSTUFF.TPL) containing them. You want to copy only the units
GameStuff and RandStuff into TURBO.TPL. How do you do this? Your
command line would read like this:

tpumover mystuff.tpl turbo.tpl

This brings up TPUMOVER with MYSTUFF.TPL in the left (active)
window and TURBO.TPL in the right window. Now use the following
commands:

• Use the Up arrow and Down arrow keys to move the highlighted bar to
GameStuff·

• Press + to select GameStuff.
• Use the Up arrow or the Down arrow key to move the highlighted bar to

RandStuff·

• Press + to select RandStuff.
• Press Ins to copy GameStuff and RandStuff to TURBO.TPL.

• Press F6 to make the TURBO.TPL window active.

Chapter 7, Using the Unit Mover 103

• Press F2 to save the changes made to TURBO.TPL.

• Press Esc to exit TPUMOVER.

Command-Line Shortcuts

You can use several command-line parameters that let you manipulate
units quickly. The format for these parameters is

TPUMOVER TURBO /parameter unitname

where parameter is either +, -, or *.

These commands perform the following functions without displaying the
side-by-side windows of the TPUMOVER program:

1 + Adds the named unit to TURBO.TPL

1- Deletes the named unit from TURBO.TPL

1* Extracts (copies) the named unit from TURBO.TPL and saves it in
a file named unitname.TPU

I? Displays a small help window

104 Turbo Pascal Owner's Handbook

c H A p T E R

8

Converting from Turbo Pascal 3.0

Turbo Pascal 4.0 contains some exciting new features. This chapter
discusses the tools we've provided to help you convert your 3.0 programs
to 4.0. Note that in some cases, changes in your source code may be
necessary.

We've provided a few upgrading tools: UPGRADE.EXE and two
compatibility units, Turbo3 and Graph3.

UPGRADE reads in a version 3.0 source code file and makes a series of
changes to convert it for compilation under version 4.0. Some of these
changes include commenting out obsolete buffer sizes, inserting appro
priate uses statements, and optionally splitting large applications into
separate units.

Turbo3 offers several predefined identifiers from version 3.0 that version 4.0
no longer supports. Graph3 supports the full set of graphics calls (basic,
extended, turtle graphics) from version 3.0.

In this chapter, we've also provided a checklist of conversion tasks that you
may need to perform in addition to using these utilities. If you have a lot of
code, don't worry-conversion usually goes very quickly, and the high
speed of the version 4.0 compiler helps that along. (Appendix A has more
information on converting.)

Using UPGRADE

The UPGRADE program will aid in converting Turbo Pascal programs
written for earlier versions of the compiler. UPGRADE scans the source
code of an existing program, and performs the following actions:

Chapter 8, Converting from Turbo Posco/3.G 105

.• Places warnings in the source where Turbo Pascal 4.0 differs in syntax or
runtime behavior from earlier versions of the compiler.

• Automatically fixes some constructions that have new syntactic
requirements.

• Optionally writes a journal file that contains detailed warnings and
advice for upgrading a program to 4.0.

• Automatically inserts a uses statement to pull in needed routines from
the standard units.

• Optionally divides large programs into multiple units, to remove
overlays or take advantage of separate compilation.

In order to use UPGRADE, you must access two files from your Turbo
Pascal distribution disk. Copy the files UPGRADE.EXE and UP
GRADE.DTA into your working drive and directory, or copy them into a
subdirectory that is listed in the MS-DOS path.

UPGRADE is command-line driven; its format from the DOS prompt is

UPGRADE {options] filename

filename specifies the name of an existing Pascal source file, which should be
present in the current drive and directory. If no extension is specified,
UPGRADE assumes '.P AS' as the file's extension.

If UPGRADE is executed with no command-line parameters (that is, with
no options and no file name), it will write a brief help message and then
halt.

The specified file must contain a complete Pascal program, not just a
fragment. If the file contains include directives, the specified include files
must also be present, either in the current directory or in another directory
specified by the include directive.

The specified file must be a syntactically correct program, as determined by
Turbo Pascal 3.0 or 2.0. UPGRADE does not perform a complete syntax
check of source code-syntax errors in its input will cause unpredictable
results. If you are uncertain whether a program contains syntax errors,
compile it first with an earlier version of Turbo Pascal before proceeding
with UPGRADE.

By default, UPGRADE will write a new version of the source code,
overwriting the old version but saving it under a new name. Each old
version saved will have the same name as the original, but with the
extension '.3TP' attached. In the event that the extension '.3TP' would cause
UPGRADE to overwrite an existing file, UPGRADE will try using the
extensions '.4TP', '.5TP', and so on, until it finds a safe extension.

106 Turbo Pascal Owner's Handbook

UPGRADE, by default, inserts comments into the source program; an
example follows:

TextMode;
{! 20. A TextMode requires a parameter (Mode: integer) in Turbo Pascal 4.0.}

In this example, TextMode; is a statement found in the program being
upgraded. UPGRADE's comments always begin with {!, which makes it
easy to find UPGRADE's warnings. UPGRADE numbers each comment
with a sequential value, 20 in this example, which corresponds to the
comments found in the optional journal file (described later). UPGRADE's
comments contain a short statement describing the upgrade issue.
UPGRADE inserts into the comment a caret (A) pointing to the exact
location that triggered the warning in the preceding line of source code.

In a few cases, UPGRADE will make active changes to the source code; for
example:

var
f:text{ [$1000]};
{! 6. UsAe the new standard procedure SetTextBuf to set Text buffer size.}

This comment refers to the fact that Turbo Pascal 4.0 uses a new syntax to
specify buffering of text files. Instead of the optional bracketed buffer size
in the data declaration, Turbo Pascal 4.0 provides a new standard
procedure SetTextBuf, which should be called to specify a buffer area and
buffer size. Note that in this case UPGRADE automatically comments out
the obsolete buffer size, and inserts a comment notifying you to call the
SetTextBuf procedure at the appropriate location in your program.

UPGRADE accepts the following options on the command line:

13

II
IN
10 [d:][path]

IU

Use Turbo3 compatibility unit when needed

Write a detailed journal file

No descriptive markup in source code

Send output to d:path

Unitize the program based on.U switches in source

A description of each option follows.

/3 Activate Turbo3 Unit

A special unit, Turbo3, is provided with the new compiler. This unit defines
several variables and routines that cause new programs to mimic the
behavior of Turbo Pascal 3.0 programs. The following identifiers defined
within the Turbo3 unit result in special handling by UPGRADE:

Chapter 8, Converting from Turbo Pasca/3.G 107

.Kbd

• CBreak
• MemAvail
• MaxAvail
• LongFileSize
• LongFilePos
• LongSeek

If your program uses any of these identifiers and you specify the /3 option,
UPGRADE will insert the Turbo3 unit name into the uses statement
genera ted for the program.

Although the Turbo3 unit and the /3 option can minimize the time required
to convert an existing application, in the long run it may be better to make
the (small) additional effort to use Turbo Pascal 4.0' s new facilities. If you
don't specify the /3 option, you will cause UPGRADE to generate warnings
for each instance of the identifiers. With these warnings and the journal file
(described next), you can achieve a complete upgrade in a short time.

/J Activate Journal File

When you specify the /1 option, UPGRADE writes an additional file called
the journal file. This file has the same name as your main program file but
has the extension .JNL.

The journal file contains detailed descriptions of each warning UPGRADE
produces, along with advice on how to go about upgrading your program.
Here's an excerpt from a typical journal file:

4. MYPROG.PAS (6)
s:byte absolute Cseg:$80;

A

Cseg and Dseg can no longer be used in absolute statements.

Variables in Turbo Pascal 4.0 may be made absolute to other variables or typed
constants (for example, StrLen : byte absolute Stringl) , or to a fixed location in
memory (for example, KeyBoardFlag : byte absolute $40:$17).

Given the action of Turbo Pascal 4.0's separate compilation and smart linker, it is
unlikely that variables absolute to Cseg or Dseg would have the intended effect.
(See Chapter 16 for more details.)

Each journal entry begins with a numeric identifier, corresponding to the
numbered comment inserted by UPGRADE into the actual source code.
The journal file number is followed by the name of the original source file
and the line number (within the original source file) of the statement that
caused the warning. Note that the line number reported may be different

108 Turbo Pascal Owner's Handbook

than the line number in a marked-up or unitized source file. UPGRADE
also inserts the actual source line and a pointer to the problem to make
identification complete.

IN No Source Markup

Use this option is you don't want UPGRADE's comments inserted into
your source code. UPGRADE will still perform any automatic fixes: the
uses statement, Turbo Pascal 3.0 default compiler directives, mapping of
compiler directives to Turbo Pascal 4.0 standards, and deactivation of
Overlay, Ovrpath, and text buffer sizes.

Generally, you should use the /N option in combination with the If (journal
file) or /U (unitize) option.

10 [d:1[path1 Output Destination

Use this option to send UPGRADE's output to another drive or directory.
When you activate this option, UPGRADE will not overwrite existing
source files, nor will it rename them after processing. All UPGRADE
output, including the journal file if activated, will go to the drive and
directory specified.

IU Unitize

The /U option activates a second major function of UPGRADE. In
combination with directives you place into your existing source code,
UPGRADE will automatically split a large application into separate units.

You should use the /U option only if your program is large enough to
require overlays in Turbo Pascal 3.0, or if compilation times are long
enough to be bothersome.

Before using the /U option, you must make minor additions to your
existing source program. These additions take the form of special
comments that serve as directives to the UPGRADE utility. Each directive
must have the following form:

{. U unitname}

unitname is a name that meets the following requirements:

• It is a legal Pascal identifier.

Chapter 8, Converting from Turbo Pasca/3.G 109

• It is a legal MS-DOS file name.

• It does not match the name of any existing global identifier in the
program being upgraded.

It should begin with an alphabetic character and be limited to eight
characters. Here are some examples of legal unit name directives:

{.U UNIT1}

(*.U ScrnUnit *)
{ . u heapstuf}

Wherever UPGRADE encounters a unit name directive in your program's
source code, it will route source code following that directive to the unit
named. UPGRADE performs all necessary steps to prepare the unit source
code for compilation, including

• Inserting the unit and uses statements

II Interfacing all global routines and data declarations

• Implementing the source code

• Generating an empty initialization block

In order to make the unitized program fit the structure of Turbo Pascal 4.0' s
units, certain restrictions apply to the placement and use of unit name
directives:

• Unit name directives can be placed only in the main file of a program,
not within any include file. This restriction avoids the need to split
existing Include files into parts. In any case, Include files generally
contain related routines that should reside within the same unit.

• Each unit name can be specified at most once. This restriction avoids the
generation of mutual dependencies between units, something that the
Turbo Pascal 4.0 compiler does not allow.

• A unit name directive must be placed outside of the scope of any
procedure or function, that is, it must be placed at the global level of the
program. This restriction enforces Turbo Pascal 4.0' s definition of units as
global entities.

• UPGRADE predefines one unit name, Initial. UPGRADE will auto
matically route to Initial any declarations or routines that precede the
first unit name directive you place into your source code. UPGRADE
defines the Initial unit so that later units will have access to any global
identifiers defined prior to the first unit name. If you specify a unit name
directive prior to any global declarations, Initial will be empty, and
UPGRADE will delete it automatically.

• Each Turbo Pascal 4.0 unit is limited to at most 64K of code. You must
place unit name directives so that this restriction is met.

110 Turbo Pascal Owner's Handbook

• UPGRADE cannot deal effectively with global forward declarations,
placing a warning into the source code whenever it encounters one. You
must determine how to treat forwards and manually modify the source
code after UPGRADE is finished. The best strategy is to absolutely
minimize the use of forwards in the original program.

The jU option automatically deletes all overlay keywords that may have
appeared in the original source code.

After UPGRADE has unitized a program, the main unit will be in the
simplest possible form. It will contain the program statement and a uses
statement that lists required system units as well as units you defined via
unit name directives, and the original main block of code. All other
procedures, functions, and data declarations will have been routed to other
units.

UPGRADE interfaces user identifiers to the maximum extent possible. This
means that all global procedures and functions will appear in the interface
section of a unit, and that all global types, variables, and constants will
appear in the interface. After your program is converted to the unit
structure of Turbo Pascal 4.0, you may wish to hide selected global
identifiers within the implementation sections of their units.

Although the jU option of UPGRADE cannot deal with the more subtle
issues of breaking a program into well-structured units, it does automate
the otherwise time-consuming process of generating syntactically correct
unit files.

What UPGRADE Can Detect

Here is a full list of the short warnings that UPGRADE generates:

• Use the new standard procedure SetTextBuf to set the text buffer size.

• New stack conventions require that many inlines be rewritten.

• Assure that Cseg refers to the intended segment.

.. Cseg and Dseg no longer can be used in absolute statements.

• Restructure Chain and Execute programs to use units or Exec.

• Convert BIN files to .OBI files or convert them to typed constants.

• Use the new ExitProc facility to replace ErrorPtr references .

.. Use new textfile device drivers to replace I/O Ptr references.

• Use units and/ or the DOS Exec procedure to remove overlays.

• OvrPath is not needed when overlays are not used.

Chapter 8, Converting from Turbo Posco/3.G 111

a The Form function (and BCD arithmetic) are not supported in Turbo
Pascal 4.0.

• BufLen (for restricting Readln) is not supported in Turbo Pascal 4.0.

• The TextMode procedure requires a parameter (Mode:integer) in Turbo
Pascal 4.0.

a interrupt, unit, interface, implementation, and uses are now reserved
words.

• System, Dos, and Crt are standard unit names in Turbo Pascal 4.0.

a Special file names INP:, OUT:, ERR: are not supported in Turbo Pascal
4.0.

• Assign unsigned values of $8000 or larger only to word or longint types.

aUse Turbo3 unit in order for MemAvail and MaxAvail to return
paragraphs.

a Use Turbo3 unit to perform LongFile operations.

a Cbreak has been renamed to CheckBreak in Turbo Pascal 4.0.

a 10Result now returns different values corresponding to DOS error codes.

a Use Turbo3 unit for access to Kbd, or instead use Crt and ReadKey.

a The $1 include file directive must now be followed by a space.

a Directives A, B, C, D, F, G, P, U, W, and X are obsolete or changed in
meaning.

a Stack-checking directive K has been changed to S in Turbo Pascal 4.0.

• The effects of HighVideo, LowVideo, and NormVideo are different in Turbo
Pascal 4.0.

a Special file name LST: is not supported now. Use Printer Lst file.

a Special file name KBD: is not supported now. Use Turbo3 Kbd file.

a Special file names CON:, TRM:, AUX:, USR: are not supported in Turbo
Pascal 4.0.

a Special devices Can, Trm, Aux, Usr are not supported in Turbo Pascal
4.0.

a An identifier duplicating a program/unit name is not allowed in Turbo
Pascal 4.0; instead use the Registers type from the Turbo Pascal 4.0 Dos
unit.

a forwards will require manual modification after unitizing.

a Include directives cannot be located within an executable block.

a The CrtInit and Crt Exit procedures are not supported in Turbo Pascal 4.0.

• for loop counter variables must be pure locals or globals in Turbo Pascal
4.0.

a All defined labels within the current routine must be used.

112 Turbo Pascal Owner's Handbook

What UPGRADE Cannot Detect

Here are descriptions of the various types of things that UPGRADE cannot
detect in your source file:

• Mixing of String and char types in a way not allowed by Turbo Pascal
4.0; for example:

Ch:=Copy(S,l,l)

• Type mismatches due to Turbo Pascal 4.0' s more stringent checking; for
example:

var
a : Ainteger;
b : Ainteger;

begin
a := b;

end.
{ Invalid assignment }

• Unexpected runtime behavior due to side-effects of short-circuited
Boolean expressions; for example:

{$B-}
if HaltOnError and (IoResult <> 0) then

Halt;

Turbo Pascal 3.0 would have always called the built-in IOResult function,
and thus cleared it to zero when the Boolean expression was evaluated.
With short-circuiting activated in Turbo Pascal 4.0, the IOResult function
would not be called if HaltOnError were False, and thus IOResult would
potentially be left holding an error code from the previous I/O
operation.

Note that UPGRADE automatically inserts compiler directives that
deactivate Boolean short-circuiting, thus avoiding problems such as that
just described. Use caution before changing the Boolean evaluation
directive.

An UPGRADE Checklist

Here is a summary of the basic steps for using UPGRADE:

1. Copy the files UPGRADE.EXE and UPGRADE.DTA from the compiler
distribution disk to your current directory or to a directory in the DOS
path.

2. If necessary, go to the directory where the Pascal source files for the
program you wish to upgrade are located.

3. Decide which UPGRADE options, if any, you wish to use.

Chapter 8, Converting from Turbo Pascal 3.0 113

4. If you decide to unitize the program, you must first edit the main source
file to insert r.u unitname} directives, subject to the restrictions outlined
previously.

5. From the DOS command line, enter the appropriate UPGRADE
command, using the following syntax:

UPGRADE [options] filename

Examples of acceptable command lines follow:
upgrade MYPROG.PAS /J /3
UPGRADE bigprog /n /u /0 c:\turbo4

6. UPGRADE will make two passes through the source code: one pass to
detect areas of the program that may require modification, and a second
pass to insert the appropriate uses statement, and optionally complete
the process of unitization. At the end of the second pass, it will report
the number of warnings that it generated.

7. When UPGRADE is finished, change to the directory where output was
sent (if other than the current directory). If you specified the /1 option,
you may wish to browse through the journal file first to see the detailed
explanations of UPGRADE's warnings. After doing so, use the Turbo
Pascal editor to edit each source file that UPGRADE produced. Search
for the string {!. Each match will display a warning produced by
UPGRADE. In many cases, you will be able to change the source code
immediately-when you do so, you may wish to delete UPGRADE's
warning.

8. Once you have looked at all of UPGRADE's warnings and made
changes to your source code as appropriate, you are ready to compile
with Turbo Pascal 4.0.

Using Turbo3 and. Graph3

Turbo3 and Graph3 were designed to help you support programs written for
version 3.0. These units contain constants, data types, variables, and
procedures and functions that were supported in version 3.0 but have
changed or no longer exist in version 4.0. If your programs rely on them
heavily, you may want to continue to use them.

Both units are already in TURBO.TPL; if you plan on using one or both,
place the statement

uses unitname;

114 Turbo Pascal Owner's Handbook

at the start of your program, following your program header (if you have
one). If you use more than one unit, then the unit names should be
separated by commas,like this:

uses Crt,Turbo3,Graph3;

The Turbo3 Unit

The Turbo3 unit restores some low-level I/O and system items found in
version 3.0 but not found in version 4.0. (Chapter 27 contains more details
on all these items.) These include the following:

• Kbd: Version 4.0 doesn't have the predefined file variable Kbd; instead, it
provides the function ReadKey. However, for those of you who don't
want to change your program, you can use Kbd instead .

.. CBreak: This was an undocumented Boolean variable in version 3.0. It is
named CheckBreak in version 4.0 and is documented in Chapter 24.
Turbo3 declares CBreak to be at the same address so that you can use it
instead.

• MemAvail: Version 4.0 has MemAvail, but it is a function of type longint
and returns the memory available in bytes. The Turbo3 version returns
the amount available in paragraphs (groups of 16 bytes), as version 3.0
did. Note that if you use Turbo3, this will now be the default version of
MemAvail; to access the version 4.0 MemAvail, you must refer to
System.MemAvail.

• MaxAvail: returns the size of the largest chunk of available memory in
paragraphs, while version 4.0 returns it in bytes. Again, if you use
Turbo3, you'll need to refer to System.MaxAvail to get the one in version
4.0.

• LongFileSize: The FileSize function in version 4.0 is of type longint and can
handle any file. Turbo3 supports this function (of type real) for version 3.0
compatibility.

• LongFilePos: The LongFilePos function in version 4.0 is of type longint and
can handle any file. Turbo3 supports this function (of type real) for
version 3.0 compatibility.

• LongSeek: The LongSeek function in version 4.0 is of type longint and can
handle any file. Turbo3 supports this function (of type real) for version 3.0
compatibility .

• IOResult: The 4.0 IOResult returns different error codes. Turbo3's IOResult
simply calls System.IOResult, and re-maps the 4.0 error codes in the same
way Turbo Pascal 3.0 did (wherever possible).

Chapter 8, Converting from Turbo Pascal 3.0 115

• NormVideo, LowVideo, and HighVideo: By using the Turbo3 unit, these three
routines will set the foreground and background colors to the same as
3.0:

Mono/B&W Color

Low Video light gray light
gray

Norm Video white yellow
High Video white yellow

• These same three routines are implemented differently in 4.0 (see
Chapter 27).

The Graph3 Unit

This unit provides the basic, advanced, and turtlegraphics support
routines, which are too lengthy to list here. If you use Graph3, however, you
have full access to all the constants, types, variables, procedures, and
functions described in Chapter 19 of the Turbo Pascal Owner's Handbook,
version 3.0.

Note that a powerful new library of device-independent graphics routines
is contained in the Graph standard unit. Unless you have programs that
make extensive use of 3.0 graphics, you should use the new Graph unit
instead.

Primary Conversion Tasks

Even with UPGRADE and Turbo3 and Graph3, you may still need to make
changes in your source code. This section will look at what those changes
are, how you might go about making them, and how vital they are to your
program. When tasks are listed, they'll be flagged as one of these three
types:

• HELPFUL: These take advantage of some feature in version 4.0 that
makes life easier; they are discretionary.

• RECOMMENDED: These really should be done, though you may be
able to get by without doing so; ignore these at your own risk.

• ESSENTIAL: No two ways about it; these must be done or your program
won't correctly compile and run under version 4.0.

116 Turbo Pascal Owner's Handbook

Predefined Identifiers

Version 4.0 doesn't support all the predefined identifiers (constants, types,
variables, procedures, functions) that version 3.0 did. Some have been
dropped; others have been superseded by new identifiers; still others have
been moved into the units found in TURBO.TPL.

• Use Crt as needed.
D Use Turbo3 and/or Graph3 as needed. This is a great stop-gap measure,

but ultimately you may want to completely convert to version 4.0
identifiers. (HELPFUL)

II Take advantage of the new routines found in the standard units, such as
ReadKey (returns a scan code). (HELPFUL)

• Use the appropriate units for certain data types, variables, procedures,
and functions that were "built-in" in version 3.0. For example, the
procedures Intr and MsDos are no longer predeclared; instead, they are
found in the Dos unit. Similarly, the Lst device (text file associated with
the printer) is defined in the Printer unit. (ESSENTIAL)

Data Types

Version 4.0 introduces a number of new data types and language functions
involving data types. Many of these will help you to drop some of the
"kludges" you've had to use in the past.

• Use typecasting in place of the MoveO routine to copy the contents of one
variable into the space of another variable of an incompatible type. For
example, use

RealVar := real(BuffPtrA);

instead of
Move(BufferPtrA,RealVar,SizeOf(RealVar));

With extended typecasting, you can handle most such transfers as long
as the destination is the exact same size as the source. (HELPFUL)

• Convert to new data types where appropriate and practical. These
include longint and word (to replace integer); pointer as a generic pointer
type; and string, with an assumed maximum length of 255 characters.
(RECOMMENDED)

• Be aware that hexadecimal (base 16) constants are considered to be of
type word rather than type integer, so that the hex constant $FFFF
represents 65535 instead of -1. You should consider converting any

Chapter 8, Converting from Turbo Pascal 3.0 117

variables that are assigned hex constants to type word. (RE
COMMENDED)

• Likewise, be aware that version 4.0 now allows you to assign -32768 to a
variable of type integer. Previously, the only way you could do that was
by assigning it the hex constant $8000. However, that hex constant now
represents the value 32768 (which is of type word), and assigning it to an
integer variable will cause a compile-time error, convert the constant to
-32768, convert the constant to $FFFF8000, or convert the variable to type
word. (RECOMMENDED)

• Use string library routines (such as Length and Copy) instead of directly
accessing the internal string structure (such as Ord(SVar[OJ) or absolute
addressed byte variables on top of strings). (RECOMMENDED)

• Be aware that version 4.0 has stricter type-checking on strings, characters,
and arrays of characters. The assignment

CharVar := StringVar

is no longer acceptable, even if StringVar is declared as stringfl]. The
assignment

StringVar := ArrayVar

is still acceptable, but
ArrayVar := StringVar

is not. (ESSENTIAL)

• Version 4.0 enforces stricter type-checking on derived types, which
means that variables must have identically named types or be declared
together in order to be assignment compatible. For example, given

var
A : "integer;
B : "integer;

then A and B are not assignment-compatible (that is, the statement A := B

will cause a compile-time error) because they are separately derived
types. In order to be assignment compatible, they must be declared
together:

var
A,B : "integer;

or they must be of the the same named data type:
type

118

IntPtr = "integer;
var

A : Intptr;
B : Intptr;

Turbo Pascal Owner's Handbook

Either of these solutions will work just fine; the second one is more
general and is preferred (allowing other variables, parameters, and
functions to be of the same data type). (ESSENTIAL)

II The BCD data type (and the Form routine) are not supported in this
version. Consider using the longint data type; if you have a math
coprocessor, then use the {$N+} directive and use the IEEE type comp (8-
byte integer). (See the sample program on disk, BCD.P AS.) (ESSENTIAL)

Language Features

Version 4.0 introduces some restrictions and some enhancements. The
restrictions are geared to help it conform to the ANSI standard definition of
Pascal, while the enhancements are there to make your life as a
programmer easier .

.. Version 4.0 assumes short-circuit Boolean evaluation. This means that
evaluation of Boolean expressions is halted as soon as possible. For
example, consider the expression

if exprl and expr2 ...

If exprl is False, then the entire expression will be False, regardless of the
value of expr2. If Boolean expression evaluation is short-circuit, then if
exprl is False, expr2 won't be evaluated. This means, for example, if expr2
contains a function call, then that function won't be called if exprl is
False. You can enable complete (nonshort-circuit) Boolean evaluation
with the {$B+} compiler directive or the environment option in the
Options/Compiler menu. Be aware of the implications of enabling
short-circuit evaluation. (HELPFUL)

• Keeping in line with the ANSI standard, Turbo Pascal version 4.0 allows
you to use only global and local variables as for loop control variables.
For example, if the statement

for Indx := Start to Finish ...

appears in a procedure (or function), then Indx must be declared either
globally or within that procedure. Indx cannot be a formal parameter of
that procedure, nor can it be declared within an enclosing procedure.
(ESSENTIAL)

Input and Output

Turbo Pascal version 4.0 has made some significant changes in I/O
handling, many of which are intended to increase ANSI compatibility.

Chapter 8, Converting from Turbo Pascal 3.0 119

• Read(IntVar) now waits for an integer value to be entered; pressing Enter
will no longer cause the program to continue, leaving Int Var unchanged.
Revise your program appropriately. (RECOMMENDED)

• If you are reading and writing real values with data files, be aware of the
differences between the standard type real (6 bytes, compatible with
version 3.0) and the IEEE floating-point types supported by the {$N+}
directive (single, double, extended and comp). Use the latter types only if
you are sure that your program and any resulting data files will be used
exclusively on systems equipped with a math coprocessor. (RECOM
MENDED)

• In version 3.0, you could call the procedure Close on a file that was
already closed with no results. In version 4.0, it produces an I/O error,
which you can trap by using {$I-} and testing the value returned by
IOResult.

• You can no longer directly declare variable-length buffers for text files in
the format var F : text[length}; instead, you must use the predefined
procedure SetTextBuf (see Chapter 27).

Program and Memory Organization

One significant change in version 4.0 is the introduction of units. (If you
aren't clear what units are, go back and read Chapter 4.) Units give you
four important capabilities:

• They allow you to create tools that you can use in many different
programs.

• They allow you to break up a large program into manageable chunks by
collecting related declarations and subprograms (procedures and
functions) together.

• They allow you to "hide" declarations and subprograms that you don't
need (or want) to be "visible" to the rest of the program.

• They allow you to break the 64K code barrier, since each unit can contain
up to 64K of code.

As a consequence, significant changes have been made in memory
organization as well. Chapter 26 explains more of the details; here are some
of the tasks you need to consider.

• Convert your libraries from include files to units. This is by no means
necessary, but it has several advantages. For one, you don't have to
recompile the routines in the unit each time; for another, you can
distribute your library routines without distributing source code. The
UPGRADE program can help you with this conversion. (HELPFUL)

120 Turbo Pascal Owner's Handbook

• Version 4.0 has a new compiler directive, {$M}, that allows you to set the
stack and heap sizes within your program. The format is as follows:

{$M stacksize,heapmin,heapmax}

where all three values are in bytes. The default values are {$M
16384,O,655360}. You can also set the default values in the integrated
environment (O/e/Memory sizes) and use the command-line compiler
(/$M). (HELPFUL)

• Convert large programs from overlays to units. You must do this,
because version 4.0 does not support overlays. If you have been using
overlays to get around the 64K code limit, then you won't have to worry
anymore: The main program and each unit can be up to 64K in size. If
you've been using overlays because all your code wouldn't fit into
memory at once anyway, then you'll have to do some rewriting-the
main program and all units must fit into memory at the same time.
(ESSENTIAL)

• Be aware that MemAvail and MaxAvail are now of type longint and return
their values in bytes instead of paragraphs. You should make the
appropriate changes to your program (or use Turbo3, which supplies the
original versions of MemAvail and MaxAvail). (ESSENTIAL)

Compiler Directives and Error-Checking

Version 4.0' s compiler directives and error codes have been extensively
redefined. UPGRADE helps to modify the compiler directives, but you
have to be sure you've caught all of them, and that you've also changed
over to the new error codes.

• If an existing program doesn't work correctly, try setting Boolean
evaluation to "complete" with the {$B+} directive; the default is {$B-}.
(HELPFUL)

• Range-checking is now off by default; if you want it on, place the {$R+}
directive at the start of your program. If you're unsure, leave it off for
now. If your program is halting with range-checking errors, turn it on
and figure out the problems or turn it off. (RECOMMENDED)

• Review all use of error codes (for example, I/O error codes), especially
when the check is more than simply zero or nonzero. Define all error
codes as constants in a global location so you can deal more easily with
future changes. (RECOMMENDED)

• Review all compiler directives. Of special note are {$B}, {$D}, and {$F},
since they are still valid but now have different meanings. Appendix C
details all the directives. (ESSENTIAL)

Chapter 8, Converting from Turbo Pasca/3.G 121

• ErrorPtr is gone; you should now use ExitProc. User-written error
handlers must be modified; refer to Chapter 26 for more details.
(ESSENTIAL)

• The {$I} include file directive is no longer allowed between a begin/end
pair. In addition, an include file directive must always have a space
between the I and the file name.

Assembly Language Usage

We still support inline in assembly language; it now includes the inline
directive for procedure and function definitions, which defines an inline
macro rather than a separate, callable routine.

• For short assembly language code, consider using the inline directive
(which differs from the inline statement). This generates actual inline
macros in the resulting object code. (See Chapter 26 for more details.)
(HELPFUL)

• Convert from inline to external subroutines where appropriate and
practical; use inline only when necessary. (RECOMMENDED)

• The inline statement (within a subroutine) no longer allows references to
the location counter (*), nor does it allow references to procedure and
function identifiers. In order to refer to a procedure identifier, for
example, declare a local pointer variable, assign it the address of the
procedure (a procedure name), and refer to the pointer in the inline
statement. (ESSENTIAL)

• External subroutines must be reassembled and incorporated in .OBJ
format. (ESSENTIAL)

• Typed constants now reside in the data segment (DS) and so must be
accessed differently by any external subroutines. (ESSENTIAL)

• Inline/ external procedures and functions that used byte value
parameters in version 3.0 often took advantage of the fact that the high
byte of the word pushed on the stack was initialized to O. This
initialization is not done in version 4.0, so you'll need to make sure
inline/ external routines don't assume that the high byte is O.

There are many changes to the conventions for passing parameters and
function results on the stack; see Chapter 26 for more details.

This list is not exhaustive. Many of your programs will run with little or no
modification; others will work fine with the processing UPGRADE
performs. Likewise, this list doesn't cover all possible compatibility issues,
since many Turbo Pascal programs take advantage of undocumented or
unsupported features of version 3.0. Be sure to check the README file on

122 Turbo Pascal Owner's Handbook

your Turbo Pascal verion 4.0 distribution disk for any additional
conversion notes.

Chapter 8, Converting from Turbo Pasca/3.G 123

124 Turbo Pascal Owner's Handbook

c H A p T

Debugging Your Turbo Pascal
Programs

E R

9

The term debugging comes from the early days of computers, when actual
bugs (moths and the like) sometimes clogged up the machinery. Nowadays,
it means correcting errors in a program.

You'll undoubtedly have bugs to contend with-errors of syntax,
semantics, and logic within your program-and you'll have to fix them by
trial and error. However, there are tools and methods to make it less of a
trial and to cut down on the errors. In this chapter, we'll look at common
errors and the different ways to debug them.

Compile-Time Errors

A compile-time, or syntax, error occurs when you forget to declare a
variable, you pass the wrong number of parameters to a procedure, or you
assign a real value to an integer variable. What it really means is that you're
writing Pascal statements that don't follow the rules of Pascal.

Pascal has strict rules, especially compared to other languages, so once
you've cleaned up your syntax errors, much of your debugging will be
done.

Turbo Pascal won't compile your program (generate machine code) until all
your syntax errors are gone. If Turbo Pascal finds a syntax error while
compiling your program, it stops compiling, goes into your program,
locates the error, positions the cursor there, and prints what the error
message was in the Edit window. Once you've corrected it, you can start
compiling again.

Chapter 9, Debugging Your Turbo Pascal Programs 125

Runtime Errors

Another type of error that can occur is a runtime (or semantic) error. This
happens when you compile a legal program but then try to do something
illegal while executing it, such as open a nonexistent file for input or divide
an integer by o. In that case, Turbo Pascal prints an error message to the
screen that looks like this:

Runtime error ## at seg:ofs

and halts your program. If you ran your program from the MS-DOS
prompt, you'll be returned to MS-DOS. If you ran it under Turbo Pascal,
you'll get the usual Press any key ... message.

If you're running under the integrated environment, then Turbo Pascal
automatically finds the location of the runtime error, pulling in the
appropriate source file. You'll also notice that the output from your
program appears in the Output window at the bottom of the screen.

If you're running under the command-line environment (TPC), you can
find the error using the / F option. (See Chapter 12 for a complete
explanation and tour of finding runtime errors by using TPC.EXE when
running an .EXE program.)

Input/ Output Error-Checking

Let's look again at a program given in an previous chapter:

program DoSum;
var

A,B,Sum : integer;

begin
Write('Enter two numbers: ');
Readln(A,B);
Sum := A + B;
Writeln('The sum is ' ,Sum)

end.

Suppose you ran this program and entered the following values:

Enter two numbers: 45 8x

then pressed Enter. What would happen? You'd get a runtime error (106, in
fact) like we described in the previous section. And if you used the Find
error command, you'd discover that it occurred at the statement

Readln (A, B) ;

126 Turbo Pascal Owner's Handbook

What happened? You entered non-numeric data-8x-when the program
was expecting an integer value, which generated the appropriate runtime
error.

In a short program like this, such an error isn't a big bother. But what if you
were entering a long list of numbers and had gotten through most of it
before making this mistake? You'd be forced to start all over again. Worse
yet, what if you wrote the program for someone else to use, and they
slipped up?

Turbo Pascal allows you to disable automatic I/O error-checking and test
for it yourself within the program. To turn off I/O error-checking at some
point in your program, include the compiler directive {$I-} in your program
(or the O/C/I/O error-checking option). This instructs the compiler not to
produce code that checks for I/O errors.

Let's revise the preceding program so that it does its own I/O checking:

program DoSum;
var

A,B,Sum integer;
IOCode : integer;

begin
repeat

Write{'Enter two numbers: ');
{$I-} { Disable automatic I/O error-checking
Readln{A,B);
{$I+} { Enable automatic I/O error-checking
IOCode := IOResult;
if IOCode <> 0 then

Writeln{'Bad data: please enter again')
until IOCode = 0;
Sum := A + B;
Writeln{'The sum is ' ,Sum)

end.

First, you disable automatic I/O error-checking with the {$I-} compiler
directive. Then you put the input code into a repeat .. untilloop, because
you're going to repeat the input until the user gets it right. The Write and
Readln statements are the same, but after them comes the statement

IOCode := IOResult;

You've declared IOCode as a global variable, but what's IOResult? It's a
predefined function that returns the error code from the last I/O operation,
in this case, Readln. If no error occurred, then the value returned is 0;
otherwise, a nonzero value is returned, indicating what happened. Once
you've called IOResult, it "clears" itself and will return 0 until another I/O
error occurs. This is why you assign IOResult to IOCode-so that you can
test the result in both the if statement and the until clause.

Chapter 9, Debugging Your Turbo Pascal Programs 127

A similar structure can be used for error-checking while opening files for
input. Look at the following code sample:

var
FileName
F

begin

string [40]:
text:

Write('Enter file name: ');
Readln(FileName);
Assign(F,Filename):
Reset(F);

This code fragment asks you to enter a file name, then tries to open that file
for input. If the file you name doesn't exist, the program will halt with a
runtime error (02). However, you can rewrite the code like this:

var
FileName
F
IOCode

begin
{$I-}
repeat

string [40] ;
text;
integer;

Write('Enter file name: ');
Readln(FileName);
Assign(F,Filename);
Reset (F) ;
IOCode := IOResult;
if IOCode <> 0 then

Write In ('File' , FileName, 'does not exist, try again'}
until IOCode = 0;
{$It}

Using these and similar techniques, you can create a crash-proof program
that lets you make mistakes without halting your program.

Range-Checking

Another common class of semantic errors involves out-of-range or out-of
bounds values. Some examples of how these can occcur include assigning
too large a value to an integer variable or trying to index an array beyond
its bounds. If you want it to, Turbo Pascal will generate code to check for
range errors. It makes your program larger and slower, but it can be
invaluable in tracking down any range errors in your program.

Suppose you had the following program:

128 Turbo Pascal Owner's Handbook

program RangeTest;
var

List: array[1 .. 10] of integer;
Indx : integer;

begin
for Indx := 1 to 10 do

List [Indx] := Indx;
Indx := 0;
while (Indx < 11) do
begin

Indx := Indx + 1;
if List[Indx] > 0 then

List [Indx] := -List[Indx]
end;
for Indx := 1 to 10 do

Writeln(List[Indx])
end.

If you type in this program, it will compile and run. And run. And run. It
will, in fact, get stuck in an infinite loop. Look carefully at this code: The
while loop executes 11 times, not 10, and the variable Indx has a value of 11
the last time through the loop. Since the array List only has 10 elements in
it, List[1ll points to some memory location outside of List. Because of the
way variables are allocated, List[1ll happens to occupy the same space in
memory as the variable Indx. This means that when Indx = 11, the statement

List [Indx] := -List [Indx]

is equivalent to

Indx := -Indx

Since Indx equals 11, this statement sets Indx to -11, which starts the
program through the loop again. That loop now changes additional bytes
elsewhere, at the locations corresponding to List[-11 .. 0].

In other words, this program can really mess itself up. And because Indx
never ends the loop at a value greater than or equal to 11, the loop never
ends. Period.

How do you check for things like this? You can insert {$R+} at the start of
the program to turn range-checking on. Now when you run it, the program
will halt with runtime error 201 (out of range error, because the array index
is out of bounds) as soon as you hit the statement if List[Indx] > 0 with Indx
= 11. If you were running under the integrated environment, it will
automatically take you to that statement and display the error. (Range
checking is off by default; turning range-checking on makes your program
larger and slower.)

Chapter 9, Debugging Your Turbo Pascal Programs 129

There are some situations-usually in advanced programming-in which
you might want or need to violate range bounds, most notably when
working with dynamically allocated arrays, or when using Suee and Pred
with enumerated data types.

You can selectively implement range-checking by placing the {$R-} directive
at the start of your program. For each section of code that needs range
checking, place the {$R+} directive at the start of it, then place the {$R-}
directive at the end of the code. For example, you could write the preceding
loop like this:

while Indx < 11 do
begin

Indx := Indx + 1;
{$R+}
if List[Indx) > 0 then

List [Indx) := -List[Indx)
{$R-}

end;

{ Enable range-checking

{ Disable range-checking

Range-checking will be performed only in the if .. then statement and
nowhere else. Unless, of course, you have other {$R+} directives elsewhere.

Tracing Errors

A tried-and-true debugging practice is to insert trace statements within
your program. A trace statement is usually a statement that writes variable
values to the screen, telling you where you are and listing some current
values. Often a trace is set up to execute only if a global Boolean variable
has been set to True (so that you can turn tracing on or off).

Suppose you have a large program in which some variables are set to
incorrect (but not necessarily illegal) values. The program consists of
several procedures, but you haven't figured out which one is causing the
problem. You might do something like this for each procedure:

procedure ThisOne({any parameters});
{ any declarations }
begin

if Trace then
Writeln('entering ThisOne: A = ' ,A,' B = ' ,B);

{ rest of procedure ThisOne }
if Trace then

Writeln('exiting ThisOne: A = ' ,A,' B = ' ,B)
end; {of proc ThisOne }

130 Turbo Pascal Owner's Handbook

This code assumes that Trace is a global variable of type boolean, and that
you set it to True or False at the start of the program. It also assumes that A
and B are parameters to ThisOne or global variables of some sort.

If Trace is True, then each time ThisOne is called, it writes out the values of
A and B after it is called and again just before it returns to where it was
called from. By putting similar statements in other procedures, you can
trace the values of A and Band· find out where and when they change to
undesired values.

Once the wrong values of A and B come out in a trace statement, you know
that the changes occurred somewhere before that statement but after the
previously executed one. You can then start moving those two trace
statements closer together, or you can insert additional trace statements
between the two. By doing this, you can eventually pinpoint where the
error is and take appropriate steps.

As another example of tracing, you could have modified the program listed
in the previous section to look like this:

program RangeTest;
var

List array[1 .. 10] of integer;
Indx : integer;

begin
for Indx := 1 to 10 do

List [Indx] := Indx;
Indx := 0;
while (Indx < 11) do
begin

Indx := Indx + 1;
Writeln('Indx = ' ,Indx:2);
if List[Indx] > 0 then

List [Indx] : = -List [Indx]
end;
for Indx := 1 to 10 do

Writeln(List[Indx])
end.

{ <-- TRACING STATEMENT }

The addition of the Writeln (' Indx = ',Indx: 2) statement in the loop does
two things. First, it shows you that Indx is acting crazy: It gets up to 11 and
then suddenly jumps back down to -10 (yes, Indx was -11, but it had 1
added to it before the Writeln statement). Second, Turbo Pascal will (by
default) allow you to interrupt an infinite loop with a Ctr/-C or etr/-Break if
you are doing input or output.

Chapter 9, Debugging Your Turbo Pascal Programs 131

Using .TPM and .MAP Files

When you compile a Turbo Pascal program, the resulting .EXE file has
information in it about line numbers, procedure names, variable names,
and so on. This is because the {$D+} directive is on by default. If you enable
the option to generate a .TPM file (using the Ole/Turbo pascal map file
toggle or the /$T + command-line option), you can have the compiler
generate a .TPM (Turbo Pascal Map) file for your program if you're
compiling it to disk. This is a specially encoded file that contains
information about the addresses within the .EXE file of procedures and
functions, and about the data segment offsets of global variables.

Note, however, that in order to get information about the entire .EXE file,
you must compile all the units used by your program with the {$D+}
directive enabled. The easiest way to do that is to tum it on (via a menu
option or a command-line switch), then do a Build, which forces all units to
be recompiled.

To get this into human- and program-readable form, you must run the
program TPMAP.EXE (included on your Turbo Pascal distribution disk).
The result is a .MAP file that shows the memory layout (or map) of your
program.

Suppose you had the following program, saved as MAPTEST.P AS:

{$T+}
{$O+}

program MapTest;
var

A, B, C : integer;
procedure Test;
begin

Writeln('Enter two values: ');
Readln(A, B);
C := A div B;
Writeln('The answer is " C);

end;
begin

Test;
end.

{ Generate .TPM file}
{ Put line numbers in .TPM }

When you compile this program to disk, it produces the file TEST.TPM.
You can then generate a .MAP file with the following command:

tprnap Maptest

Note that you need not put test.tpm after tpmap. This is because TPMAP
always assumes the .TPM extension.

132 Turbo Pascal Owner's Handbook

The result of this command is an ASCII file named MAPTEST.MAP. If you
then look at it (using the Turbo editor), you'll see something like this:

Start Stop Length Name

OOOOOH 000B2H 000B3H MAPTEST
OOOCOH 00995H 008D6H SYSTEM
009AOH OOBEEH 0024FH DATA
OOBFOH 04BEFH 04000H STACK
04BFOH 04BFOH OOOOOH HEAP

Address

0000:0022
OOOO:OOAO
oooc:OOOO
009A:0000
009A:0002
009A:0004
009A:0006
009A:OI06
009A:0206
009A:0208
009A:020C
009A:0210
009A:0214
009A:0216
009A: 021A
009A:021E
009A:0220
009A:0224
009A:0228
009A:022C
009A:0230
009A:0234
009A:0238
009A:023C

Publics by Value

TEST
@

@

A
B
C
INPUT
OUTPUT
PREFIXSEG
HEAPORG
HEAPPTR
FREEPTR
FREEMIN
HEAP ERROR
EXITPROC
EXITCODE
ERRORADDR
RAND SEED
SAVEINTOO
SAVEINT02
SAVEINT23
SAVEINT24
SAVEINT75
FILEMODE

Class

CODE
CODE
DATA
STACK
HEAP

Line numbers for MAPTEST(MAPTEST.PAS) segment MAPTEST

9 0000:0022 10 0000:002C
13 0000:0072 14 0000:009C
18 OOOO:OOAA

Program entry point at OOOO:OOAO

11 0000:0048
16 OOOO:OOAO

12 0000:0067
17 0000:00A7

The first section of the .MAP file shows the memory map for the entire .EXE
file, with all addresses and values shown in hexadecimal (base 16). First
comes the code for the program MapTest itself, 179 bytes long. This is
followed by whatever routines have been linked in from the unit System
(2262 bytes). Next comes the data segment, which takes up 591 bytes. That
is followed by the stack, which is 16K in size. After that comes the heap,
which occupies (in theory) all the rest of memory.

Chapter 9, Debugging Your Turbo Pascal Programs 133

The second part of the .MAP file lists all the public (global) symbols:
procedures, functions, and variables. All values are given in hexadecimal.
The first three records refer to code entry points, the remaining references
are addresses for variables.

The first code record describes procedure Test, which resides at offset 34 in
MapTest's code segment. Next, the two @ symbols represent the beginning
of the initialization code for each program module in this program (in this
case, program MapTest and the System unit). The first @ record points to
the main program of MapTest, the second points to the beginning of the
System unit's code segment.

There are three publics variables in MapTest: A, B, and C. The rest of the
publics are variables in the System unit. All the variables reside in the
DATA segment, which begins 2464 bytes from the start of the code.

The third section correlates line numbers in the source code with the
machine code in the .EXE file. There is one line number record for each line
of code in each program file. (In this simple example, MAPTEST.PAS is the
only source code module.) Each record consists of the line number of a
source code statement, and the segment and offset of the corresponding
machine code.

The last line in the .MAP file tells you that program execution starts at
address OOOO:OOAO, or 160 bytes from the start of the code segment.

In addition to converting a .TPM file to a .MAP file, the TPMAP program
now also produces a text file that contains a complete list of all
dependencies (units, Include and .OBJ files) in the Turbo Pascal program.

For example, given a file named TEST.PAS:

program Test;
uses Crt;
begin

ClrScr;
Write('Turbo Pascal');

end.

then the commands

tpc test /$tt
tpmap test

will (1) compile TEST.EXE and produce a TEST.TPM file and (2) convert
TEST.TPM to TEST.MAP and produce TEST.DEP.

Here's a dump of TEST.DEP:

program TEST in TEST.PAS;

134 Turbo Pascal Owner's Handbook

uses
Crt;

unit Crt in CRT.PAS;
Links

CRT.OBJ;

As you can see, the listing contains the module names (TEST, Crt), the
corresponding file names (TEST.PAS and CRT.PAS), and a list of .OBJ files
linked in using the {$L} compiler directive (CRT.OBJ). TPMAP will produce
a .MAP file only if you use the / M command-line option. Similarly, the / D
option will only produce a .DEP file.

Using a Debugger

Sometimes none of the traditional Pascal language-based approaches work.
The nature of the problem is such that either you can't track down where
the errors are or, having located them, you can't figure out why they're
occurring or what's causing them. Then it's time to call in the heavy
artillery: a debugger.

A debugger is a program designed to allow you to trace the execution of
your program step by step, one instruction at a time. There are many
varieties of debuggers, but most require some familiarity with assembly
language (machine code) instructions and with the architecture (registers,
memory map, and so on) of your computer's microprocessor.

One such debugger, Periscope, is described in the next section. (Periscope is
published by The Periscope Company, Inc., of Atlanta, Georgia.)

Preparing to Use Periscope

Periscope is especially well suited for debugging programs written in
Turbo Pascal and is also a symbolic debugger. Periscope allows you to view
your source code while debugging, and to limit the amount of machine
code that is displayed. Full instructions on how to use Periscope can be
found in its accompanying manual. This section simply describes how to
prepare your Turbo Pascal programs for use with Periscope, as well as a
few of the debugger's basic instructions.

In order to use Periscope, you must first generate a .MAP file by doing the
following:

Chapter 9, Debugging Your Turbo Pascal Programs 135

• Turn on both the {$D+} and {$T +} compiler directives via the Options
menu, a command-line switch, or by inserting the directives at the start
of your program.

• Compile your program to disk, which will create .EXE and .TPM files.

• Run the TPMAP utility (as described previously) to create a .MAP file.

For example, if your program were named TEST.P AS, you would now have
three other files: TEST.EXE, TEST.TPM, and TEST.MAP.

You are now ready to debug your program with Periscope.

Starting Periscope

Periscope is a memory-resident program, much like SideKick and
SuperKey. If you have these or other memory-resident programs installed
in your system, you will need to exercise some caution when loading the
debugger. Consult the Periscope manual for more details on how to
configure the debugger for your computer, as well as how to load it safely
when other memory-resident programs are present. In the simplest case,
however, you can load Periscope simply by entering

ps

at the DOS prompt.

Once Periscope is loaded into memory, you can debug a program such as
TEST.P AS by typing

run test.exe

As explained in the Periscope manual, RUN.COM is a "program loader." It
loads a program into memory, finds and loads the contents of the
corresponding .MAP file, and ultimately passes control to the debugger
itself. Once control has been passed, you'll see something like this on your
screen:

AX=OOOO BX=OOOO CX=08CO ox=oooo SP=2000 BP=OOOO S1=OOOO 01=0000
OS=46AA ES=46AA SS=476A CS=46BA 1P=0031 FL=0246 NV UP E1 PL ZR NA PE NC
WR SS:lFFC = 46BA CFFO

@:

46BA:0031 9AOOOOC846 CALL
>

The first two rows show you the contents of the CPU registers. The third
row shows you the contents of the region of memory that will be altered
(WRitten to) when the CALL instruction is executed. The fourth and fifth
rows show you (1) that you have reached an address that corresponds to an

136 Turbo Pascal Owner's Handbook

unnamed entry in the symbol table, and (2) that the call is being made to
another such address. The last line shows Periscope's command prompt, a
greater than (» sign.

Although this display will make long-time users of DOS DEBUG feel right
at home, you will probably prefer using Periscope's "windowed" display
instead. To switch to a windowed display, press Ctrl-F10 (if you have a color
monitor) or Ctrl-F9 (if you have a monochrome monitor). Now you can see
much more information at a glance:

46AA:OIOO 11 45 6E 74 65 72 20 74-77 6F 20 76 61 6C 75 65 .Enter two val>IOOOO
46AA:OIIO 73 3A 00 80 FF FF FF 7F-00 00 OE 74 68 65 20 61 s: theIOOOO
46AA:0120 6E 73 77 65 72 20 69 73-20 00 00 00 80 FF FF FF answer is 10000
46AA:0130 7F 9A 00 00 C8 46 89 E5-BF 06 01 IE 57 BF 00 00 HF.e? .. W?IOOOO
DO" -------------------------- 10000
AX=OOOO BX=052E CX=0552 OX=8003 SP=2000 BP=2000 S1=OOBA 01=0106 10000
OS=4746 ES=4746 SS=476A CS=46BA 1P=0038 FL=0246 NV UP E1 PL ZR NA PE NIOOOO
R" WR SS:IFFC = 46BA CFFO 10000

@: 10000
46BA:0031 9AOOOOC846 CALL 10000
46BA:0036 89E5 MOV BP,SP 10000
A6: Write('Enter two values:'); 10000
46BA:0038 BF0601 MOV 01,0106 ; OUTPUT 10000
46BA:003B IE PUSH OS 10000
46BA:003C 57 PUSH 01 10000
4 6BA: 0030 BFOOOO MOV 01,0000 ; A 10000
U"_1n C:\PER1\RUN.Cm1 10000

>

The screen is now divided into five distinct sections, or windows. At the
top of the screen is the Display window, used for examining memory;
below it is the Registers window. To the right is the Stack window, which
shows you the contents of the stack and, using the arrow now seen at the
top, the location pointed to by theBP (Base Page) register. At the bottom of
the screen is the Command window, where commands are entered and in
many cases command output is displayed. In the middle of the screen is the
Unassemble window. Here you can see a mixture of source code and
machine code, and the instruction that is about to be executed is always
highlighted by a reverse video bar.

Like most things in Periscope, the size and color of these windows can be
changed at your discretion (consult the manual for details). Once you have
the display configured to your liking, you can begin to experiment with
some of the basic debugging commands. In the sections that follow, it is
assumed that you will be using a windowed display while debugging and
that you are using version 3.0 or greater of Periscope.

Chapter 9, Debugging Your Turbo Pascal Programs 137

Basic Periscope Commands

From Periscope's command prompt, you can get a complete list of the
available commands by typing a question mark (?) followed by Enter. The
following, however, are. the ones you'll most likely need when you get
started.

The Trace (T) Command

The Trace command executes a specified number of machine language
instructions, then stops. It allows you to single-step through your code
slowly and carefully, and to monitor the results as you go.

This command takes the format

>t [<number>]

If no number is specified, a single instruction is executed.

·Useful tip: There's no need to repeatedly press T and Enter while single
stepping. Once you have entered a command, you can repeat it simply by
pressing the F4 key.

The Jump (J and JL) Commands

The Jump(J) command is somewhat like the Trace command, but it allows
you to execute the next instruction in its entirety. For example, if the next
instruction is a CALL to a procedure, entering J tells the debugger to
execute the CALLed procedure, then stop at the instruction following the
CALL. Jump can also be used to avoid stepping through interrupt (INT)
calls, as well as instructions that tell the CPU to repeat a certain task, such
as LOOP or REPZ MOVSB.

The Jump Line (JL) command can be used to jump from the current
instruction to the next one that corresponds to a Turbo Pascal source-code
line. It thus allows you to move rapidly through programs written in a high
level language such as Pascal.

The Go (G) Command

When you want to move even more rapidly to a particular point in your
program, use the Go command. If you type G and press Enter, Periscope will
execute your program until one of two things happens: the program ends
or a breakpoint is encountered. Actually, there is a third event that could
stop the execution of the program: You could press either the breakout
switch (if you have one) or a special hotkey (if you have the auxiliary

138 Turbo Pascal Owner's Handbook

program PSKEY installed). PSKEY and Periscope's optional breakout
switch, both very useful debugging aids, are beyond the scope of this
chapter, so you'll need to consult the Periscope manual for more on their
use.

The Go command has the following format:

>g [<address> J [••• J

The address parameter(s) are optional, and you can specify as many as four
of them at a time. If you do specify a parameter, Periscope will set a
temporary breakpoint at the specified address, causing the execution of the
program to stop if the instruction pointer (IP) ever points to that address.
You can specify an address either as an offset within the current code
segment or as a 32-bit pointer in segment:offset format. You can also specify
an address by using a symbolic identifier. For example, the following
command would set three temporary breakpoints:

>g 003D 46C8:0000 MyProc

Another way to specify an address is to refer to a line of source code. For
example,

>g .A6

would set a temporary breakpoint at the address corresponding to line 6 of
source file A (the first one listed in the MAP file, the second· file is
designated as B, and so on). Note that the period (.) in . A6 is optional, but
by using it, you can clearly distinguish between line A6 and the
hexadecimal offset A6 (OOA6).

The Go command is useful both for skipping over sections of code that
have been thoroughly debugged and for getting quickly to a particular
procedure or line of source code.

The Unassemble (U, US, UB) Commands

When using Periscope's windowed display, you can frequently locate a
section of code that interests you by using the PgUp and PgDn keys to scroll
through the Unassemble window. In some cases, however, it is faster and
easier to use the Unassemble command to instruct Periscope to display the
code at a particular address. For example, if the next instruction is a CALL
to a procedure (call it TheirProc) in another unit, and you don't know
whether you should bother to single-step through it, you could glance at it
briefly by entering

>u TheirProc

Chapter 9, Debugging Your Turbo Pascal Programs 139

The optional parameter to an Unassemble command can be a symbol, an
offset, or an address in segment:offset format.

Two related commands are of particular interest to Turbo Pascal program
mers. The Unassemble Source (US) command tells the debugger to display
only source code in the Unassemble window whenever possible. The
Unassemble Both (UB) command restores the display to its default state, in
which case both source code and machine code are displayed.

The Display (D, Dx) Commands

Periscope also has a host of Display commands that you can use to change
both the contents and the format of the Display window. The most useful
ones for Turbo Pascal programmers are Display Ascii (DA), Display Bytes
(DB), Display Double words (DD, for pointers and long integers), Display
unsigned Integer (DI), Display Number (DN, for signed integers), and
Display Word (DW). Like the Unassemble commands, these have the
format

>d [<address>]

where address can be specified either numerically or symbolically. The
Display (D) command is generally used to change the contents of the
Display window, where the Dx commands are used to change the format in
which memory is displayed.

The View (V) Command

The View command allows you to examine your source files while inside
the debugger. The format for the View command is

>v filename.ext

When you give the View command, the specified file is displayed in the
command window, and you can scroll through it using the cursor keys.
This command is particularly useful when you want to glance at type or
variable declarations, or at the interface section of a unit without disturbing
the contents of the Unassemble window.

The Enter (E) Command

The Enter command lets you make changes to memory while debugging.
You might use it, for example, if you had determined that a particular
routine would behave correctly if a pointer variable was set to nil, if a
string variable was empty, or if a loop counter started at 1 rather than o.

140 Turbo Pascal Owner's Handbook

Using Enter, you could change the contents of the variable to test your
theory.

The format of the Enter command looks like this:

>e <address> [<list>]

where address points to the region of memory to be changed. The optional
list parameter is used to specify the changes to be made. If you omit it, you
can make changes in the interactive mode, a byte at a time.

The Registers (R) Command

If the wrong value has already been loaded into a register, you can still
change it using the Registers command. For example, if a variable that now
equals 0, but should equal 1, has just been loaded into the AX register, you
can enter

>r ax 1

to set the AX register to 1. You can also use the Registers command
(carefully) to prevent certain instructions from being executed. For
example, a near CALL that is about to be executed can be avoided by
entering

>r ip ip+3

Finally, and less dangerously, you can use the Registers command without
a parameter to reset the display in the Unassemble window to point to the
instruction about to be executed.

The Breakpoint (BC, BR, BM) Commands

Periscope has an impressive variety of commands for setting breakpoints,
which come in two flavors: permanent and conditional.

Permanent breakpoints are usually set with the Breakpoint on Code (BC)
command. For example:

>bc MyProc

would set a breakpoint at the start of the procedure named MyProc. Any
time MyProc was called, the debugger would stop the execution of the
program so that you could examine memory or single-step through the
procedure. This command, like most of the earlier ones, takes an address as
a parameter.

There are several conditional breakpoint commands, but the more common
ones are Breakpoint on Register (BR) and Breakpoint on Memory (BM).

Chapter 9, Debugging Your Turbo Pascal Programs 141

Unlike permanent breakpoints, conditional breakpoints occur only when a
specified condition is met. For example:

>br cs ne cs

would tell the debugger to stop the program if CS does Not Equal C5-that
is, if the value in the code segment (CS) register changes. Similarly,

>bm 0: 0 0: 3FC w

would tell the debugger to stop the execution of the program as soon as
any change is made to the interrupt vector table at the bottom of memory
(the W stands for Write, as opposed to R for Read).

The conditional breakpoint commands are powerful indeed, and so require
a more complete explanation than can be given here. One final and
important point should be made, however.

Conditional breakpoints generally require the debugger to monitor the
execution of the program very carefully. Although the rewards can be
great, the process is time-consuming. For that reason, Periscope requires
you request this special treatment specifically by issuing a special
command to watch for conditional breakpoints: either the Go Trace (GT) or
the Go Munitor (GM) command (see the Periscope manual for details).

You have numerous options and tools to use in debugging your
programming: syntax error handling, runtime error handling, range
checking, I/O error-checking, tracing, map files, and debuggers. The
combination of these and the speed of Turbo Pascal create a powerful
development environment for even the most serious programmer.

142 Turbo Pascal Owner's Handbook

c H A p T E R

10

The Turbo Pascal Menu Reference

This chapter is designed to help you quickly review all the menu com
mands available in the Turbo Pascal integrated environment. You'll learn
how to select menu commands, then we'll discuss each menu item in detail.

Menu Structure

Figure 10.1 shows the complete structure of Turbo Pascal's main menu and
its successive pull-down menus.

Chapter 70, The Turbo Pascal Menu Reference 143

File Edit Run Compile Options I
~

(uRn runs current program.)
("E" activates the Editor;

F10 returns to menu bar.

v
Load Corrpile
Pick Make
New Build
Save Destination Memory
Write to Find error
Directory Primary file:
ChanQe dir ..--- I- Get info
OS shell
Quit

,......- Corrpiler
E nvi ronment
Directories - ~ f Recent flle·.sl
P ararreters
Load options

C:\TURB04\NONAME.PAS S ave options
-- load file --

I.- ,I.-
Information

RanQe checkinQ On
Primary file: Stack checkinQ On
Current file : C: \ TURB04 \NONAME. PAS I/O checkinQ On
File size 0 Available Memory 302K DebuQ information Off
Line corrpiled: 0 Run code Turbo pascal map file Off

Force far calls Off
Code size o bytes Var-strinQ checkinQ Strict
Data size o bytes Boolean evaluation Short-Circuit
Stack size 16384 bytes Numeric processinQ Software
Minimum heap size o bytes Link buffer Memory
Maximum heap size 655360 bytes Conditional defines

Memory sizes ---,
Proqram exit code 0 [Error MessaQe unexpected end of text
Error module C:\TURB04
Error address Stack size 16384 1 Press any key Low heap limit 0

H iQh heap limit 655360

Turbo directory:
Executable directory:

I Include directories:
Unit directories:
Object directories:
Pick file name: Backup source files On Current pick file: Edit auto save On

ConfiQ auto save Off
Retain saved screen On

125 line standard display I Tab size 8
43 line EGA display Zoom windows Off
5 0 line VGA display ~ Screen size

Figure 10.1: Turbo Pascal's Menu Structure

144 Turbo Pascal Owner's Handbook

Menu commands can be selected several ways. First, you can get to the
main menu by pressing F10. If you're in the Edit window, you can get to the
main menu by pressing Ctrl-K D or Ctrl-K Q. You can also press an Aft key and
the first letter of the main menu item you'd like to get to; for example, Alt-O
to get to the Options menu.

Once you're at the main menu, you can select an item by pressing the key
corresponding to the first letter of the menu name: File, Edit, Run, Compile,
and Options. File, Compile, and Options have several other items in their
pull-down menus; Edit and Run have no other options. You can also use
the Up arrow and Down arrow keys on your keyboard to move the highlight bar
up and down the list of commands, pressing Enter when the bar is on the
command you want. To close a menu, just press Esc.

Here's the five main menu selections:

File
Handles files (loading, saving, picking, creating, writing to disk), manipu
lates directories (listing, changing), quits the program, and invokes DOS.

Edit
Lets you create and edit source files in the built-in text editor.

Run
Automatically compiles, links, and runs your program.

Compile
Compiles and makes your programs into object and executable files, and
more.

Options
Allows you to select compiler options (such as range-checking, debugging
information, and memory sizes) and define an input string of parameters.
Also records the Turbo, Executable, Include, Unit file and Object
directories, saves compiler options, and loads options from the con
figuration file.

There are three general types of items on the Turbo Pascal menus:

• Commands perform a task (running, compiling, storing options, and so
on).

• Toggles let you switch a Turbo Pascal feature on or off (Range-checking,
Edit auto save, and so on) or cycle through and select one of several
options by repeatedly pressing the Enter key till you reach the item
desired (such as Destination or Boolean evaluation).

• Settings allow you to specify certain compile-time and runtime
information to the compiler, such as directory locations, primary files,
and so forth.

Chapter 70, The Turbo Pascal Menu Reference 145

The Bottom Line

Whether you're in one of the windows or one of the menus, the line at the
bottom of the screen provides at-a-glance function-key help for your
current position.

To see what other key combinations do in a different setting, hold down the
Aft key for a few seconds. The bottom line changes to describe what
function will be performed when you combine other keys with this key.

When you're in the main menu and the Edit window is active, the bottom
line looks like this:

F1-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make FlO-Main menu

When you hold down· the Alt key, a summary of Aft-key combinations is
displayed, like this:

Alt-F1-Last-Help Alt-F3-Pick Alt-F5-Saved Screen Alt-F9-Compile Alt-X-Exit

The Edit Window

In this section, we describe the components of the Turbo Pascal Edit
window and explain how to work in the window.

First off, to get into the Edit window, press Enter when positioned at the
Edit option on the main menu (or press E from anywhere on the main
menu). To get into the Edit window from anywhere in the system,
including the Output window, just press Alt-E. (Remember,AIt-E is just a
shortcut for F10-E.) Once you're in the Edit window, notice that there are
double lines at the top of it, and its name is highlighted-that means it's the
active window.

A new editor key, etrl-Fl, expands the integrated environment's compiler
directive settings into text and inserts them at the beginning of the current
edit file. Try loading a file into the editor and pressing etr/-Fl. If you haven't
changed any of the default switch settings on the Options/Compiler menu,
the following text will be inserted at the top of the file in the editor:

{$R-,St,It,Ot,T-,F-,Vt,B-,N-,Lt }
{$M 16384,0,655360 }

These are all the options found on the Options/Compiler and Memory
sizes menus. In addition, any conditional defines from the
Options/Compiler/Conditional defines menu item would have been
inserted as {$DEFINE xxxx } directives.

146 Turbo Pascal Owner's Handbook

Besides the body of the Edit window, where you can see and edit several
lines of your source file, the Turbo Pascal Edit screen has two information
lines you should note: an Edit status line and the bottom line.

The status line. at the top of the Edit window gives information about the
file you are editing, where in the file the cursor is located, and which
editing modes are activated:

Line n Col n Insert Indent Tab C:FILENAME.EXT

Linen

CoIn

Insert

Indent

Tab

Cursor is on file line number n.

Cursor is on file column number n.

Insert mode is on; toggle Insert mode on and off with
Insert or Cfr/-V.

Autoindent is on. Toggle it off and on with Ctrl·O I.

Tab mode. is enabled. Toggle it on and off with Ctrl-O T.

C:FILENAME.EXT The drive (C:), name (FILENAME), and extension
(.EXT) of the file you are editing.

The line at the bottom of the screen displays which hotkeys perform which
action:

FI-Help F2-Save F3-Load F5-Zoom F6-0utput F9-Make FlO-Main Menu

To select one of these functions, press the listed key:

FI-Help

F2-Save

F3-Load

F5-Zoom

F6-0utput

F9-Make

FlO-Main menu

Opens a Help window that provides information about
the Turbo Pascal editor commands.

Saves the file loaded in the Edit window.

Loads a new file into the Editor.

Makes the active window full screen. Toggle F5 to get
back to the split-screen environment.

In this case, F6 takes you to the Output window; in
general, F6 switches between windows. Press it once
more to make the Edit window active again.

Makes your .EXE file.

Invokes the main menu.

The editor uses a command structure similar to that of SideKick's NotePad
and the orginal Turbo Pascal's editor; if you're unfamiliar with the editor
these products use, Chapter 11 describes the editor commands in detail.

Chapter 70, The Turbo Pascal Menu Reference 147

If you're entering code in the editor, you can press Enter to end a line (the
editor has no wordwrap). The maximum line width is 249 characters; you'll
get a beep if you try to type past that. (Note that the compiler only
recognizes characters out to column 128.) The Edit window is 77 columns
wide. If you type past column 77, the text you've already entered moves to
the left as you type. The Edit window's status line gives the cursor's
location in the file by line and column.

After you've entered your code into the Edit window, press FlO to invoke
the main menu. Your file will remain onscreen; you need only press E (for
Edit) at the main menu to return to it, or AIt-E from anywhere.

How to Work with Source Files in the Edit Window

When you invoke the Edit window before loading a particular file, the
Turbo Pascal editor automatically names the file NONAME.P AS. At this
point you have all the features of the editor at your fingertips. You can:

• create a new source file either as NONAME.P AS or another file name

• load and edit an existing file

• pick a file from a list of edit files, and then load it into the Edit window

• save the file viewed in the Edit window

• write the file in the editor to a new file name

• alternate between the Edit window and the Output window to find and
correct runtime mistakes

While you are creating or editing a source file but before you have
compiled and run it, you don't need the Output window. So you can press
F5 to zoom the Edit window to full screen. Press F5 again to unzoom the
Edit window (return to split-screen mode).

Creating a New Source File
To create a new file, select one of the following methods:

• If you have just entered Turbo Pascal and don't have an active pick file,
you need only press E to create the file NONAME.P AS in the editor.

• At the main menu, select File/New, then press Enter. This opens the Edit
window with a file named NONAME.P AS.

• At the main menu, select File/Load. The Load File Name prompt box
opens; type in the name of your new source file. (Pressing the shortcut F3
from within the Edit window will accomplish the same thing.)

148 Turbo Pascal Owner's Handbook

Loading an Existing Source File
To load and edit an existing file, you can select two options: File/Load or
File/Pick.

If you select File/Load at the main menu, you can

• Type in the name of the file you want to edit; paths are accepted-for
example,

C:\TP\TESTFILE.PAS

• Enter a mask in the Load File Name prompt box (using the DOS
wildcards * and ?), and press Enter. Entering * . * will display all of the
files in the current directory as well as any other directories. Directory
names are followed by a backslash (\). Selecting a directory displays the
files in that directory. Entering c: \ * . PAS, for example, will bring up
only the files with that extension in the root directory. You can change the
wildcard mask by pressing F4. (For more on directories, look at
Appendix G.)

• Press the Up, Down, Left, and Right arrow keys to highlight the file name
you want to select. Then press Enter to load the selected file; you are
placed in the Edit window. If you press Enter when you're positioned on
a directory name, you'll get a new directory box.

Pick lets you quickly pick the name of a previously loaded file. So, if you
select File/Pick or Alt-F3 (see the discussion of the Pick option later in this
chapter), you can

• Press AIt-F then P to bring up your pick list (or press the shortcut Alt-F3).

• Use the Up and Down arrow keys to move the selection bar to the file of
your choice.

Saving a Source File
In order to save a source file from anywhere in the system, press F2. If
you're at the main menu, you can select File/Save.

Writing an Output File
You can write the file in the editor to a new file or overwrite an existing file.
You can write to the current (default) directory or specify a different drive
and directory.

At the main menu, select File/Write to. Then, in the New Name prompt
box, enter the full path name of the new file name and press Enter:

C:\DIR\SUBDIR\FILENAME.EXT

Chapter 70, The Turbo Pascal Menu Reference 149

where C: (optional) is the drive; \DIR\SUBDIR\ represent optional
directories; FILENAME.EXT is the name of the output file and its extension
(the extension .PAS is assumed; append a period (.) at the end of your file
name if you don't want an extension name).

Press Esc once to return to the main menu, twice to go back to the active
window (the editor). You can also press F6 or Aft-E.

If FILENAME.EXT already exists, the editor will verify that you want to
overwrite the existing file before proceeding.

The Output Window

The Output window contains program-generated output. At startup, it will
display the last screen from DOS. You can scroll through this window using
the cursor keys, as well as Home, End, PgUp and PgOn. When the Output
window is active, the 25th line looks like this:

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make FlO-Main menu

To use one of these features, press the desired key:

FI-Help Opens a Help window that offers info about the
Output window.

F2-Save

F3-Load

F5-Zoom

F6-Edit

F9-Make

FlO-Main menu

Saves the file currently in the editor.

Loads a new file into the editor.

Expands the Output window to full screen.

Makes the Edit window active.

Makes the .EXE file.

Invokes the main menu.

The File Menu

The File pull-down menu offers various choices for loading existing files,
creating new files, and saving files. When you load a file, it is automatically
placed in the editor. When you finish with a file, you can save it to any
directory or file name. In addition, from this pull-down you can change to
another directory, temporarily go to the DOS shell, or exit Turbo Pascal.

150 Turbo Pascal Owner's Handbook

Fc------=~IFi~ll!!1;;:::.I:::::::;;;:::;;;;;;;E;;;:::d::::;_it~;=;==R=un==;=C=;o~m=p=;=ile=;:Edit=O=P=t=io=ns======l
I'LOatf::;;;;::" :::';::::::1 Col 1 Insert Indent C:NONAME.PAS
Pick
New
Save
Write to
Directory
Change dir
OS shell
Quit

/------------ Output ----------.J

Fl-Help F2-Save F3-Load FS-Zoom F6-Edil F9-Make FlO-Mam menu

Figure 10.2: The File Menu

Load
Loads a file. You can use DOS-style masks to get a listing of file choices, or
you can load a specific file. Simply type in the name of the file you want to
load.

You can move through the directory box by using first letter selection.
Pressing the B key, for example, takes you to the first file name starting with
B. Pressing B again takes you to the next file name, and so on. If there are
no other file names beginning with the letter B, you will be taken back to
the first one. If no file names start with the letter B, then the cursor will not
move. Holding down the Shift key and pressing B will take you to the first
subdirectory that begins with the letter B.

Note: If you enter an incorrect drive or directory, you'll get an error box
onscreen. You'll get a verify box if you have an unsaved, modified file in
the editor while you're trying to load another file. In either case, the hot
keys are disabled until you press the key specified in the error or verify
box.

Pick
Lets you pick a file from a list of the previous eight files loaded into the
Edit window. At the top of list, you'll find the file that is currently in the
editor. This provides an easy way to reload the current file if you wish to
abandon changes. The file selected is loaded into the Editor and the cursor

Chapter 70, The Turbo Pascal Menu Reference 151

is positioned at the location where you last edited that file. Note that the
block marks and state is saved for each file, as are each of the four markers.
If you select the "-load file-If item from the pick list, you'll get a Load
File Name prompt box exactly as if you had selected File/Load or F3. Alt-F3
is a short cut to get this list.

You can define the pick file name from the a /D /Pick file name menu item
from within Turbo Pascal's installation program (TINST). This will have
Turbo Pascal automatically save the current pick list when you exit Turbo
Pascal and then reload that file upon reentering the program. For more
information, see the OlD/Pick file name option.

New
Specifies that the file is to be a new one. You are placed in the editor; by
default, this file is called NONAME.P AS. (You can change this name later
on when you save the file.)

Save
Saves the file in the Editor to disk. If your file is named NONAME.PAS and
you go to save it, the editor will ask if you want to rename it. From
anywhere in the system, pressing F2 will accomplish the same thing.

Write to
Writes the file to a new name or overwrites an existing file. If a file by that
name already exists, you'll be asked to verify the overwrite.

Directory
Displays the directory and file set you want (to get the current directory,
just press Enter).

You can move through the directory box by using first letter selection.
Pressing the B key, for example, takes you to the first file name starting with
B. Pressing B again takes you to the next file name, and so on. If there are
no other file names beginning with the letter B, you will be taken back to
the first one. If no file names start with the letter B, then the cursor will not
move. Holding down the Shift key and pressing B will take you to the first
subdirectory that begins with the letter B.

Change dir
Displays the current directory and allows you to change to a specified drive
and/ or directory.

152 Turbo Pascal Owner's Handbook

OS shell
Leaves Turbo Pascal temporarily and takes you to the DOS prompt. To
return to Turbo Pascal, type exi t. This is useful when you want to run a
DOS command without quitting Turbo Pascal.

Quit
Quits Turbo Pascal and returns you to the DOS prompt to the currently
active directory.

The Edit Command

The Edit command invokes the built-in screen editor.

You can invoke the main menu from the editor by pressing F10 (or Alt and
the first letter of the main menu command you desire). Your source text
remains displayed on the screen; you need only press Esc or E at the main
menu to return to it (or Alt-E from anywhere).

The Run Command

Run invokes the compiler if you have changed the file you're currently
editing since the last time you compiled it. It then runs your program using
the arguments given in Options/Parameters. After your program's finished
running, you'll get a Press any key to return to Turbo Pascal message.

When the compiler is invoked because you have changed the edit file, it is
the same as doing a Make (F9), followed by a Run (Alt-R or F10 R).

The Compile Menu

Use the items on the Compile menu to Compile a program, to Make a
program, to Build a program, to set the Destination of the object code (disk
or memory), to Find a runtime error, to set a Primary file, or to Get
information about the current source file.

Chapter 70, The Turbo Pascal Menu Reference 153

File Edit . Run i_Bil&} Options
F=======~========

Line 1 Col 1 Inse r~iMl~,ril
Make
Build
Destination Memory
Find error
Primary file:
Get info

1-----------Output -----------i

FI-Help F2-Save F3-Load FS-Zoom F6-Edit F9-Make FlO-Main menu

Figure 10.3: The Compile Menu

Compile
This menu item is a command. The last file you loaded into the editor is
compiled.

Make
Invokes Turbo' Pascal's Make sequence. If a primary file has been named,
then that file is compiled; otherwise the last file loaded into the editor is
compiled. Turbo Pascal checks all files upon which the file being compile
depends. If the source file for a given unit has been modified since the .TPU
(object code) file was created, then that unit is recompiled. If the interface
for a given unit has been changed, then all other units that depend upon it

. are recompiled. If a unit links in an .OB} file (external routines), and the
.OBJ.file is newer than the unit's .TPU file, then the unit is recompiled. If a
unit includes an Include file and the Include file is newer than that unit's
.TPU file, then the unit is recompiled.

Build
Recompiles all your files regardless of whether they are out of date or not.
This option is similar to Make except that it is unconditional; Make
rebuilds only the files that aren't current.

154 Turbo Pascal Owner's Handbook

Destination
Use this option to specify whether the executable code will be saved to disk
(as an .EXE file) or whether it will just be saved in memory (and thus lost
when you exit from Turbo Pascal). Note that even if Destination is set to
Memory, any units that are recompiled during a Make or a Build have their
.TPU files updated on disk. If the code is being saved to disk, then the .EXE
file name listed is derived from one of two names, in the following order:

• the Primary file name, or if none is specified
• the name of the last file you loaded into the Edit window.

Find error
Finds the location of a runtime error. When a runtime error occurs, the
address in memory of where it occurred is given in the format seg:ofs. When
you return to Turbo Pascal, Turbo locates the error automatically for you.
This command allows you to find the error again, given the seg and ofs
values.

For this to work, you must turn on the Debug information menu item.
When entering the error address, you must give it in hexadecimal, segment
and offset notation. The format is "xxxX:yyyy"; for example, "2BEO:FFD4."

If runtime errors occur when running within the integrated environment,
the default values for error address is set automatically. This allows you to
re-find the error location after changing files. (Note that if you just move
around in the same file, you can get back to the error location with the Ctrl-Q
Wcommand.)

When runtime errors occur under DOS, you should note the segment offset
displayed on the screen. Then load the main program into the editor or
specify it as the Primary file. Be sure to set the Destination to Disk. Then
type in the segment offset value.

Primary file
Use this option to specify which .PAS file will be compiled when you use
Make (F9) or Build (Alt-C B).

Get info
Brings up a window of information about the current .PAS file you're
working with, including the size (in bytes and lines) of the source code, the
size (in bytes of code and data) of the resulting .EXE (or .TPU) file, available
memory, state of code, and error information.

Chapter 70, The Turbo Pascal Menu Reference 155

When Turbo Pascal is compiling, a window pops up to display the com
pilation results. When compiling/making is complete, press any key to
remove this compiling window. If an error occurs, you are automatically
placed in the Edit window at the error.

The Options Menu

The Options menu contains settings that determine how the integrated
environment works. The settings affect things like compiler options, unit,
object, and include directories, program runtime arguments, and so on.

File Edit Run Compile Edit ;\ittHbH~'

Line 1 Col 1 Insert Indent IPm~~iH"""~:
Environment
Directories
Parameters
Load Options
Save Option

I------------Output ------------1

FI-Help F2-Save F3-Load FS-Zoom F6-Edit F9-Make FlO-Main menu

Figure 10.4: The Options Menu

Compiler

These options allow you to specify different compiler options, including
range-checking, stack-checking, I/O checking, and so on. These same
options can also be specified directly in your source code using compiler
directives (see Appendix C). Note that the first letter of each menu item
corresponds to its equivalent compiler directive; for example, Range
checking corresponds to {$R}. (The only exception is compiler defines,
which is / Dxxx.)

156 Turbo Pascal Owner's Handbook

File Edit Run

Line I Coli

Compile Edit

Insert Indent .,

.:~ti9~··S9~P.&~9:·::·· •• : ··········QU·:················· ········ •.••••• I·;
Stackchecking···O~n
1/0 checking On
Debug information On
Turbo pascal map file Off
Force far calls Off
Var-string checking Strict
Boolean evaluation Short Circuit
Numeric processing Software
Link buffer Memory
Conditional defines
Memory sizes

1------------Output -------------1

FI-Help F2-Save F3-Load FS-Zoom F6-Edit F9-Make flO-Main menu

Figure 10.5: The Options/Compiler Menu

• Range-checking: Allows you to enable or disable range-checking. When
enabled, the compiler generates code to check that array and string
subscripts are within bounds, and that assignments to scalar-type
variables don't exceed the defined range. If the check fails, then the
program halts with a runtime error. When disabled, no such checking is
done. This is equivalent to the $R compiler directive.

• Stack checking: Allows you to enable or disable stack checking. When
enabled, the compiler generates code to check that space is available for
local variables on the stack before each call to a procedure or function. If
the check fails, then the program halts with a runtime error. When
disabled, no such checking is done. This is equivalent to the $5 compiler
directive.

• lID checking: Allows you to enable or disable input/output (I/O) error
checking. When enabled, the compiler generates code to check for I/O
errors after every I/O call. If the check fails, then the program halts with
a runtime error. When disabled, no such checking is done; however, the
user can then test for I/O errors via the system function 10Result. This is
equivalent to the $1 compiler directive.

• Debug information: Allows you to ask the compiler to generate
debugging information for the program being compiled. If you are
compiling to disk, the information is stored in the resulting .EXE or .TPU
file. This allows the Compile/Find Error command to locate runtime
errors in units previousy compiled. This must be on for the
Compile/Find error item to work.

Chapter 70, The Turbo Pascal Menu Reference 157

• Turbo pascal map file: Causes the compiler to generate a MAP file
during the linking phase. the MAP file generated has a .TPM extension.
This file is used by Find error when information is not in memory. You
can also use this file with symbolic debuggers. TPMAP.EXE will convert
the .TPM file to a MAP file.

• Force far calls: Allows you to force all procedure/function calls to be far
calls. If not enabled, then the compiler will generate near calls for any
procedures and functions within the file being compiled. This is
equivalent to the $F compiler directive.

• Var-string checking: Allows you to choose between strict or relaxed
string parameter error checking. With strict checking, the compiler
compares the declared size of a var-type string parameter with the actual
parameter being passed. If the declared size of the actual parameter is
smaller than that of the formal parameter, then a compiler error occurs.
With the relaxed option, no such checking is done. This is equivalent to
the $V compiler directive.

• Boolean evaluation: Allows you to select between short-circuit and
complete Boolean evaluation. With short-circuit evaluation, the compiler
generates code to terminate evaluation of a Boolean expression as soon as
possible; for example, in the expression if False and MyFunc ... , the
function MyFunc would never be called. With complete evaluation, all
terms in a Boolean expression are evaluated. This is equivalent to the $B
compiler directive.

• Numeric processing: Allows for two options-Hardware, which
generates direct 8087 inline code and allows the use of IEEE floating
point types (single, double, extended, comp); and Software, which allows
only the standard Turbo Pascal 6-byte real data type. This is equivalent to
the $N compiler directive.

• Link buffer: Allows you to tell Turbo to use memory or disk for the link
buffer. Using memory speeds things up, but you may run out of memory
for large programs; using disk frees up memory but slows things down.
This is equivalent to the $L compiler directive.

• Conditional defines: Defines symbols referenced in conditional compi
lation directives in your source code. Symbols are defined by typing in
their name. Multiple symbols are separated by semicolons; for example,
you may define the two symbols Test and Debug by entering
Test; Debug.

When the compiler runs across a sequence like

{$IFDEF Test}
Writeln("x =",x:l);
{$ENDIF}

158 Turbo Pascal Owner's Handbook

then the code for the Writeln will be generated. This is equivalent to
defining symbols on the command line with the / Dxxx directive under
TPC.EXE.

• Memory sizes: Lets you configure the memory map for the resulting
code file. All three settings here can be specified in your source code
using the $M compiler directive.

Stack size: Allows you to specify the size (in bytes) of the stack segment.
The default size is 16K, the maximum size is 64K.

Low heap limit: Allows you to specify the minimum acceptable heap
size (in bytes). The default minimum size is OK. If you attempt to run
your program and there is not enough heap space to satisfy the
minimum requirement, then the program aborts with a runtime error.

High heap limit: Allows you to specify the maximum amount of
memory (in bytes) to allocate to the heap. The default is 655360, which
(on most systems) will allocate all available memory to the heap. This
value must be greater than or equal to the smallest heap size.

Environment
This menu's entries tell Turbo Pascal where to find the files it needs to
compile, link, and provide Help. Some miscellaneous options permit you to
tailor the Turbo Pascal working environment to suit your programming
needs.

F==F=il=e==E=dl=·t ==R=un===C=om=,p=i=le Edit0ptiSniilt:

Line 1 ColI Insert Indent!i#~~;m..id.1

~~¥.gp.~I®fiJ~g~ni!:.
Edit auto save Off
Config auto save Off

~ Retain saved screen On
Tab size 8
Zoom windows Off
Screen size

1-----------Output -----------1

FI-Help F2-Save F3-Load FS-Zoom FS-Edit F9-Make FlO-Main menu

Figure 10.6: The Options/Environment Menu

Chapter 70, The Turbo Pascal Menu Reference 159

• Backup source files: By default, Turbo Pascal automatically creates a
backup of your source file when you do a Save. It saves the backup copy
using the same file name and a .BAK extension. This activity can be
turned off and on with this option.

• Edit auto save: Helps prevent loss of your source file by automatically
saving your edit file (if it's been modified) when you use Run or as
shell.

• Config auto save: Helps prevent loss of options you have changed, such
as compiler settings or environment settings. Whenever you exit, the
current configuration file is updated if it has been changed.

• Retain saved screen: Tells the environment how long to save the last
output from a Run or as shell. When on, the saved screen will be kept
the entire session. When off, the saved screen will be kept until the
compiler needs to use the memory taken up by one saved screen.

• Tab size: Sets the hard tab size in the editor. The tab size can be set from
2 to 16. Note that Tab mode (Ctrl-O n must be on for you to be able to use
the Tab key to enter hard tabs.

• Zoom windows: Zoom on expands the Edit and Output windows to full
screen. You can still switch between them, but only one window at a time
will be visible. Zoom off returns to the split-screen environment
containing both the Edit and Output windows.

• Screen size: Lets you choose between a 25-line standard display, a 43-line
EGA display, and a 50-line VGA display. These options are only available
on hardware that supports them.

Directories

This menu lets you direct Turbo Pascal to the location of any directories
listed, as well as to the pick file.

160 Turbo Pascal Owner's Handbook

File Compile
F=============Edit ,--------,=======�

Edit Run

Line I ColI Insert Indent Compiler
Environment
Parameters
Un~p'ij~::

iJ$rt:l9"':'§I:m;;!p.rr..i\.····················
Executable directory:
Include directories:
Unit directories:
Object directories:
Pick file name:
Current pick file:

I-----------Output ------------1

FI-Help F2-Save F3-Load F5-Zoom FS-Edlt F9-Make FIO-Mam menu

Figure 10.7: The Options/Directories Menu

• Turbo directory: This is used by the Turbo Pascal system to find the
configuration file (.TP) and the help file (TURBO.HLP). For Turbo Pascal
to find your default configuration file (TURBO.TP) at startup you must
install this path using this command.

• Executable directory: .EXE files are stored here. If the entry is blank, the
files are stored in the current directory.

• Include directories: Specifies the directories that contain your standard
include files. Standard include files are those specified with the {$I
filename} compiler directive. Multiple directories are separated by
semicolons (;), like in the DOS path command.

• Unit directories: Specifies the directories that contain your Turbo Pascal
unit files. Multiple directories are separated by semicolons (;), like in the
DOS path command.

• Object directories: Specifies the directories that contain .OBJ files
(assembly language routines). When Turbo Pascal encounters a {$L
filename} directive, it looks first in the current directory, then in the
directories specified here. Multiple directories are separated by
semicolons (;), like in the DOS path command.

• Pick file name: Defines the name and location of a pick file. When this
field is defined, a pick file will always be written. If it is not defined, then
a pick file is written only if the Current pick file entry is non-blank. Since
any name can be used, you must save the pick file name in your
configuration file if it is not the default name of TURBO.PCK. For more

Chapter 70, The Turbo Pascal Menu Reference 161

information about this option, see the later section entitled "About the
Pick File and the Pick List."

• Current pick file: Shows the file name and location of the current pick
file, if any. This is where the current pick list information will be stored if
the pick file name changes or if you exit the integrated environment. This
item is always disabled and is for informational purposes. For more
information, see the later section entitled "About the Pick File and the
Pick List."

Parameters

This setting allows you to give your running programs command-line
parameters (or arguments) exactly as if you had typed them on the DOS
command line (redirection is not supported). It is only necessary to give the
arguments here; the program name is omitted.

Load Options

Loads a configuration file (the default file is TURBO.TP) previously saved
with the Save options command.

Save Options

Saves all your selected Compiler, Environment, and Directories options in a
configuration file (the default file is TURBO.TP). On start-up, Turbo Pascal
looks in the current directory for TURBO.TP; if the file's not found, then
Turbo Pascal looks in the Turbo directory for the same file. If the file's not
found there and you're running DOS 3.x, it will search the exec directory
(or the directory where TURBO.EXE was started from).

About the Pick List and Pick File

The pick list and pick file work together to save the state of your editing
sessions. The pick list remembers what you do while you are in the
integrated environment, and the pick file remembers after you have left the
integrated environment or changed contexts with in it.

162 Turbo Pascal Owner's Handbook

The Pick List

The pick list is a pop-up menu located in the File menu. It provides a list of
the eight most recent files that were loaded into the editor. Also, the first
file in the list is the current file in the editor.

When you select File/Pick, the selection bar is placed on the second item in
the menu; this would be the last file that was loaded into the editor. By
selecting this file or scrolling down and selecting one of the other files on
the menu, you will load that file into the editor. At this point, the editor will
position the cursor where you were last. In addition, any markers and
marked blocks will be as you left them.

The pick list is a handy way to move back and forth from one file to
another. The hotkey Alt-F3 takes you directly to the pick list, so pressing AIt
F3 Enter in succession swaps between two files. If the file you want is not on
the pick list, you can select the last entry on the pick list menu, which is
"--load file--" or press F3 (Load file) to load that file.

The Pick File

The pick file is used to store editor related information, including the
contents of the pick list. For each entry in the pick list, its file name, file
position, marked block, and markers are stored. In addition to information
about each file, the pick file contains data on the state of the editor when
you last exited. This includes the last search-and-replace strings and search
options.

To create a pick file, you must define a pick file name. This is done by
entering a file name in the Pick file name menu item found on the
Options/Directories menu. When this field is defined the pick list is
updated on disk when you exit the integrated environment.

Loading a Pick File

If a pick file name is defined, the integrated environment will try to load it.

The pick file name can be defined in several ways. TINST -the Turbo
Pascal integrated environment program-can be used to permanently
install a pick file name into the TURBO.EXE file. A configuration file can be
loaded that contains a pick file name. Or you can type in a pick file name. If
a pick file name is defined but the integrated environment cannot find it,
then an error message is issued.

Chapter 70, The Turbo Pascal Menu Reference 163

If no pick file name is defined, then the integrated environment searches for
the default pick file name, TURBO.PCK, first in the current directory, then
in the Turbo directory, and if you are running under DOS 3.x, it will then
search the executable directory.

Once a pick file is loaded, the integrated environment remembers the name
and location of that file so that it can update that file when you exit after
changing directories.

Saving Pick Files

If a pick file has not been loaded and the Pick file name option is blank,
then the integrated environment will not save a pick file to disk when you
exit.

Usually, pick files are only saved on exit from the integrated environment.
However, there are certain times when the current pick file is updated and
a new pick file is started (or restarted).

Whenever you change the pick file name, the integrated environment will
cause the current pick list to be written to the last pick file and then the
newly named pick file will be in effect.

Configuration Files and the Pick File

Since the pick file name is stored in the configuration file, it is possible to
change pick files by loading a new configuration file. If the pick file name
from the configuration file is different than the current pick file, then the
current pick file is updated and the new pick file is loaded.

Note that two configuration files can easily use the same pick file; thus
loading a configuration file with the same pick file name as the current one
does not affect the pick file or the current pick list.

164 Turbo Pascal Owner's Handbook

c H A p T E R

11

Using the Editor

Turbo Pascal's built-in editor is specifically designed for creating program
source text in the integrated environment. If you use the command-line
version of the compiler, however, you'll be using another editor and can
therefore skip this chapter.

The Turbo Pascal editor lets you enter up to 64K of text, 248 character lines,
and any characters in the ASCII character set, extended character set, and
control characters.

If you are familiar with WordStar, the version 3.0 Turbo Pascal editor, or the
SideKick editor, you already know how to use the Turbo Pascal editor. At
the end of this chapter, there's a summary of the few differences between
Turbo Pascal's editor commands and the ever-familiar WordStar
commands.

Quick In, Quick Out

To invoke the editor in the integrated environment, choose Edit from Turbo
Pascal's main menu by pressing E from anywhere on the main menu or by
using the arrow keys to move to the Edit command and then pressing Enter.
The Edit window becomes the "active" window; meaning the Edit
window's title is highlighted and has a double line at the top, and the
cursor is positioned in upper left-hand corner.

To enter text, you can type as though you were using a typewriter. To end a
line, press the Enter key.

Chapter 7 7, Using the Editor 165

To invoke the main menu from within the editor, press F10, Ctrl-K 0, or Ctrl-K
Q. The data in the Edit window remains on screen, but the menu bar now
becomes active. To get back to editing, press E again.

The Edit Window Status Line

The status line at the top of the Edit window gives you information about
the file you are editing: where in the file the cursor is located and which
editing modes are activated:

Line n

Col n

Insert

Line n Col n Insert Indent Tab C:FILENAME.TYP

Cursor is on file line number n.

Cursor is on file column number n.

Tells you that the editor is in Insert mode; characters
entered on the keyboard are inserted at the cursor
position, and text to the right of the cursor is moved
further right.

Use the Ins key or Ctr!-V to toggle the editor between
Insert mode and Overwrite moae.

In Overwrite mode, text entered at the keyboard
overwrites characters under the cursor instead of
inserting them before existing text.

Indent Indicates the autoindent feature is on. You can toggle
it off and on with the command Ctrl-O I.

Tab Indicates whether or not you can insert tabs; toggle it
on or off with Ctrl-O T.

C: FILENAME. EXT Indicates the drive (C:), name (FILENAME), and
extension (.EXT) of the file you are editing. If the file
name and extension is NONAME.P AS, then you have
not specified a file name yet. (NONAME.PAS is
Turbo Pascal's default file name.)

Editor Commands

The editor uses approximately 50 commands to move the cursor around,
page through text, find and replace strings, and so on. These commands
can be grouped into four main categories:

166 Turbo Pascal Owner's Handbook

• cursor movement commands (basic and extended)
• insert and delete commands
• block commands
• miscellaneous commands

Table 11.1 summarizes the commands. Each entry in the table consists of a
command definition, followed by the default keystrokes used to activate
the command. The remainder of the chapter details each editor command.

Table 11.1: Summary of Editor Commands

Basic Movement Commands

Character left
Character right
Word left
Word right
Lineup
Line down
Scroll up
Scroll down
Page up
Page down

Extended Movement Commands

Beginning of line
End of line
Top of window
Bottom of window
Top of file
Ena. of file
Beginning of block
Ena. of block
Last cursor position
Last error position

Insert and Delete Commands

Insert mode onloff
Insert line
Delete line
Delete to end of line
Delete character left of cursor
Delete character under cursor
Delete word right of cursor

Chapter 11, Using the Editor

Ctrl-S or Left arrow
Ctrl-D or Right arrow
Ctrl-A or Ctrl-Left arrow
Ctrl-F or Ctrl-Right arrow
Ctrl-E or Up arrow
Ctrl-X or Down arrow
Ctrl-W
Ctrl-Z
Ctrl-R or PgUp
Ctrl-C or PgDn

Ctrl-Q S or Home
Ctrl-Q D or End
Ctrl-Q E or Ctrl-Home
Ctrl-Q X or Ctrl-End
Ctrl-Q R or Ctrl-PgUp
Ctrl-Q C or Ctrl-PgDn
Ctrl-Q B
Ctrl-Q K
Ctrl-Q P
Ctrl-Q W

Ctrl-V or Ins
Ctrl-N
Ctrl-Y
Ctrl-Q Y
Ctrl-H or Backspace
Ctrl-G or Del
Ctrl-T

167

Table 11.1: Summary of Editor Commands, continued

Block Commands

Mark block-begin
Mark block-ena
Mark single word
Print block
Copy block
Delete block
Hide/ display block
Move block
Read block from disk
Write block to disk

Miscellaneous Commands

Abort operation
Autoindent on/ off
Control character prefix
Pair braces forward
Pair braces backward
Find
Find and replace
Find place marker
Invoke main menu
Load file
Exit editor, no save
Repeat last find
Restore line
Save and edit
Set place marker
Tab
Tab mode
Language help
Insert compiler directives

Basic Movement Commands

Ctrl-K B or F7
Ctrl-K K or FB
Ctrl-K T
Ctrl-K P
Ctrl-K C
Ctrl-K Y
Ctrl-K H
Ctrl-K V
Ctrl-K R
Ctrl-K W

Ctrl-U
Ctrl-O I or Ctrl-Q I
Ctrl-P
Ctrl-Q [
Ctrl-Q J
Ctrl-Q F
Ctrl-Q A
Ctrl-Q n
F10
F3
Ctrl-K 0 or Ctrl-K Q
Ctrl-L
Ctrl-Q L
Ctrl-K S or F2
Ctrl-K n
Ctrl-I or Tab
Ctrl-O T or Ctrl-Q T
Ctrl-F1
Ctrl-F7

The editor uses control-key commands to move the cursor up, down, right,
and left on the screen (you can also use the arrow keys). To control cursor
movement in the part of your file currently onscreen, use the sequences
shown in Table 11.2.

168 Turbo Pascal Owner's Handbook

When you press:

Ctrl-A or Ctrl-Left arrow
Ctrl-S
Ctrl-D
Ctr/-F or Ctrl-Right arrow
Ctrl-E or CtrJ-Up arrow
Ctrl-R
Ctrl-X or Ctr/-Down arrow
Ctrl-C

Table 11.2: Control Cursor Sequences

The cursor does this:

Moves to first letter in word to left of cursor
Moves to first position to left of cursor
Moves to first position to right of cursor
Moves to first letter in word to right of cursor
Moves up one line
Moves up one full screen
Moves down one line
Moves down one full screen

Ctr/-W
Ctrl-Z

Scrolls screen down one line; cursor stays in line
Scrolls screen up one line; cursor stays in line

Extended Movement Commands

The editor also provides six commands to move the cursor quickly to either
ends of lines, to the beginning and end of the file, and to the last cursor
position (see Table 11.3).

Table 11.3: Quick Movement Commands

When you press: The cursor does this:

Ctr/-Q S or Home Moves to column one of the current line
Ctrl-Q D or End Moves to the end of the current line
Ctr/-Q E or Ctrl-Home Moves to the top of the screen
Ctrl-Q X or Ctrl-End Moves to the bottom of the screen
Ctr/-Q R Moves to the first character in the file
Ctr/-Q C Moves to the last character in the file

The Ctr/-Q prefix with a B, K, or P character allows you to jump to certain
points in a document.

Beginning of block Ctr/-K B
Moves the cursor to the block-begin marker set with Ctrl-K B. The command
works even if the block is not displayed (see "Hide/display block" under
"Block Commands") or if the block-end marker is not set.

End of block Ctrl-K K
Moves the cursor to .the block-end marker set with Ctr/-K K. The command
works even if the block is not displayed (see "Hide/display block") or the
block-begin marker is not set.

Chapter 11, Using the Editor 169

Last cursor position Ctrl-Q P
Moves to the last position· of the cursor before the last command. This
command is particularly useful after a Find or Find/replace operation has
been executed and you'd like to return to the last position before its
execution.

Last error position Ctrl-Q W
After the compiler has placed you in the editor with an error showing on
the status line, you can later return to this position and redisplay the error
by pressing Ctrl-Q W.

Insert and Delete Commands

To write a program, you need to know more than just how to move the
cursor around. You also need to be able to insert and delete text. The
following commands insert and delete . characters, words, and lines.

Insert mode on/off Ctrl-Vor Ins
When entering text, you can choose between two basic entry modes: Insert
and Overwrite. You can switch between these modes with the Insert mode
toggle, Ctrl-Vor Ins. The current mode is displayed in the status line at the
top of the screen.

Insert mode is the Turbo Pascal editor's default; this lets you insert new
characters into old text. Text to the right of the cursor moves further right
as you enter new text.

Use Overwrite mode to replace old text with new; any characters entered
replace existing characters under the cursor.

Delete character left of cursor Ctrl-H or Backspace
Moves one character to the left and deletes the character positioned there.
Any characters to the right of the cursor move one position to the left. You
can use this command to remove line breaks.

Delete character under cursor Ctrl-G or Del
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left. You can use this command to
remove line breaks.

Delete word right of cursor Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a sequence
of characters delimited by one of the following characters:

space < > , ; . () [] 1\ I * + _ / $

This command works across line breaks, and can be used to remove them.

170 Turbo Pascal Owner's Handbook

Insert line etrl-N
Inserts a line break at the cursor position.

Delete line etrl-Y
Deletes the line containing the cursor and moves any lines below it one line
up. There's no way to restore a deleted line, so use this command with care.

Delete to end of line etrl-Q Y
Deletes all text from the cursor position to the end of the line.

Block Commands

The block commands also require a control-character command sequence.
A block of text is any amount of text, from a single character to hundreds of
lines, that has been surrounded with special block-marker characters. There
can be only one block in a document at a time.

You mark a block by placing a block-begin marker before the first character
and a block-end marker after the last character of the desired portion of
text. Once marked, you can copy, move, or delete the block, or write it to a
file.

Mark block begin etrl-K B or F7
Marks the beginning of a block. The marker itself is not visible, and the
block only becomes visible when the block-end marker is set. Marked text
(a block) is displayed in a different intensity.

Mark block end etrl-K K or FB
Marks the end of a block. The marker itself is invisible, and the block
becomes visible only when the block-begin marker is also set.

Mark single word etrl-K T
Marks a single word as a block, replacing the block-begin/block-end
sequence. If the cursor is placed within a word, then the word will be
marked. If it is not within a word, then the word to the left of the cursor
will be marked.

Print block etrl-K P
Prints the marked block.

Copy block etrl-K e
Copies a previously marked block to the current cursor position. The
original block is unchanged, and the markers are placed around the new
copy of the block. If no block is marked or the cursor is within the marked
block, nothing happens.

Chapter 7 7, Using the Editor 171

Delete block etr/-K Y
Deletes a previously marked block. There is no provision to restore a
deleted block, so be careful with this command.

Hide/display block etr/-K H
Causes the visual marking of a block to be alternately switched off and on.
The block manipulation commands (copy, move, delete, and write to a file)
work only when the block is displayed. Block-related cursor movements
(jump to beginning/ end of block) work whether the block is hidden or
displayed.

Move block etr/-K V
Moves a previously marked block from its original position to the cursor
position. The block disappears from its original position, and the markers
remain around the block at its new position. If no block is marked, nothing
happens.

Read block from disk etr/-K R
Reads a previously marked disk file into the current text at the cursor
position, exactly as if it were a block. The text read is then marked as a
block of different intensity.

When you issue this command, Turbo Pascal's editor prompts you for the
name of the file to read. You can use DOS wildcards to select a file to read; a
directory appears in a small window onscreen. The file specified can be any
legal file name. If you don't specify a file type (.PAS, .TXT), the editor
appends .P AS. To read a file without an extension, append a period to the
file name.

Write block to disk elr/-K W
Writes a previously marked block to a file. The block is left unchanged in
the current file, and the markers remain in place. If no block is marked,
nothing happens.

When you issue this command, Turbo Pascal's editor prompts you for the
name of the file to write to. To select a file to overwrite, use DOS wildcards;
a directory appears in a small window onscreen. If the file specified already
exists, the editor issues a warning and prompts for verification before
overwriting the existing file. You can give the file any legal name (the
default extension is .PAS). To write a file without an extension, append a
period to the file name.

Miscellaneous Editing Commands

This section describes commands that do not fall into any of the categories
already covered.

172 Turbo Pascal Owner's Handbook

Abort operation Ctrl-U
Lets you abort any command in progress whenever it pauses for input,
such as when Find/replace asks Replace YIN? or when you are entering a
search string or a file name (block read and write).

Autoindent on/off Ctrl-O I or Ctrl-Q I
Provides automatic indenting of successive lines. When autoindent is
active, the cursor does not return to column one when you press Enter;
instead, it returns to the starting column of the line you just terminated.

When you want to change the indentation, use the space bar and Left arrow
key to select the new column. When autoindent is on, the message Indent
shows up in the status line; when off, the message disappears. Autoindent
is on by default. (When Tab is on, it works the same way, but it will use tabs
if possible when indenting.)

Control character prefix Ctrl-P
Allows you to enter control characters into the file by prefixing the desired
control character with a Ctrl-P; that is, first press Ctrl-P, then press the desired
control character. Control characters will appear as low-intensity capital
letters on the screen (or inverse, depending on your screen setup).

Go to error position Ctrl-Q W
Displays the last error generated in the Edit window and places you in the
editor at the point of error.

Find Ctrl-Q F
Lets you search for a string of up to 30 characters. When you enter this
command, the status line is cleared, and the editor prompts you for a
search string. Enter the string you are looking for and then press Enter.

The search string can contain any characters, including control characters.
You enter control characters into the search string with the Ctrl-P prefix. For
example, enter a Ctrl-Tby holding down the Ctrl key as you press P, and then
press T. You can include a line break in a search string by specifying Ctrl-M J
carriage return/line feed). Note that Ctrl-A has a special meaning: It matches
any character and can be used as a wildcard in search strings.

You can edit search strings with the Character left, Character right, Word
left, and Word right commands. Word right recalls the previous search
string, which you can then edit. To abort (quit) the search operation, use the
Abort command (Ctrl-U).

When you specify the search string, Turbo Pascal's editor asks which
search options you'd like to use. The following options are available:

B Searches backward from the current cursor position toward the
beginning of the text.

Chapter 7 7, Using the Editor 173

G Globally searches the entire text, irrespective of the current cursor
position, stopping only at the last occurrence of the string.

L Locally searches the marked block for the next occurrence of the
string.

n Where n equals a number, finds the nth occurrence of the search
string, counted from the current cursor position.

U Ignores uppercase/lowercase distinctions.

W Searches for whole words only, skipping matching patterns
embedded in other words.

Examples:

W Searches for whole words only. The search string term will match
term, for example, but not terminal.

BU Searches backward and ignores uppercase/lowercase differences.
Block matches both blockhead and BLOCKADE, and so on.

125 Finds the 125th occurrence of the search string.

You can end the list of find options (if any) by pressing Enter; the search
starts. If the text contains a target matching the search string, the editor
positions the cursor on the target. The search operation can be repeated
with the Repeat last find command (Ctrl-L).

Find and replace Ctrl-Q A
This operation works identically to the Find command except that you can
replace the "found" string with any other string of up to 30 characters.
Note that Ctrl-A has a special meaning: It matches any character and can be
used as a wildcard in search strings.

After you specify the search string, the editor asks you to enter a
replacement string. Enter up to 30 characters; control-character entry and
editing is performed as stated in the Find command. If you press Enter, the
editor replaces the target with nothing, effectively deleting it.

Your options are the same as those in the Find command, with the addition
of the following:

N Replaces without asking; does not ask for confirmation of each
occurrence of the search string.

n Replaces the next n cases of the search string. When you're also
using the G option, the search starts at the top of the file and
ignores the n; otherwise it starts at the current cursor position.

L Only replaces those strings local to a marked block.

174 Turbo Pascal Owner's Handbook

Examples:

NIO Finds the next ten occurrences of the search string and replaces
each without asking.

GW Finds and replaces whole words in the entire text, ignoring
uppercase/lowercase. It prompts for a replacement string.

GNU Finds (throughout the file) uppercase and lowercase small,
antelope-like creatures and replaces them without asking.

Again, you can end the option list (if any) by pressing Enter; the Find/
replace operation starts. When the editor finds the item (and if the N option
is not specified), it then positions the cursor at one end of the item, and asks
Replace (YIN)? in the prompt line at the top of the screen. You can abort the
Find/replace operation at this point with the Abort command (Ctr/-lJ). You
can repeat the Find/replace operation with the Repeat last find command
(Ctrl-L).

Find place marker Ctr/-Q n
Finds up to four place markers (0-3) in text; n is a user-determined number
from 0-3. Move the cursor to any previously set marker by pressing Ctrl-Q
and the marker number, n.

Pair braces Ctr/-Q [or Ctrl-Q J
Moves the cursor to a matching {, [, (*, ", " <, >, *), }, or]. The cursor must
be positioned on the character you want to match; in the case of (* or *), on
the (or).

This command accounts for nested braces. If a match for the brace you are
on cannot be found, then the cursor does not move. For (* *), { }, [], and < >,
both Ctr/-Q [and Ctr/-QJ have the same effect. This is because the direction of
the matching symbol can be determined. With" and " the direction to
search is determined by the key you select. Press Ctrl-Q [to find a match to
the right; press Ctr/-Q J to find a match to the left.

Load file F3
Lets you edit an existing file or create a new file.

Exit editor, no save Ctrl-K 0 or Ctrl-K Q

Quits the editor and returns you to the main menu. You can save the edited
file on disk either explicitly with the main menu's Save option under the
File command or manually while in the editor (Ctr/-K S or F2).

Repeat last find Ctr/-L
Repeats the latest Find or Find/replace operation as if all information had
been reentered.

Chapter 7 7, Using the Editor 175

Restore line Ctrl-Q L
Lets you undo changes made to a line, as long as you have not left the line.
The line is restored to its original state regardless of any changes you have
made.

Save file Ctrl-K S or F2
Saves the file and remains in the editor.

Set place marker Ctrl-K n
You can mark up to four places in text; n is a user-determined number from
0-3. Press Ctrl-K, followed by a single digit n (0-3). After marking your
location, you can work elsewhere in the file and then easily return to the
marked location by using the Ctrl-Q N command.

Tab Ctrl-/or Tab
Tabs default to eight columns apart in the Turbo Pascal editor. You can
change the tab size in the Options/Environment menu.

Tab mode Ctrl-O Tor Ctrl-Q T
With Tab mode on, a tab is placed in the text using a fixed tab stop of 8.
Toggle it off, and it spaces to the beginning of the first letter of each word in
the previous line.

Language help Ctrl-F1
While in the editor and with the cursor positioned on a constant, variable,
procedure, function, or unit, pressing Ctrl-F1 will bring up help on the
specified item.

Insert compiler directives Ctrl-F7
If you haven't changed any of the default switch settings on the
Options/Compiler menu, pressing Ctrl-F7 will insert the default compiler
directives at the top of the file in the editor.

The Turbo Pascal Editor versus WordStar

A few of the Turbo Pascal editor's commands are slightly different from
WordStar. The Turbo Pascal editor contains only a subset of WordStar's
commands, several features not found in WordStar have been added to
enhance program source-code editing. These differences are discussed here,
in alphabetical order.

Autoindent
The Turbo Pascal editor's Ctrl-O I command toggles the autoindent feature
on and off.

176 Turbo Pascal Owner's Handbook

Cursor movement
Turbo Pascal's cursor movement controls-Ctr/-S, Ctr/-O, Ctr/-E, and Ctr/
X-move freely around on the screen without jumping to column one on
empty lines. This does not mean that the screen is full of blanks, on the
contrary, all trailing blanks are automatically removed. This way of moving
the cursor is especially useful for program editing, for example, when
matching indented statements.

Delete to left
The WordStar sequence Ctr/-Q De/ (delete from cursor position to beginning
of line) is not supported.

Mark word as block
Turbo Pascal allows you to mark a single word as a block using Ctr/-K T. This
is more convenient than WordStar's two-step process of separately marking
the beginning and the end of the word.

Movement across line breaks
Ctr/-S and Ctr/-O do not work across line breaks. To move from one line to
another you must use Ctr/-E, Ctr/-X, Ctr/-A, or CtrJ-F.

Quit edit
Turbo Pascal's Ctr/-K Q does not resemble WordStar's Ctr/-K Q (quit edit)
command. In Turbo Pascal, the changed text is not abandoned-it is left in
memory, ready to be compiled and saved.

Undo
Turbo Pascal's Ctr/-Q L command restores a line to its pre-edit contents as
long as the cursor has not left the line.

Updating disk file
Since editing in Turbo Pascal is done entirely in memory, the Ctr/-K 0
command does not change the file on disk as it does in WordStar. You must
explicitly update the disk file with the Save option within the File menu or
by using Ctr/-K S or F2 within the editor.

Chapter 7 7, Using the Editor 177

178 Turbo Pascal Owner's Handbook

c H A p T E R

12

Command-Line Reference

For you die-hard hackers using .custom editors and extended batch
files-good news: Turbo Pascal 4.0 comes with a command-line version of
the compiler so you can use the Turbo Pascal compiler without entering the
integrated environment (TURBO.EXE). This version of the compiler
identical to the one in TURBO.EXE-is called TPC.EXE and is found on
your distribution disk.

Using the Compiler,

Using TPC.EXE is easy; at the prompt, type

tpc [options] filename [options]

If filename does not have an extension, then TPC will assume .PAS. If you
don't want the file you're compiling to have an extension, then append a
period (.) to the end of filename. If you omit both options and filename, then
TPC outputs a summary of its syntax and command-line options.

You can specify a number of options for TPC. An opt~on consists of a slash
(/) followed by one or two characters, either a letter or a dollar sign,
followed by a letter. In some cases, the option is then followed by
additional information, such as a path or a file name. Options can be given
in any order and can come before and/or after the file name.

When you type the command, TPC compiles the file, links in the necessary
runtime routines, and produces a file named filename.EXE. TPC has the
same "smart" linker as TURBO, removing "dead" code and only linking in
those routines actually needed. (If you compile a unit, it doesn't link, it
produces a .TPU file.)

Chapter 72, Command-Line Reference 179

Compiler Options

The integrated environment (TURBO) allows you to set various options
using the menus. The command-line compiler (TPC) gives you access to
most of those same options using the slash/command method described
earlier. Alternately, you can precede options with a dash (-) instead of a
slash U). However, options that start with a dash must be separated from
each other by blanks; those starting with a slash don't need to be separated
but it's legal to do so. So, for example, the following two command lines
are equivalent and legal:

tpc -ic:\tp\include -xnames.dta sortname -$r- -$f+
tpc /ic:\tp\include/xnames.dta sortname /$r-/$f+

The first uses dashes, and so at least one blank separates options from each
other; the second uses slashes, so no separation is needed.

Table 12.1 lists all the command-line options and gives their integrated
environment equivalents. In some cases, a single command-line option
corresponds to two or three menu commands.

Command line

/$B+
/$B
/$D+
/$D
/$F+
/$F
/$1+
/$1-
/$L+
/$L-
/$Msss,min,max
/$N+
/$N-
/$R+
/$R-
/$S+
/$S-
/$T+

/$T-

/$V+
/$V-

180

Table 12.1: Command-Line Options

Menu selection

Options / Compiler /Boolean evaluation ... Complete
Options/Compiler/Boolean evaluation ... Short Circuit
Options / Compiler /Debug information ... On
Options/ Compiler /Debug information ... Off
Options/Compiler/Force far calls ... On
Options / Compiler / Force far calls ... Off
Options / Compiler /1/0 checking ... On
Options / Compiler /1/0 checking ... Off
Options / Compiler /Link buffer ... Memory
Options / Compiler / Link buffer ... Disk
Options/Compiler/Memory sizes
Options / Compiler /Numeric processing ... Hardware
Options / Compiler / Numeric processing ... Software
Options / Compiler /Range checking ... On
Options / Compiler /Range checking ... Off
Options/Compiler/Stack checking ... On
Options / Compiler / Stack checking ... Off
Options/Compiler/Turbo pascal map file
generation .. On
Options/Compiler/Turbo pascal map file
generation .. Off
Options / Compiler /Var-string checking ... On
Options / Compiler /Var-string checking ... Off

Turbo Pascal Owner's Handbook

Table 12.1: Command-Line Options, continued

Command line

/B
/Epath
/Fseg:ofs
/Ipath
/M
/Opath
/Rparms

/Tpath
/Upath
/Xparms

/Ddefines
/Q

Menu selection

Compile/Build
Options /Directories /Executable directory
Compile/Find error
Options /Directories /Include directories
Compile/Make
Options /Directories / Object directories
Compile/Destination ... Memory
Run
Options /Parameters
Run
Options/Directories/Turbo directory
Options /Directories /Unit directories
Compile /Destination ... Disk
Options /Parameters
Run
Options / Compiler / Conditional defines
(none)

The Compiler Directive (/$) Command

Turbo Pascal supports several compiler directives, some of which have
been discussed in previous chapters, and all of which are described in
Appendix C. These directives are usually embedded in the source code,
taking one of the following forms:

{$directive+}
{$directive-}
{$directive info}

where directive is a single letter. These directives can also be specified on the
command line, using the /$ or -$ option. Hence,

tpc mystuff /$r-

would compile MYSTUFF.P AS with range-checking turned off, while

tpc mystuff /$r+

would compile it with range-checking turned on. You can, of course, repeat
this option in order to specify multiple compiler directives:

tpc mystuff /$r-/$i-/$v-/$f+

Remember, though, that if you use the dash instead of the slash, you must
separate directives with at least one blank:

Chapter 72, Command-Line Reference 181

tpc mystuff -$r- -$i- -$v- -$f+

Alternately, TPC will allow you to put a list of directives (except for $M),
separated by commas:

tpc mystuff /$r-,i-,v-,f+

Note that no dollar signs ($) are needed after the first one.

The one exception to this format is the memory allocation options ($M). It
takes the format

/$mstack,heapmin,heapmax

where stack is the stack size, heapmin is the minimum heap size, and
heapmax is the maximum heap size. All three values are in bytes, and each
is a decimal number unless it is preceded by a dollar sign ($), in which case
it is assumed to be hexadecimal. So, for example, the following command
lines are equivalent:

tpc mystuff /$m16384,O,655360
tpc mystuff /m4000,$O,$AOOOO

Note that because of this format, you cannot use the $M option in a list of
directives separated by commas.

Compiler Mode Options

A few options affect how the compiler itself functions. These are 1M
(Make), IB (Build), IQ (Quiet), and IF (Find error). As with the other
options, you can use the dash format but must remember to separate the
options with at least one blank.

The Make (1M) Option

Just like TURBO, TPC has a built-in MAKE utility to aid in project
maintenance. The 1M option instructs TPC to check the dependencies of
the program you're compiling. If it makes use of any units, then TPC
searches for the .P AS file for each unit. If the unit is found, TPC checks the
time and date of its last modification against the time and date of the .TPU
file created. If the .P AS file has been more recently modified, then TPC
recompiles the unit. Units in TURBO.TPL are excluded from this process.

While recompiling the unit, TPC checks for any dependencies that it might
have on other units, and deals with those units in the same manner. The
result is that all units used by your program are brought up to date before
your program is compiled.

182 Turbo Pascal Owner's Handbook

If you were applying this option to the previous example, the command
would be

tpc mystuff 1m

This option is the same as the Compile/Make command within the
integrated environment (TURBO.EXE).

The Build All (IB) Option

What if you're unsure about what has been updated or what hasn't?
Instead of relying upon the / M (Make) option to determine what needs to
be updated, you can tell TPC to update all files (units) upon which your
program depends. To do that, use the /B option. Note that you can't use
/M and /B at the same time (and, in fact, it wouldn't make any sense).

If you were using this option in the previous example, the command would
be

tpc mystuff Ib

This option is the same as the Compile/Build command within the
integrated environment (TURBO.EXE).

The Quiet Mode (IQ) Option

A quiet mode option has been added to the command-line compiler. With
the default switches, TPC will display the file name and line number of the
program module currently being compiled. It also displays the total time
required at the end of the compilation. In quiet option,

TPC mystuff IQ

will suppress the printing of file names and line numbers during the
compilation. Normally, TPC reports elapsed compilation time based on the
IBM PC's internal timer. On generic MS-DOS machines using the /Q
option, the current file name and line number is only updated when files
are opened and closed, and the compiler does not calculate the elapsed
time.

The Find Error (IF) Option

This command is equivalent to the Compile/Find error within TURBO.
When you encounter a runtime error, you're given both the error code and
the offset where it occurred. This option tells TPC to find where that error
occurred, provided you've created a .TPM file with Debug info (via the $T
and $D compiler directives).

Chapter 72, Command-Line Reference 183

Suppose you have a file called TEST.PAS that contains the following
program:

program Oops;
var

i : integer;
begin

i := 0;
i := i div i;

end.
{ Force a divide by zero error }

Go ahead and compile this program using the command-line compiler, and
at the same time have the compiler generate a Turbo Pascal Map file
(.TPM):

tpc test /$t+

If you do a OIR TEST.*, DOS lists three files:

TEST.PAS - your source code
TEST.EXE - executable file
TEST.TPM - Turbo Pascal Map for TEST.EXE

Now, run TEST and get a runtime error:

C:\ > test
Runtime error 200 at 0000:0010

Notice that you're given an error code (200) and the segment and offset
(0000:0010 in hex) of the instruction pointer OP) where the error occurred.
How do you figure out which line in your source code caused the error?
Since you already have a .TPM file, simply invoke the compiler, use the
find runtime error option, and specify the segment and offset as reported in
the error message:

C:\ >tpc test /fOOOO:0010
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
TEST.PAS(6): Target address found.

i := i DIV i;

Note that test refers to the .TPM file name. The compiler gives you the file
name and line number, and points to the offending line in your source
code.

If a .TPM file had not been present, here's what the screen would look like:

C:\ >tpc test /fOOOO:0010
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
Error 133: Old or missing map file (TEST.TPM).

When a program is executed from disk and a runtime error occurs, a .TPM
file must be present in order to find the location of the error in the source

184 Turbo Pascal Owner's Handbook

code. In that case, you would have to first re-compile TEST.P AS with the
I$T+ option. Then you'd invoke TPC again and specify
If<segment>:<offset>, as done earlier.

The I$T directive determines whether a .TPM file is created. The I$D
directive controls whether line number information is put into that .TPM
file. It is possible to generate a .TPM file that contains only symbols and no
line numbers by typing

C:\ >tpc test /$tt /$d-

Then, when the now-familiar runtime error occurs, you'll have problems
when trying to find its location using the If option:

C:\ >tpc test /fOOOO:0010
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
Error 125: Module has no debug information (OOPS).

Since no line numbers were placed in the file (you specified I$D-), the
compiler can only provide the module name where the runtime error
occurred (inside program OOPS).

By the way, you can also compile this program using the command- line
compiler, and run it at the same time. Then, just like when we're running a
program from inside the integrated environment, you don't need a .TPM
file to find the runtime error:

1 C:\ >tpc test /r
2 Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International

TEST.PAS(7)
4 7 lines, 0.1 seconds, 32 bytes code, 587 bytes data.
5 Runtime error 200 at 0000:0010.
6 TEST.PAS(6): Division by zero.
7 i := i DIV ii
8

On line 1, you compile TEST.PAS and run it in memory (Ir). Program
execution begins on line 5-there's that darn runtime error again. Since you
compiled to memory and ran, all the symbol and line number information
is still available to the compiler. So, when a runtime error occurs, the
compiler has all the information it needs to locate the error in the source
code.

Directory Options

TPC supports several options that are equivalent to commands in the
Options I Directories menu in the integrated environment. These options

Chapter 72, Command-Line Reference 185

allow you to specify the· five directories used by TPC: executable, include,
object, Turbo, and unit.

The first option tells TPC where to put the executable (.EXE) file it creates;
the other four tell it where to search for certain types of files.

The Executable Directory (IE) Option

This option lets you tell TPC where to put the .EXE and . TPM files it
creates. It takes a path name as its argument:

tpc mystuff /ec:\tp\exec

If no such option is given, then TPC creates the .EXE and .TPM files in the
current directory. This option is the same as the 0/0 /Executable
directories command within TURBO.

The Include Directories (II) Option

In addition to units; Turbo Pascal supports include files, specified using the
{$I filename} compiler directive. You can, in turn, specify a given directory
(or directories) to be searched for any include files. For example, if your
program has some include directives, and the files are located in
C: \ TPC \ INCLUDE, then you could use the following option:

tpc mystuff /ic:\tp\include

TPC will search for those include files in C: \ TPC\INCLUDE after searching
the current directory. You can specify more than one path name by
separating them with semicolons (;). The directories· will then be searched
in the order given. This option is identical to the 0 /D /Include directories
command in TURBO. If multiple /1 directives are given, the directories are
concatenated together. Thus

tpc mystuff /ic:\tp\include;d:\move

is the same as

tpc mystuff /ic:\tp\include/id:\move

The Object Directories (10) Option

Turbo Pascal allows you to link in external assembly language routines, as
explained in Chapters 5 and 26. The source code directive {$L} allows you
to specify the .OBI file name to link in. The /0 compiler option tells TPC
where to look for those files, much like the /1 option.

186 Turbo Pascal Owner's Handbook

For example, if your program used some assembly language routines that
had already been assembled and whose .OBI files were stored in
C: \ TPC\ASM, then you could say

tpc rnystuff /oc:\tp\asrn

If TPC didn't find any files requested by MYSTUFF.PAS in the current
directory, it would look for them in that subdirectory. Like the $1 option,
you can specify multiple subdirectories by separating the path names with
semicolons (;). This is identical to the OlD I Object directories command
within TURBO.

If multiple 10 directives are given, the directories are concatenated
together. Thus

tpc rnystuff /oc:\tp\include;d:\rnove

is the same as

tpc rnystuff /oc:\tp\include/id:\rnove

The Turbo Directory (IT) Option

TPC needs to find two files when it is executed: TPC.CFG, the configuration
file; and TURBO.TPL, the resident library file. TPC automatically searches
the current directory; if you're running under version 3.x (or later) of MS
DOS, then it also searches the directory containing TPC.EXE. The IT option
lets you specify one other directory in which to search. For example, you
could say

tpc rnystuff /tc:\tp\bin

Note: If you want the IT option to affect the search for TPC.CFG, it must be
the very first command-line argument. This is identical to the OlD ITurbo
directory command within TURBO.

The Unit Directories (IU) Option

When you compile a program that uses units, TPC first checks if the units
are in TURBO.TPL (which is loaded along with TPC). If they aren't, then
TPC searches for unitname.TPU in the current directory. With the I U
option, you tell TPC what other locations to search for units. As with the
previous options, you can specify more than one path name as long as you
separate them with semicolons. For example, if you had units in two
different directories, you might type something like this:

tpc rnystuff /uc:\tp\unitsl;c:\tp\units2

Chapter 72, Command-Line Reference 187

This tells TPC to look in C: \ TP\ UNITSl and C: \ TP\ UNITS2 for any units
it doesn't find in TURBO.TPL and the current directory. This is identical to
the 0 /D /Unit directories command within TURBO.

If multiple / IU directives are given, the directories are concatenated
together. Thus

tpc rnystuff /uc:\tp\include;d:\rnove

is the same as

tpc rnystuff /uc:\tp\include/ud:\rnove

Program Execution Options

The last two options direct TPC to execute your program if it successfully
compiles. You can tell it to either execute it in memory or to create an .EXE
file and then execute it. In both cases, you can pass command-line
parameters to the program if desired.

The Run In Memory (IR) Option

Often when you're developing a program, you enter a modify-and-test
cycle during which you make .small, incremental changes and then view
the effects. Since you're often debugging at the same time, you may not
want to constantly produce .EXE files for all your test versions. TPC helps
to support that cycle by accepting an option that tells it to compile your
program to memory-keep it in RAM instead of creating an .EXE file on the
disk-and then run it. For example, if you enter the command

tpc rnystuff /r

then TPC will compile and execute MYSTUFF, but won't write any code
out to disk. If a runtime error occurs, TPC automatically finds the runtime
error, tells you the error number, address, and message, offending file name
and line number, and then prints the source line on the screen.

Should your program require a parameter line, you can give one after the
/ R option, making sure to enclose it in double quotes:

tpc rnystuff /r"filel file2"

Everything after the / R and up to (but not including) the. next option is
passed to the program as the parameter line.

If you need to pass multiple parameters to a program, enclose all
parameters in double quotes. You can embed slashes and dashes in your
parameter line:

188 Turbo Pascal Owner's Handbook

tpc mystuff 1m Ir"filel/x file2/x -2"

In this case, three parameters would be passed to program mystuff: filel/x,
file2/x, and -2.

The eXecute (IX) Option

TPC normally compiles your program, links in any units needed, creates an
.EXE file, and then halts. This option instructs TPC to execute the resulting
.EXE file:

tpc mystuff Ix

Execution, of course, does not take place if an error has occurred during
compilation and linking. As with the I R option, you can also specify a
parameter line:

tpc mystuff Ix"filel file2"

The TPC.CFG File

You can set up a list of options in a configuration file called TPC.CFG,
which can be used in addition to the options entered on the command line.
Each line in TPC.CFG corresponds to an extra command-line argument
inserted before the actual command-line arguments. Thus, by creating a
TPC.CFG file, you can change the default setting of any command-line
option.

TPC allows you to enter the same command-line option several times,
ignoring all but the last occurrence. This way, even though you've changed
some settings with a TPC.CFG file, you can still override them on the
command line.

When TPC starts, it looks for TPC.CFG in the current directory. If it doesn't
find it there and if you are running DOS 3.x, it looks in the start directory
(where TPC.EXE resides). To force TPC to look in a specific list of
directories (in addition to the current directory), specify a IT command
line option as the first option on the command line.

If TPC.CFG contains a line that does not start with a slash (j) or a dash (-),
that line defines a default file name to compile. In that case, starting TPC
with an empty command line (or with a command line consisting of
command-line options only) will compile the default file name, instead of
displaying a syntax summary.

Here's an example TPC.CFG file, defining some of the directories:

Chapter 12, Command-Line Reference 189

/tc:\tpc\bin\turbo
/uc:\tpc\units
/oc:\tpc\asm

Now, if you type

tpc mystuff

at the system prompt, TPC acts as if you had typed in the following:

tpc /tc:\tpc\bin/turbo /uc:\tpc\units /uc:\tpc\asm mystuff

compiles MYSTUFF with the indicated directories specified.

You could also set up your configuration file with certain sets of options
already given; for example, if you always wanted range-checking off and
wanted the program to be executed after compilation, you could modify
TPC.CFG to contain

/tc:\tpc\bin\turbo
/uc:\tpc\units
/oc:\tpc\asm
/$R-
/r

Then you could simply type

tpc mystuff

to generate the command line

tpc /tc:\tpc\bin/turbo /uc:\tpc\units /oc:\tpc\asm /$R- /r mystuff

190 Turbo Pascal Owner's Handbook

p A R T

2

191

192 Turbo Pascal Owner's Handbook

c H A p T E R

13

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program, and
they are categorized as special symbols, identifiers, labels, numbers, and
string constants.

A Pascal program is made up of tokens and separators, where a separator is
either a blank or a comment. Two adjacent tokens must be separated by one
or more separators if each token is a reserved word, an identifer, a label, or
a number.

Separators cannot be part of tokens except in string constants.

Special Symbols and Reserved Words

Turbo Pa§cal uses the following subsets of the ASCII character set:

• Letters-the English alphabet, A through Z and a through z.

• Digits-the Arabic numerals 0 through 9.

• Hex digits-the Arabic numerals 0 through 9, the letters A through F,
and the letters a through f.

• Blanks-the space character (ASCII 32) and all ASCII control characters
(ASCII 0 to 31), including the end-of-line or return character (ASCII 13).

letter

Chapter 73, Tokens and Constants 193

digit

hex digit

Special symbols and reserved words are characters that have one or more
fixed meanings. These single characters are special symbols:

+_*/=<>[].,():;A@{}$#

These character pairs are also special symbols:

<= >= := .. (* *) (. .)

Some special symbols are also operators. A left bracket (D is equivalent to
the character pair of left parentheses and a period «.). Similarly, a right
bracket (]) is equivalent to the character pair of a period and a right
parentheses (.».

Following are Turbo Pascal's reserved words:

absolute end inline procedure type
and external interface program unit
array file interrupt record until
begIn for label repeat uses
case forward mod set var
const function nil shl while,
div goto not shr with
do if of string xor
downto implementation or then
else in packed to

194 Turbo Pascal Owner's Handbook

Reserved words appear in lowercase boldface throughout this manual.
Turbo Pascal isn't case sensitive, however, so you can use either uppercase
or lowercase letters in your programs.

Identifiers

Identifiers denote constants, types, variables, procedures, functions, units,
programs, and fields in records. An identifier can be of any length, but only
the first 63 characters are significant.

You'll notice that Turbo Pascal syntax is illustrated by diagrams. To read a
syntax diagram, follow the arrows. Alternative paths are often possible;
paths that begin at the left and end with an arrow on the right are valid. A
path traverses boxes that hold the names of elements used to construct that
portion of the syntax.

The names in rectangular boxes stand for actual constructions. Those in
circular boxes-reserved words, operators, and punctuation-are the actual
terms to be used in the program.

An identifier must begin with a letter and cannot contain spaces. Letters,
digits, and underscore characters (ASCII $5F) are allowed after the first
character. Like reserved words, identifiers are not case sensitive.

When several instances of the same identifier exist, you may need to'
qualify the identifier by a unit identifier in order to select a specific instance
(units are described in Chapter 24). For example, to qualify the identifier
Ident by the unit identifier UnitName, you would write UnitName.Ident. The
combined identifier is called a qualified identifier.

Chapter 73, Tokens and Constants 195

identifier

underscore ~

program identifier,
unit identifier, --.j identifier ~
field identifier . .

qualified identifier

Here are some examples of identifiers:

Writeln
Exit
Rea12String
Systern.MemAvail
Dos.Exec
Crt.Window

In this manual, standard and user-defined identifiers are italicized when
they are referred to in text.

196 Turbo Pascal Owner's Handbook

Labels

A label is a digit sequence in the range 0 to 9999. Leading zeros are not
significant. Labels are used with goto statements.

label

As an extension to standard Pascal, Turbo Pascal also allows identifiers to
function as labels.

Numbers

Ordinary decimal notation is used for numbers that are constants of type
integer and real. A hexadecimal integer constant uses a dollar sign ($) as a
prefix. Engineering notation (E or e, followed by an exponent) is read as
"times ten to the power of" in real types. For example, 7E-2 means 7 x 10-2

;

12.25e+6 or 12.25e6 both mean 12.25 x 10+6• Syntax diagrams for writing
numbers follow.

hex digit sequence t "I hex digil

digit sequence I ~

unsigned integer digit sequence

~ hex digit sequence

sign

Chapter 73, Tokens and Constants 197

unsigned real

digit sequence digit sequence

scale factor i®fl----.r---r----.,-.... ~I digit sequence ~

L.cv--J ~
unsigned number -..,.......,~ unsigned integer

unsigned real

signed number I --=t ~I unsigned number I---
~

Numbers with decimals or exponents denote real-type constants. Other
decimal numbers denote integer-type constants; they must be within the
range -2147483648 to 2147483647.

Hexadecimal numbers denote integer-type constants; they must be within
the range $00000000 to $FFFFFFFF. The resulting value's sign is implied by
the hexademical notation.

Character Strings

A character string is a sequence of zero or more characters from the
extended ASCII character set (Appendix E), written on one line in the
program and enclosed by apostrophes. A character string with nothing
between the apostrophes is a null string. Two sequential apostrophes in a
character string denote a single character, an apostrophe. The length
attribute of a character string is the actual number of characters within the
apostrophes.

As an extension to standard Pascal, Turbo Pascal allows control characters
to be embedded in character strings. The # character followed by an
unsigned integer constant in the range 0 to 255 denotes a character of the
corresponding ASCII value. There must be no separators between the #

198 Turbo Pascal Owner's Handbook

character and the integer constant. Likewise, if several control characters
are part of a character string, there must be no separators between them.

character string ---.0 ~a---. Y string character ~

string character any char except 0 or CR t--r---.

A character string of length zero (the null string) is compatible only with
string types. A character string of length one is compatible with any char
and string type. A character string of length n, where n is greater than or
equal to 2, is compatible with any string type and with packed arrays of n
characters.

Here are some examples of character strings:

'TURBO'
#13#10

'You'll see'
'Line l'#13'Line2'

Constant Declarations

, .' ,
#7#7'Wake up!'#7#7

A constant declaration declares an identifier that marks a constant within
the block containing the declaration. A constant identifier cannot be
included in its own declaration.

Chapter 73, Tokens and Constants 199

constant declaration

constant --..--r-----r-~ constant identifier

i-------aoi signed number

L...-_____ ~ character string

A constant identifier following a sign must denote a value of an integer or
real type.

Comments

The following constructs are comments and are ignored by the compiler:

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the opening
{ or (* is a compiler directive. A mnemonic of the compiler command
follows the $ character. The compiler directives are summarized in
AppendixC.

Program Lines

Turbo Pascal program lines have a maximum length of 126 characters.

200 Turbo Pascal Owner's Handbook

c H A p T E R

14

Blocks, Locality, and Scope

A block is made up of declarations, which are written and combined in any
order, and statements. Each block is part of a procedure declaration, a
function declaration, or a program or unit. All identifiers and labels
declared in the declaration part are local to the block.

Syntax

The overall syntax of any block follows this format:

block -.J declaration part II----I .. ~I statement part ~

declaration part --'"

.~ -
:---i label declaration part· :

--.j constant declaration part I
I

-.J type declaration part I
I

-.j variable declaration part I
I

~ procedure and function declaration part ~

Chapter 74, Blocks, Locality, and Scope 201

The label declaration part is where labels that mark statements in the
corresponding statement part are declared. Each label must mark only one
statement.

label declaration part

The digit sequence used for a label must be in the range 0 to 9999.

The constant declaration part consists of constant declarations local to the
block.

constant declaration part l--y---,-.t constant declaration

typed constant declaration

The type declaration part includes all type declarations to the block.

type declaration part type declaration I--r--'

The variable declaration part is composed of variable declarations local to the
block.

variable declaration part variable declaration 1--..---+

The procedure and function declaration part comprises procedure and function
declarations local to the block.

procedure and function declaration part -........---r---I~ procedure declaration I--_-r-I.

function declaration

The statement part defines the statements or algorithmic actions to be
executed by the block.

202 Turbo Pascal Owner's Handbook

statement part --"~I compound statement r-----.

Rules of 'Scope

The presence of an identifier or label in a .declaration defines the identifier
or label. Each time the identifier or label occurs again, it must be within the
scope of this declaration. The scope of an identifier or label encompasses its
declaration to the end of the current block, including all blocks enclosed-by
the current block; some exceptions follow.

• Redeclaration in an enclosed -block: Suppose that Exterior is a block that
encloses another block, Interior. If -Exterior and Interior both have an
identifier with the same name, for example, j, then Interior can only
access the j it declared, and similarly Exterior can only access the j it
declared.

• Position of declaration within its block: Identifiers and labels cannot be
used until after they are declared. An identifier or label's declaration
must come before any occurrence of that identifier or label in the
program text, with one exception.

The base type of a pointer type can be an identifier that has not yet been
declared. However, the identifier must eventually be declared in the
same type declaration part that the pointer type occurs in.

• Redeclaration within a block: An identifier or label can only be declared
once in the outer level of a given block. The only exception to this is when
it is declared within a contained block or is in a record's field list.

A record field identifier is declared within a record type and is significant
only in combination with a reference to a variable of that record type. So,
you can redeclare a field identifier (with the same spelling) within the
same block but not at the same level within the same record type.
However, an identifier that has been declared can be redeclared as a field
identifier in the same block.

Scope of Interface and Standard Identifiers

Programs or units containing uses clauses have access to the identifiers
belonging to the interface parts of the units in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the remaining
units used and the entire program. The first unit in a uses clause represents

Chapter 74, Blocks, Locality, and Scope 203

the outermost scope, and the last unit represents the innermost scope. This
implies that if two or more units declare the same identifier, an unqualified
reference to the identifier will select the instance declared by the last unit in
the uses clause. However, by writing a qualified identifier, every instance of
the identifier can be selected.

The identifiers of Turbo Pascal's predefined constants, types, variables,
procedures, and functions act as if they were declared in a block enclosing
all used units and the entire program. In fact, these standard objects are
defined in a unit called System, which is used by any program or unit
before the units named in the uses clause. This suggests that any unit or
program can redeclare the standard identifiers, but a specific reference can
still be made through a qualified identifier, for example, System.Integer or
System. Writeln.

204 Turbo Pascal Owner's Handbook

c H A p T E R

15

Types

When you declare a variable, you must state its type. A variable's type
circumscribes the set of values it can have and the operations that can be
performed on it. A type declaration specifies the identifier that denotes a
type.

type declaration

type

When an identifier occurs on the left side of a type declaration, it is
declared as a type identifier for the block in which the type declaration
occurs. A type identifier's scope does not include itself except for pointer
types.

Following are the seven types of identifiers:

• simple type
• structured type
• pointer type

Chapter 75, Types 205

• ordinal type
• integer type
• real type
• string type

Simple Types

Simple types define ordered sets of values.

simple type

real type ---.j real type identifier r---+-

A type real identifier is one of the standard identifiers: real, single, double,
extended, or compo Refer to the sections entitled "Numbers" and "String
Constants" in Chapter 13 to find out how to denote constant type integer
and real values.

Ordinal Types

Ordinal types are a subset of simple types. All simple types other than real
types are ordinal types, which are set off by four characteristics:

• All possible values of a given ordinal type are an ordered set, and each
possible value is associated with an ordinality, which is an integral value.
Except for type intege values, the first value of every ordinal type has
ordinality 0, the next has ordinality 1, and so on for each value in that
ordinal type. An type integer value's ordinality is the value itself. In any
ordinal type, each value other than the first has a predecessor, and each
value other than the last has a successor based on the ordering of the
type.

• The standard function Ord can be applied to any ordinal type value to
return the ordinality of the value.

• The standard function Pred can be applied to any ordinal-type value to
return the predecessor of the value. If applied to the first value in the
ordinal type, Pred produces an error.

206 Turbo Pascal Owner's Handbook

• The standard function Suee can be applied to any ordinal-type value to
return the successor of the value. If applied to the last value in the
ordinal type, Suee produces an error.

The syntax of an ordinal type follows.

ordinal type subrange type

enumerated type

ordinal type identifier

Turbo Pascal has seven predefined ordinal types: integer, shortint, longint,
byte, word, boolean, and char. In addition, there are two other classes of user
defined ordinal types: enumerated types and subrange types.

The Integer Type

There are five predefined integer types: shortint, integer, longint, byte, and
word. Each type denotes a specific subset of the whole numbers, according
to the following table:

Type

shortint
integer
longint
byte
word

Chapter 75, Types

Table 15.1: Predefined Integer Types

Range

-128 .. 127
-32768 .. 32767

-2147483648 .. 2147483647
0 .. 255
0 .. 65535

Format

Signed 8-bit
Signed 16-bit
Signed 32-bit
Unsigned 8-bit
Unsigned 16-bit

207

Arithmetic operations with type integer operands use 8-bit, 16-bit, or 32-bit
precision, according to the following rules:

• The type of an integer constant is the predefined integer type with the

imallest range that includes the value of the integer constant.

For a binary operator (an operator that takes two operands), both
perands are converted to their common type before the operation. The

common type is the predefined integer type with the smallest range that
includes all possible values of both types. For instance, the common type
of integer and byte is integer, and the common type of integer and word
is longint. The operation is performed using the precision of the common
type, and the result type is the common type.

• The expression on the right of an assignment statement is evaluated
independently from the size or type of the variable on the left.

• Any byte-signed operand is converted to an intermediate word-signed
operand that is compatible with both integer and word before any
arithmetic operation is performed.

A type integer value can be explicitly converted to another integer type
through typecasting. (Typecasting is described in Chapters 16 and 18.)

The Boolean Type

Type boolean values are denoted by the predefined constant identifiers
False and True. Because boolean is an enumerated type, these relationships
hold:

• False < True
• Ord(False) = 0

• Ord(True) = 1

• Succ(False) = True

• Pred(True) = False

The Char Type

This type's set of values are characters, ordered according to the extended
ASCII character set (Appendix E). The function call Ord(Ch), where Ch is a
char value, returns Ch's ordinality.

A string constant of length 1 can denote a constant char value. Any value of
type char can be generated with the standard function Chr.

208 Turbo Pascal Owner's Handbook

The Enumerated Type

Enumerated types define ordered sets of values by enumerating the
identifiers that denote these values. Their ordering follows the sequence in
which the identifiers are enumerated.

enumerated type ~ identifier list ~ ~

identifier list

When an identifier occurs within the identifier list of an enumerated type, it
is declared as a constant for the block in which the enumerated type is
declared. This constant's type is the enumerated type being declared.

An enumerated constant's ordinality is determined by its position in the
identifier list in which it is declared. The enumerated type in which it is
declared becomes the constant's type. The first enumerated constant in a
list has an ordinality of o.
An example of an enumerated type follows:

suit = (club,diamond,heart, spade)

Given these declarations, diamond is a constant of type suit.

When the Ord function is applied to an enumerated type's value, Ord
returns an integer that shows where the value falls with respect to the other
values of the enumerated type. Given the preceding declarations, Ord(c1ub)
returns 0, Ord(diamond) returns 1, and so on.

The Subrange Type

A sub range type is a range of values from an ordinal type called the host
type. The definition of a subrange type specifies the least and the largest
value in the subrange; its syntax follows:

subrange type -.J constant j--.()-.I constant ~

Both constants must be of the same ordinal type. Subrange types of the
form a .. b require that a is less than or equal to b.

Examples of subrange types:

Chapter 75, Types 209

o .. 99
-128 .. 127
club .. heart

A variable of a subrange type has all the properties of variables of the host
type, but its runtime value must be in the specified interval.

The Real Type

A real type has a set of values that is a subset of real numbers, which can be
represented in floating-point notation with a fixed number of digits. A
value's floating-point notation normally comprises three values-m, b, and
e-such that m x be = n, where b is always 2, and both m and e are integral
values within the real type's range. These m and e values further prescribe
the real type's range and precision.

There are five kinds of real types: real, single, double, extended, and camp. The
single, double, extended, .and comp types can only be operated on if you
have an 8087 numeric coprocessor (explained later).

The real types differ in the range and precision of values they hold (see
Table 15.2).

Table 15.2: Real Data Types

Type Range

real 2.9 X 10E-39 .. 1.7 X 10E38
single 1.5 X 10E-45 .. 3.4 X 10E38
double 5.0 X 10E-324 .. 1.7 X 10E308
extended 1.9 X 10E-4951 .. 1.1 X 10E4932
comp* -2E+63+ 1 . .2E+63-1
* comp only holds integer values.

Significant Digits Sizein.Bytes

11-12
7- 8

15-16
19-20
19-20

6
4
8

10
8

The comp type holds only integral values within the range _263+1 to 263_1,
which is approximately -9.2 x 1018 to 9.2 X 1018

•

Turbo Pascal supports two models of code generation for performing real
type operations: software floating point and hardware floating point. The
appropriate model is selected through the $N compiler directive.

Software Floating Point

In. the $N- state, which is selected by default, the code generated performs
all type real calculations in software by calling runtime library routines. For
reasons of speed and code size, only operations on variables of type real are

210 Turbo Pascal Owner's Handbook

allowed in this state. Any attempt to compile statements that operate on the
single, double, extended, and comp types generate an error.

Hardware Floating Point.

In the $N+ state, the code generated performs all type real calculations
using the 8087 numeric. coprocessor. This state permits the use of all five
real types, but it requires the presence of an 8087 coprocessor at runtime
and compile time.

For further details on hardware floating-point code generation, refer to
Chapter 25, "Using the 8087 with Turbo Pascal."

String Types

A type string value is a sequence of characters with a dynamic length
attribute (depending on the actual character count during program
execution) and a constant size attribute from 1 to 255. A string type
declared without a size attribute is given the default size attribute 255. The
length attribute's current value is returned by the standard function Length.

string type ---.(string) L:CD=+i . . ~~
[unsigned Integer .]

The ordering between any two string values is set by the ordering
relationship of the character values in corresponding positions. In two
strings of unequal length, each, character in the longer string without a
corresponding character in the shorter string takes on a higher or greater
than value; for example, 'Xs' is greater than 'X'. Null strings can only be
equal to other null strings, and they hold the least string values.

Characters in a string can be accessed as components of an array, as
described in "Arrays, Strings, and Indexes" in Chapter 16. Type string
operators are described in "String Operators" and "Relational Operators"
in Chapter 20. Type string standard procedures and functions are described
in "String Procedures and Functions" in Chapter 25.

Chapter 75, Types 211

Structured Types

A structured type, characterized by its structuring method and by its
component type(s), holds more than one value. If a component type is
structured, the resulting structured type has more than one level of
structuring. A structured type can have unlimited levels of structuring.

structured type --r----~~---t~
'-------'

The word packed in a structured type's declaration tells the compiler to
compress data storage, even at the cost of diminished access to a
component of a variable of this type. The word packed has no effect in
Turbo Pascal; instead packing occurs automatically whenever possible.

Note: The maximum permitted size of any structured type in Turbo Pascal
is 65520 bytes.

Array Types

Arrays have a fixed number of components of one type-the component
type. In the following syntax diagram, the component type follows the
word of.

array type ---.c: array ~,--in_d_e_x_ty_p_e--,~
'-------;O}<ll41---J

index type 4 ordinal type ~

The index types, one for each dimension of the array, specify the number of
elements. Valid index types are all ordinal types except longint and
subranges of longint. The array can be indexed in each dimension by all
values of the corresponding index type; the number of elements is therefore
the number of values in each index type. The number of dimensions is
unlimited.

212 Turbo Pascal Owner's Handbook

The following is an example of an array type:

array[l .. lOO] of real

If an array type's component type is also an array, you can treat the result
as an array of arrays or as a single multidimensional array. For instance,

array [boolean] of array[l .. lO] of array[Size] of real

is interpreted the same way by the compiler as

array[boolean,l .. lO,Size] of real

You can also express

packed array[l .. lO] of packed array[l .. 8] of boolean

as

packed array[1 .. lO,1 .. 8] of boolean

You access an array's components by supplying the array's identifier with
one or more indexes in brackets (see "Arrays, Strings, and Indexes" in
Chapter 16).

An array type of the form

packed array[m .. n] of char

where m is less than n is called a packed string type (the word packed may
be omitted, because it has no effect in Turbo Pascal). A packed string type
has certain properties not shared by other array types (see "Identical and
Compatible Types" later in this chapter).

Record Types

A record type comprises a set number of components, or fields, that can be
of different types. The record type declaration specifies the type of each
field and the identifier that names the field.

Chapter 15, Types 213

field list t fixed part I~, __ ll~,f ~
~ variant part ~ VJ

fixed part

The fixed part of a record type sets out the list of fixed fields, giving an
identifier and a type for each. Each field contains information that is always
retrieved in the same way.

The following is an example of a record type:

record
year: integer;
month: 1. .12;
day: 1. .31;

end

The variant part shown in the syntax diagram of a record type declaration
distributes memory space for more than one list of fields, so the
information can be accessed in more ways than one. Each list of fields is a
variant. The variants overlay the same space in memory, and all fields of all
variants can be accessed at all times.

tag field type ---+I ordinal type identifier ~

variant c=~~ J~CD--
, field list I

You can see from the diagram that each variant is identified by at least one
constant. All constants must be distinct and of an ordinal type compatible
with the tag-field type. Variant and fixed fields are accessed the same way.

214 Turbo Pascal Owner's Handbook

An optional identifier, the tag-field identifier, can be placed in the variant
part. If a tag-field identifier is present, it becomes the identifier of an
additional fixed field-the tag field-of the record. The program can use
the tag field's value to show which variant is active at a given time.
Without a tag field, the program selects a variant by another criterion.

Some record types with variants follow.

record
firstName,lastName : string[40];
birthDate : Date;
case citizen : boolean of

end

True (birthPlace: string[40]);
False: (country string[20];

entryPort string[20];
entryDate Date;
exitDate Date);

record
x,y : real;
case kind : Figure of

end

rectangle: (height, width: real);
triangle: (sizel,side2,angle: real);
circle : (radius: real);

Set Types

A set type's range of values is the power set of a particular ordinal type (the
base type). Each possible value of a set type is a subset of the possible
values of the base type.

A variable of a set type can hold from none to all values of the set.

set type --.. ~~ ordinal type ~

The base type must not have more than 256 possible values, and the ordinal
values of the upper and lower bounds of the base type must be within the
range 0 to 255. For these reasons, the base type of a set cannot be shortint,
integer, longint, or word.

Set-type operators are described in the section entitled "Set Operators" in
Chapter 18. "Set Constructors" in the same chapter shows how to construct
set values.

Every set type can hold the value [], which is called the empty set.

Chapter 75, Types 215

File Types

A file type consists of a linear sequence of components of the component
type, which can be of any type except a file type or any structured type
with a file-type component. The number of components is not set by the
file-type declaration.

file type ~~ typeT

If the word of and the component type are omitted, the type denotes an
untyped file. Untyped files are low-level I/O channels primarily used for
direct access to any disk file regardless of its internal format.

The standard file type Text signifies a file containing characters organized
into lines. Text files use special input/output procedures, which are
discussed in Chapter 24.

Pointer Types

A pointer type defines a set of values that point to dynamic variables of a
specified type called the base type. A type pointer variable contains the
memory address of a dynamic variable.

pointer type -----~~®----+I base type ~

base type -----I type identifier ~

If the base type is an undeclared identifier, it must be declared in the same
type declaration part as the pointer type.

You can assign a value to a pointer variable with the New procedure, the @

operator, or the Ptr function. The New procedure allocates a new memory
area in the application heap for a dynamic variable and stores the address
of that area in the pointer variable. The @ operator directs the pointer
variable to the memory area containing any existing variable, including
variables that already have identifiers. The Ptr function points the pointer
variable to a specific memory address.

The reserved word nil denotes a pointer-valued constant that does not
point to anything.

216 Turbo Pascal Owner's Handbook

The predefined type pointer denotes an untyped pointer, that is, a pointer
that does not point to any specific type. Variables of type Pointer cannot be
dereferenced; writing the pointer symbol 1\ after such a variable is an error.
Like the value denoted by the word nil, values of type pointer are
compatible with all other pointer types.

See Chapter 16's section entitled "Pointers and Dynamic Variables" for the
syntax of referencing the dynamic variable pointed to by a pointer variable.

Identical and Compatible Types

Two types may be the same, and this sameness (identity) is mandatory in
some contexts. At other times, the two types need only be compatible or
merely assignment-compatible. They are identical when they are declared
with, or their definitions stem from, the same type identifier.

Type Jdentity

Type identity is required only between actual and formal variable
parameters in procedure and function calls.

Two types-say, Tl and T2-are identical if one of the following is True: Tl
and T2 are the same type identifier; Tl is declared to be equivalent to a type
identical to T2.

The second condition connotes that Tl does not have to be declared directly
to be equivalent to T2. The type declarations

Tl = integer;
T2 = T1;
T3 = integer;
T4 = T2;

result in Tl, T2, T3, T4, and integer as identical types. The type declarations

T5 = set of integer;
T6 = set of integer;

don't make T5 and T6 identical, since set of integer is not a type identifier.
Two variables declared in the same declaration, for example:

VI, V2: set of integer;

are of identical types-unless the declarations are separate; The
declarations

Chapter 15, Types 217

VI: set of integer;
V2: set.of integer;
V3: integer;
V4: integer;

mean V3 and V4 are of identical type, but not Vl and V2.

Type Compatibility

Compatibility between two types is sometimes required, such as in
expressions or in relational operations. Type compatibility is important,
however, as a precondition of assignment compatibility.

Type compatibility exists when at least. one of the following conditions is
True:

• Both types are the same.

• Both types are real types.
• Both types are integer types.
• One type is a subrange of the other.
• Both types are subranges of the same host type.

• Both types are set types with compatible base types.
• Both types are packed string types with an identical number of

components.

• One type is a string type and. the other is a string type, packed string
type, or char type.

• One type is pointer and the other is any pointer type.

Assignment Compatibility

Assignment compatibility is necessary when a value is assigned to some
thing, such as in an assignment statement or in passing value parameters.

A value of type T2 is assignment-compatible with a type Tl (that is, Tl := T2
is allowed) if any of the following..are True:

• T 1 and T 2 are identical types and neither is a file type or a structured type
. that contains a file-type component at any level of structuring.

• T 1 and T 2 are compatible ordinal types, and the values of type T 2 falls
within the range of possible values of T 1.

• T 1 and T 2 are real types, and the value of type T 2 falls within the range of
possible values of T 1.

218 Turbo Pascal Owner's Handbook

• T 1 is a real type, and T 2 is an integer type.

• T 1 and T 2 are string types.

• T 1 is a string type, and T 2 is a char type.

• T 1 is a string type, and T 2 is a packed string type.

• T1 and T2 are compatible, packed string types.

• T1 and T2 are compatible set types, and all the members of the value of
type T 2 fall within the range of possible values of T l'

• T 1 and T 2 are compatible pointer types.

A compile or runtime error occurs when assignment compatibility is
necessary and none of the items in the preceding list are True.

The Type Declaration Part

Programs, procedures, and functions that declare types have a type
declaration part. An example of this follows:

type
Range = integer;
Number = integer;
Color = (red/green/blue);
Testlndex = 1 .. 100;
TestValue = -99 .. 99;
TestList = array[Testlndex] of TestValue;
TestListPtr = ATestList;
Date = record

year: integer;
month: 1. .12;
day: 1. .31;

end;
MeasureData = record

when: Date;
count: Testlndex;
data: TestListPtr;

end;
MeasureList = array[I .. 50] of MeasureData;
Name = string[80];
Sex = (male/female);
Person = APersonData;
PersonData = record

name/firstName: Name;
age: integer;
married: boolean;
father/child/sibling: Person;

case s: Sex of
male: (bearded: boolean);
female: (pregnant: boolean);

end;
People = file of PersonData;
IntFile = file of integer

Chapter 75, Types 219

In the example, Range, Number, and integer are identical types. TestIndex is
compatible and assignment-compatible with, but not identical to, the types
Number, Range, and integer.

220 Turbo Pascal Owner's Handbook

c H A p T E R

16

Variables

Variable Declarations

A variable declaration embodies a list of identifiers that designate new
variables and their type.

variable declaration --.jL-_id_e_n_tif_ie_r _lis_t --,I~~ 0--+
l.j absolute clause ~

The type given for the variable(s) can be a type identifier previously
declared in a type declaration part in the same block, in an enclosing block,
or in a unit, or it can be a new type definition.

When an identifier is specified within the identifier list of a variable
declaration, that identifier is a variable identifier for the block in which the
declaration occurs. The variable can then be referred to throughout the
block, unless the identifier is redeclared in an enclosed block. Redeclaration
causes a new variable using the same identifier, without affecting the value
of the original variable.

An example of a variable declaration part follows:

var
X, Y, Z: real;
I, J, K: integer;
Digit: 0 .. 9;
C: Color;
Done,Error: boolean;
Operator: (plus, minus, times);
Huel,Hue2: set of Color;

Chapter 76, Variables 221

Today: Date;
Results: MeasureList;
P1,P2: Person;
Matrix: array[l .. 10,1 .. 10] of real;

Variables declared outside procedures and functions are called global
variables, and reside in the data segment. Variables declared within pro
cedures and functions are called local variables, and reside in the stack
segment.

The Data Segment

The maximum size of the data segment is 65520 bytes. When a program is
linked (this happens automatically at the end of the compilation of a
program), the global variables of all units used by the program, as well as
the program's own global variables, are placed in the data segment.

If you need more than 65520 bytes of global data, you should allocate the
larger structures as dynamic variables. For further details on this subject,
see "Pointers and Dynamic Variables" later in this chapter.

The Stack Segment

The size of the stack segment is set through a $M compiler directive-it can
be anywhere from 1024 to 65520 bytes. The default stack segment size is
16384 bytes.

Each time a procedure or function is activated (called), it allocates a set of
local variables on the stack. On exit, the local variables are disposed. At any
time during the execution of a program, the total size of the local variables
allocated by the active procedures and functions cannot exceed the size of
the stack segment.

The $5 compiler directive is used to include stack overflow checks in the
code. In the default {$5+} state, code is generated to check for stack
overflow at the beginning of each procedure and function. In the {$5-} state,
no such checks are performed. A stack overflow may very well cause a
system crash, so don't turn off stack checks unless you are absolutely sure
that an overflow will never occur.

222 Turbo Pascal Owner's Handbook

Absolute Variables

Variables can be declared to reside at specific memory addresses, and are
then called absolute variables. The declaration of such variables must include
an absolute clause following the type:

absolute clause unsigned integer

Note that the variable declaration's identifier list can only specify one
identifier when an absolute clause is present.

The first form of the absolute clause specifies the segment and offset at
which the variable is to reside:

CrtMode : byte absolute $0040:$0049;

The first constant specifies the segment base, and the second specifies the
offset within that segment. Both constants must be within the range $0000
to $FFFF (0 to 65535).

The second form of the absolute clause is used to declare a variable "on
top" of another variable, meaning it declares a variable that resides at the
same memory address as another variable.

var
Str: string[32];
StrLen: byte absolute Str;

This declaration specifies that the variable StrLen should start at the same
address as the variable Str, and because the first byte of a string variable
contains the dynamic length of the string, StrLen will contain the length of
Str.

Variable References

A variable reference signifies one of the following:

• a variable
• a component of a structured- or string-type variable

• a dynamic variable pointed to by a pointer-type variable

Chapter 76, Variables 223

The syntax for a variable reference is

variable reference

Note that the syntax for a variable reference allows a function call to a
pointer function. The resulting pointer is then dereferenced to denote a
dynamic variable.

Qualifiers

A variable reference is a variable identifier with zero or more qualifiers that
modify the meaning of the variable reference.

qualifier

An array identifier with no qualifier, for example, references the entire
array:

Results

An array identifier followed by an index denotes a specific component of
the array-in this case a structured variable:

Results [Currenttl]

With a component that is a record, the index can be followed by a field
designator; here the variable access signifies a specific field within a specific
array component.

Results [Currenttl] .data

The field designator in a pointer field can be followed by the pointer
symbol (a ") to differentiate between the pointer field and the dynamic
variable it points to.

Results [Currenttl] .data A

If the variable being pointed to is an array, indexes can be added to denote
components of this array.

224 Turbo Pascal Owner's Handbook

Results [Current+l] .dataA[J]

Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable
reference that refers to the array variable, followed by an index that
specifies the component.

A specific character within a string variable is denoted by a variable
reference that refers to the string variable, followed by an index that
specifies the character position.

index --.([)'-...... t,.....~.1 exp2)jI-....---I~~G)--.

The index expressions select components in each corresponding dimension
of the array. The number of expressions can't exceed the number of index
types in the array declaration. Furthermore, each expression's type must be
assignment-compatible with the corresponding index type.

When indexing a multidimensional array, multiple indexes or multiple
expressions within an index can be used interchangeably. For example:

Matrix[I] [J]

is the same as

Matrix[I,J]

You can index a string variable with a single index expression, whose value
must be in the range O .. n, where n is the declared size of the string. This
accesses one character of the string value, with the type char given to that
character value.

The first character of a string variable (at index 0) contains the dynamic
length of the string; that is, Length(S) is the same as Ord(S[OJ). If a value is
assigned to the length attribute, the compiler does not check whether this
value is less than the declared size of the string. It is possible to index a
string beyond its current dynamic length. The characters thus read are
random, and assignments beyond the current length will not affect the
actual value of the string variable.

Chapter 16, Variables 225

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that
refers to the record variable, followed by a field designator specifying the
field.

field designator ~ field identifier ~

Some examples of a field designator include:

Today.year
Results[l] . count
Results[l] .when.month

In a statement within a with statement, a field designator doesn't have to
be preceded by a variable reference to its containing record.

Pointers and Dynamic Variables

The value of a pointer variable is ~ither nil or the address of a value that
points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by
writing the pointer symbol (1\) after the pointer variable.

You create dynamic variables and their pointer values with the standard
procedures New and GetMem. You can use the @ operator and the standard
function Ptr to create pointer values that are treated as pointers to dynamic
variables.

nil does not point to any variable. The results are undefined if you access a
dynamic variable when the pointer's value is nil or undefined.

Some examples of references to dynamic variables:

Pl"
Pl".sibling"
Results[l] .data"

Variable Typecasts

A variable reference of one type can be changed into a variable reference of
another type through a variable typecast.

226 Turbo Pascal Owner's Handbook

variable typecast type identifier variable reference

When a variable typecast is applied to a variable reference, the variable
reference is treated as an instance of the type specified by the type
identifier. The size of the variable (the number of bytes occupied by the
variable) must be the same as the size of the type denoted by the type
identifier. A variable typecast can be followed by one or more qualifiers, as
allowed by the specified type.

Some examples of variable typecasts follow:

type
Point = record

x,y: integer;
end;

List = array[1 .. 2] of integer;
var

P: Point;
L: longint;
N: integer;

begin
P := Point(L);
N := Point(L) .x;
longint(P) := longint(P) + $00080008;
List (P) [N] := 32;

end;

The built-in functions Hi and Lo return the high- and low-order bytes of a
word or integer variable. To determine the high- and low-order words of a
long integer variable, you should use a value typecast:

type
WordRec = record

LOW, High : word;
end;

var
L : longint;

begin
L := $10000;
Writeln(WordRec(L) .Low);
Writeln (WordRec (L) .High);

end.

{ used for typecast }

65536 decimal
{ 0 }
{ 1 }

Similarly, here's an inexpensive (code-wise) alternative to the Seg and Ofs
functions:

type
PtrRec = record { used for typecast }

Ofs, Seg : word;

Chapter 76, Variables 227

end;

var
P : pointer;

begin
P := Ptr($1234, $4567)
Writeln(PtrRec(P) .Gfs)
Writeln (PtrRec (P) .Seg)

end.

{ $4567
{ $1234

This generates less code and is faster than using the standard functions Seg
and Ofs. Value typecasting is described in more detail in Chapter 18.

228 Turbo Pascal Owner's Handbook

c H A p T E R

17

Typed Constants

Typed constants can be compared to initialized variables-variables whose
values are defined on entry to their block. Unlike an untyped constant (see
the section entitled "Constant Declarations" in Chapter 13), the declaration
of a typed constant specifies both the type and the value of the constant.

typed c~nstant declaration -1 identifier ~ typed constant ~

typed constant

Typed constants can be used exactly like variables of the same type, and
can appear on the left-hand side in an assignment statement. Note that
typed constants are initialized only once-at the beginning of a program.
Thus, for each entry to a procedure or function, the locally declared typed
constants are not reinitialized.

Chapter 77, Typed Constants 229

Simple-Type Constants

Declaring a typed constant as a simple type simply specifies the value of
the constant:

const
Maximum
Factor
Breakchar

integer = 9999;
real = -0.1;
char = #3;

Because a typed constant is actually a variable with a constant value, it
cannot be interchanged with ordinary constants. For instance, it cannot be
used in the declaration of other constants or types.

const
Min integer = 0;
Max integer = 99;

type
Vector = array[Min .. Max] of integer;

The Vector declaration is invalid, because Min and Max are typed constants.

String-Type Constants

The declaration of a typed constant of a string type specifies the maximum
length of the string and its initial value:

const
Heading
NewLine
TrueStr
FalseStr

string[7] = 'Section';
string[2] = #13#10;
string[5] = 'Yes';
string[5] = 'No';

Structured-Type Constants

The declaration of a structured-type constant specifies the value of each of
the structure's components. Turbo Pascal supports the declaration of type
array, record, set, and pointer constants; type file constants, and constants
of array and record types that contain type file components are not
allowed.

230 Turbo Pascal Owner's Handbook

Array-Type Constants

The declaration of an array-type constant specifies, enclosed in parentheses
and separated by commas, the values of the components.

array constant ~ typed constant ~

'-----iO}oollIlllt----'

An example of an array-type constant follows:

type
Status = (Active,Passive,Waiting);
StatusMap = array[Status] of string[7];

const
StatStr: StatusMap = ('Active' ,'Passive' ,'Waiting');

This example defines the array constant StatStr, which can be used to con
vert values of type Status into their corresponding string representations.
The components of StatStr are

StatStr[Active] = 'Active'
StatStr[Passive] = 'Passive'
StatStr[Waiting] = 'Waiting'

The component type of an array constant can be any type except a file type.
Packed string-type constants (character arrays) can be specified both as
single characters and as strings. The definition

const
Digits: array[O .. 9] of char = ('0','1','2','3','4','5','6','7','8','9');

can be expressed more conveniently as

const
Digits: array[0 .. 9] of char = '0123456789';

Multidimensional array constants are defined by enclosing the constants of
each dimension in separate sets of parentheses, separated by commas. The
innermost constants correspond to the rightmost dimensions. The
declaration

type
Cube = array[O .. l,O .. l,O .. l] of integer;

const
Maze: Cube = (((0,1),(2,3)),((4,5),(6,7)));

provides an initialized array Maze with the following values:

Maze[O,O,O] = 0

Chapter 77, Typed Constants 231

Maze[0,0,1] = 1
Maze[0,1,0] = 2
Maze[0,1,1] = 3
Maze[1,0,0] = 4
Maze[1,0,1] = 5
Maze[1,1,0] = 6
Maze[1,1,1] = 7

Record-Type Constants

The declaration of a record-type constant specifies the identifier and value
of each field, enclosed in parentheses and separated by semicolons.

record constant field identifier

Some examples of record constants follow:

type
Point = record

x,y: real;
end;

Vector = array[0 .. 1] of Point;

typed constant

Month = (Jan,Feb,Mar,Apr,May,Jun,Jly,Aug,Sep,Oct,Nov,Dec);
Date = record

const

d: 1 .. 31; m: Month; y: 1900 .. 1999;
end;

Origin : Point = (x: 0.0; y: 0.0);
Line : Vector = ((x: -3.1; y: 1.5), (x: 5.8; y: 3.0));
SomeDay: Date = (d: 2; m: Dec; y: 1960);

The fields must be specified in the same order as they appear in the
definition of the record type. If a record contains fields of file types, the
constants of that record type cannot be declared. If a record contains a
variant, only fields of the selected variant can be specified. If the variant
contains a tag field, then its value must be specified.

Set-Type Constants

The declaration of a set-type constant specifies zero or more member
constants, enclosed in square brackets and separated by commas. A
member constant is a constant, or a range consisting of two constants,
separated by two periods.

232 Turbo Pascal Owner's Handbook

set constant

Some examples of set constants follow:

type
Digits = set of 0 .. 9i
Letters = set of 'A' .. 'Z' i

const
EvenDigits: Digits = [0,2,4,6,8]i
Vowels Letters = ['A' ,'E' ,'I' ,'0' ,'U' ,'Y']i
HexDigits : set of '0' .. 'z' = ['0' .. '9' ,'A' .. 'F' ,'a' ... f']i

Pointer-Type Constants

The declaration of a pointer-type constant can only specify the value nil.
Some examples include

type
NamePtr = ANameReCi
NameRec = record

const

Next: NamePtri
Name: string[31]i

endi

NameList: NamePtr = nili
NoName: NameRec = (Next: nili Name: ")i

Chapter 7 7, Typed Constants 233

234 Turbo Pascal Owner's Handbook

c H A P T E R

18

Expressions

Expressions are made up of operators and operands. Most Pascal operators
are binary, that is, they take two operands; the rest are unary and take only
one operand. Binary operators use the usual algebraic form, for example, a
+ b. A unary operator always precedes its operand, for example,-b.

In more complex expressions, rules of precedence clarify the order in which
operations are performed (see Table 18.1).

Table 18.1: Precedence of Operators

Operators

@,not
*, /, div, mod, and, shl, shr
+,-, or, xor
=,<>,<,>,<=,>=,in

Precedence Categories

first (high)
second
third
fourth (low)

unary operators
multiplying operators
adding operators
relationaIoperators

There are three basic rules of precedence:

1. First, an operand between two operators of different precedence is
bound to the operator with higher precedence.

2. Second, an operand between two equal operators is bound to the one on
its left.

3. Third, expressions within parenthes'es are evaluated prior to being
treated as a single operand.

Chapter 78, Expressions 235

Operations with equal precedence are normally performed from left to
right, although the compiler may at times rearrange the operands to
generate optimum code.

Expression Syntax

The precedence rules follow from the syntax of expressions, which are built
from factors, terms, and simple expressions.

A factor's syntax follows:

factor ----r--t-------r--.t variable reference t----r----.

I-'-r--.t procedure identifier

function identifier

value type cast t--------------'

A function call activates a function and denotes the value returned· by the
function (see "Function Calls" later in this chapter). A set constructor
denotes a value of a set type (see the section entitled "Set Constructors"). A
value typecast changes the type of a value (see "Value Typecasts"). An
unsigned constant has the following syntax:

236 Turbo Pascal Owner's Handbook

unsigned constant -~--+I unsigned number I------r--.

Some examples of factors include

x
@X
15
(X+Y+Z)
Sin(X/2)
[' 0 .. ' 9' ,'A' .. ' z' 1
not Done
char (Digit+48)

character string 1-------1

{ Variable reference
Pointer to a variable

{ Unsigned constant
{ SUbexpression
{ Function call
Set constructor

Negation of a boolean
{ Value typecast

Terms apply the multiplying operators to factors:

term

Here's some examples of terms:

X*y
Z/(l-Z)
Done or Error
(X <= Y) and (Y < Z)

Chapter 78, Expressions 237

Simple expressions apply adding operators and signs to terms:

simple expression

o

Here's some examples of simple expressions:

x+Y
-x
Huel + Hue2
I*J + 1

An expression applies the relational operators to simple expressions:

expression simple expression

Here's some examples of expressions:

x = 1.5
Done <> Error
(I < J) = (J < K)
C in Huel

238

simple expression

Turbo Pascal Owner's Handbook

Operators

The operators are classified as arithmetic operators, logical operators, string
operators, set operators, relational operators, and the @ operator.

Arithmetic Operators

The following tables show the types of operands and results for binary and
unary arithmetic operations.

Table 18.2: Binary Arithmetic Operations

Operator Operation Operand Types Result Type

+ addition integer type integer type

subtraction
real type real type
integer type integer type

* multiplication
real type real type
integer type integer type

division
real type real type
integer type real type

div integer division
real type real type
integer type integer type

mod remainder integer type integer type

Note: The + operator is also used as a string or set operator, and the +, -,
and * operators are also used as set operators.

Table 18.3: Unary Arithmetic Operations

Operator Operation Operand Types Result Type

+ sign identity

sign negation

integer type
real type
integer type
real type

integer type
real type
integer type
real type

Any operand whose type is a subrange of an ordinal type is treated as if it
were of the ordinal type.

If both operands of a +, -, *, div, or mod operator are of an integer type, the
result type is of the common type of the two operands. (See the section
"The Integer Type" in Chapter 15 for a definition of common types.)

Chapter 78, Expressions 239

If one or both operands of a +, -, or * operator are of a real type, the type of
the result is real in the $N- state or extended in the $N+ state.

If the operand of the sign identity or sign negation operator is of an integer
type, the result is of the same integer type. If the operator is of a real type,
the type of the result is real or extended.

The value of x/y is always of type real or extended regardless of the
operand types. An error occurs if y is zero.

The value of i div j is the mathematical quotient of if j, rounded in the
direction of zero to an integer-type value. An error occurs if j is zero.

The mod operator returns the remainder obtained by dividing its two
operands, that is,

i mod j = i - (i div j) * j

The sign of the result of mod is the same as the sign of i. An error occurs if j
is zero.

Logical Operators

The types of operands and results for logical operations are shown in Table
18.4.

Operator

not
and
or
xor
shl
shr

Table 18.4: Logical Operations

Operation Operand Types

Bitwise negation
Bitwise and
Bitwise or
Bitwise xor
Shift left
Shift right

integer type
integer type
integer type
integer type
integer type
integer type

Note: The not operator is a unary operator.

Result Type

integer type
integer type
integer type
integer type
integer type
integer type

If the operand of the not operator is of an integer type, the result is of the
same integer type.

If both operands of an and, or, or xor operator are of an integer type, the
result type is the common type of the two operands.

The operations i shl j and i shr j shift the value of i to the left or to the right
by j bits. The type of the result is the same as the type of i.

240 Turbo Pascal Owner's Handbook

Boolean Operators

The types of operands and results for boolean operations are shown in
Table 18.5.

Operator

not
and
or
xor

Table 18.5: Boolean Operations

Operation Operand Types Result Type

negation
logical and
logical or
logical xor

boolean
boolean
boolean
boolean

boolean
boolean
boolean
boolean

Note: The not operator is a unary operator.

Normal Boolean logic governs the results of these operations. For instance,
a and b is True only if both a and b are True.

Turbo Pascal supports two different models of code generation for the and
and or operators: complete evaluation and short-circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean expression,
built from the and and or operators, is guaranteed to be evaluated, even
when the result of the entire expression is already known. This model is
convenient when one or more operands of an expression are functions with
side effects that alter the meaning of the program.

Short-circuit evaluation guarantees strict left-to-right evaluation and that
evaluation stops as soon as the result of the entire expression becomes
evident. This model is convenient in most cases, since it guarantees
minimum excution time, and usually minimum code size. Short-circuit
evaluation also makes possible the evaluation of constructs that would not
otherwise be legal; for instance:

while (I<=Length(S)) and (S[I]<>' ') do Inc(I);
while (P<>nil) and (pA.Value<>S) do P:=PA.Next;

In both cases, the second test is not evaluated if the first test is False.

The evaluation model is controlled through the $B compiler directive. The
default state is {$B-} (unless changed using the Options/Compiler menu),
and in this state, short-circuit evaluation code is generated. In the {$B+}
state, complete evaluation code is generated.

Since standard Pascal does not specify which model should be used for
Boolean expression evaluation, programs depending on either model being

Chapter 78, Expressions 241

in effect are not truly portable. However, sacrificing portability is often
worth gaining the execution speed and simplicity provided by the short
circuit model.

String Operator

The types of operands and results for string operation are shown in Table
18.6.

Table 18.6: String Operation

Operator Operation Operand Types

+ concatenation string type,
char type, or
packecf.string type

Result Type

string type

Turbo Pascal allows the + operator to be used to concatenate two string
operands. The result of the operation s + t, where sand t are of a string
type, a char type, or a packed string type, is the concatenation of sand t.
The result is compatible with any string type (but not with char types and
packed string types). If the resulting string is longer than 255 characters, it
is truncated after character 255.

Set Operators.

The types of operands for set operations are shown in Table 18.7.

Operator

+

*

Table 18.7: Set Operations

Operation Operand Types

union
difference
intersection

compatible set types
compatible set types
compatible set types

The results of set operations conform to the rules of set logic:

• An ordinal value c is in a + b only if c is in a or b.

• An ordinal value c is in a - b only if c is in a and not in b.

• An ordinal value c is in a * b only if c is in both a and b.

242 Turbo Pascal Owner's Handbook

If the smallest ordinal value that is a member of the result of a set operation
is a and the largest is b, then the type of the result is set of a .. b.

Relational Operators

The types of operands and results for relational operations are shown in
Table 18.8.

Table 18.8: Relational Operations

Operator
Type Operation Operand Types Result Type

equal compatible simple, boolean
pointer, set, string,
or packed string types

<> not equal compatible simple, boolean
pointer, set, string,
or packed string types

< less than compatible simple, boolean
string, or packed
string types

> greater than compatible simple, boolean
string, or packed
string types

<= less or equal compatible simple, boolean
string, or packed
string types

>= greater or compatible simple, boolean
equal string, or packed

string types

<= subset of compatible set types boolean

>= superset of compatible set types boolean

in member of left operand: any boolean
ordinal type t;
right operand: set whose
base is compatible with t.

Chapter 78, Expressions 243

Comparing Simple Types

When the operands =, <>, <, >, >=, or <= are of simple types, they must be
compatible types; however, if one operand is of a real type, the other can be
of an integer type.

Comparing Strings

The relational operators =, <>, <, >, >=, and <= compare strings according
to the ordering of the extended ASCII character set. Any two string values
can be compared, because all string values are compatible.

A char-type value is compatible with a string-type value, and when the two
are compared, the char-type value is treated as a string-type value with
length 1. When a packed string-type value with n components is compared
with a string-type value, it is treated as a string-type value with length n.

Comparing Packed Strings

The relational operators =, <>, <, >, >=, and <= can also be used to compare
two packed string-type values if both have the same number of
components. If the number of components is n, then the operation
corresponds to comparing two strings, each of length n.

Comparing Pointers

The operators = and <> can be used on compatible pointer-type operands.
Two pointers are equal only if they point to the same object.

Note: When comparing pointers, Turbo Pascal simply compares the
segment and offset parts. Because of the segment mapping scheme of the
80x86 processors, two logically different pointers can in fact point to the
same physical memory location. For instance, $0040:$0049 and $0000:$0449
are two pointers to the same physical address. Pointers returned by the
standard procedures New and GetMem are always normalized (offset part
in the range $0000 to $OOOF), and will therefore always compare correctly.
When creating pointers with the Ptr standard function, special care must be
taken if such pointers are to be compared.

244 Turbo Pascal Owner's Handbook

Comparing Sets

If a and b are set operands, their comparisons produce these results:

• a = b is True only if a and b contain exactly the same members; otherwise,
a <> b.

• a <= b is True only if every member of a is also a member of b.

• a >= b is True only if every member of b is also a member of a.

Testing Set Membership

The in operator returns True when the value of the ordinal type operand is
a member of the set-type operand; otherwise, it returns False.

The @ Operator

A pointer to a variable can be created with the @ operator. Table 18.9 shows
the operand and result types.

Table 18.9: Pointer Operation

Operator Operation Operand Types

@ Pointer formation Variable reference
or procedure or
function identifier

Result Type

Pointer (same
as nil)

@ is a unary operator that takes a variable reference or a procedure or
function identifier as its operand, and returns a pointer to the operand. The
type of the value is the same as the type of nil, therefore it can be assigned
to any pointer variable.

@ with a Variable

The use of @ with an ordinary variable (not a parameter) is uncomplicated.
Given the declarations

type
TwoChar = array[O .. l] of char;

var
Int: integer;
TwoCharPtr: ATwoChar;

Chapter 78, Expressions 245

then the statement

TwoCharPtr := @Inti

causes TwoCharPtr to point to Int. TwoCharPtr" becomes are-interpretation
of the value of Int, as though it were an array [0 .. 1] of char.

@ with a Value Parameter

Applying @ to a formal value parameter results in a pointer to the stack
location containing the actual value. Suppose Foo is a formal value
parameter in a procedure and FooPtr is a pointer variable. If the procedure
executes the statement

FooPtr := @FoOi

then FooPtr" references Foo's value. However, FooPtr" does not reference
Foo itself, rather it references the value that was taken from Foo and stored
on the stack.

@ with a Variable Parameter

Applying @ to a formal variable parameter results in a pointer to the actual
parameter (the pointer is taken from the stack). Suppose One is a formal
variable parameter of a procedure, Two is a variable passed to the
procedure as One's actual parameter, and OnePtr is a pointer variable. If the
procedure executes the statement

OnePtr := @Onei

then OnePtr is a pointer to Two, and OnePtr" is a reference to Two itself.

@ with a Procedure or Function

You can apply @ to a procedure or a function to produce a pointer to its
entry point. Turbo Pascal does not give you a mechanism for using such a
pointer. The only use for a procedure pointer is to pass it to an assembly
language routine or to use it in an inline statement.

Function Calls

A function call activates the function specified by the function identifier.
Any identifier declared to denote a function is a function identifier.

246 Turbo Pascal Owner's Handbook

The function call must have a list of actual parameters if the corresponding
function declaration contains a list of formal parameters. Each parameter
takes the place of the corresponding formal parameter according to
parameter rules set forth in Chapter 22.

function call function identifier

actual parameter list

actual parameter list --cv-rL-__ ac_tu_al par_al-m_et_e_r _T<D-.......)

- 0"

actual parameter

Some examples of function calls follow:

Sum (A, 63)
Maximum(147,J)
Sin (XtY)
Eof(F)
Volume (Radius, Height)

Set Constructors

A set constructor denotes a set-type value, and is formed by writing
expressions within brackets ([D. Each expression denotes a value of the set.

set constructor --cD LJ P ~CD--
L member group ~

'-------10 4t----'

member group -----I expression I l:c;=:j . rJ
.. expression

Chapter 78, Expressions 247

The notation [] denotes the empty set, which is assignment-compatible
with every set type. Any member group x .. y denotes as set members all
values in the range x .. y. If x is greater than y, then x .. y does not denote any
members and [x .. y] denotes the empty set.

All expression values in member groups in a particular set constructor
must be of the same ordinal type.

Some examples of set constructors follow:

[red, C, green]
[1 , 5 , 1 0 .. K mod 12, 23]
['A' .. '2', 'a' .. 'z', Chr(Digit+48)]

Value Typecasts

The type of an expression can be changed to another type through a value
typecast.

value typecast 4 type identifier ~ expression ~

The expression type and the specified type must both be either ordinal
types or pointer types. For ordinal types, the resulting value is obtained by
converting the expression. The conversion may involve truncation or
extension of the original value if the size of the specified type is different
from that of the expression. In cases where the value is extended, the sign

. of the value is always preserved; that is, the value is sign-extended.

The syntax of a value typecast is almost identical to that of a variable type
cast (see Chapter 16, "Variable Typecasts"). However, value typecasts
operate on values not on variables, and can therefore not participate in
variable references; that is, a value typecast may not be followed by
qualifiers. In particular, value typecasts cannot appear on the left-hand side
of an assignment statement.

Some examples of value typecasts include

integer (' A')
char (48)
boo1ean(O)
Color(2)
Longint(@Buffer)
BytePtr(Ptr($40,$49))

248 Turbo Pascal Owner's Handbook

c H A p T E R

19

Statements

Statements describe algorithmic actions that can be executed. Labels can
prefix statements, and these labels can be referenced by goto statements.

statement

simple statement

structured statement

As you saw in Chapter 13, a label is either a digit sequence in the range 0 to
9999 or an identifier.

Ther~ are two main types of statements: simple statements and structured
statements.

Simple Statements

A simple statement is a statement that doesn't contain any other statements.

simple statement ----r--l~ assignment statement I----.,-----I~

gata statement

Chapter 79, Statements 249

Assignment Statements

Assignment statements either replace the current value of a variable with a
new value specified by an expression or specify an expression whose value
is to be returned by a function.

assignment statement variable reference

function identifier

The expression must be assignment-compatible with the type of the vari
able or the result type of the function (see Chapter 15, "Type
Compatibility").

Some examples of assignment statements follow:

X := YtZ;

Done := (1)=1) and (1<100);
Hue1 := [blue,Succ(C)];
I := Sqr(J) - I*K;

Procedure Statements

A procedure statement specifies the activation of the procedure denoted by
the . procedure identifier. If the corresponding procedure declaration con
tains a list of formal parameters, then the procedure statement must have a
matching list of actual parameters (parameters listed in definitions are
formal parameters; in the calling statement, they are actual parameters). The
actual parameters are passed to the formal parameters as part of the call.

procedure statement procedure identifier I---r----------.--....

actual parameter list

Some examples of procedure statements follow:

PrintHeading;
Transpose(A,N,M);
Find(Name,Address);

250 Turbo Pascal Owner's Handbook

Goto Statements

A goto statement transfers program execution to the statement prefixed by
the label referenced in the goto statement. The syntax diagram of a go to
statement follows:

goto statement

The following rules should be observed when using goto statements:

• The label referenced by a go to statement must be in the same block as the
goto statement. In other words, it is not possible to jump into or out of a
proced ure or function .

• Jumping into a structured statement from outside that structured
statement (that is, jumping to a "deeper" level of nesting) can have
undefined effects, although the compiler will not indicate an error.

Structured Statements

Structured statements are constructs composed of other statements that are
to be executed in sequence (compound and with statements), conditionally
(conditional statements), or repeatedly (repetitive statements).

structured statement ---r----1-.! compound statement

repetitive statement

with statement

Compound Statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. The component
statements are treated as one statement, crucial in contexts where the Pascal
syntax only allows one statement. begin and end bracket the statements,
which are separated by semicolons.

Chapter 79, Statements 251

Here's an example of a compound statement:

begin
Z := X;
X := Y;
Y := Z;

end;

Conditional Statements

A conditional statement selects for execution a single one (or none) of its
component statements.

conditional statement -----.---I~ if statement

case statement

If Statements

The syntax for an if statement reads like this:

if statement ~ expression I

The expression must yield a result of the standard type boolean. If the
expression produces the value True, then the statement following then is
executed.

If the expression produces False and the else part is present, the statement
following else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct

252 Turbo Pascal Owner's Handbook

if e1 then if e2 then sl else s2

is resolved by interpreting the construct as follows:

if e1 then
begin

if e2 then
sl

else
s2

end

In general, an else is associated with the closest if not already associated
with an else.

Two examples of if statements follow:

if X < 1. 5 then
Z := xtY

else
Z := 1.5;

if P1 <> nil then
P1 := P1A.father;

Case Statements

The case statement consists of an expression (the selector) and a list of
statements, each prefixed with one or more constants (called case constants)
or with the word else. The selector must be of an ordinal type, and the
ordinal values of the upper and lower bounds of that type must be within
the range -32768 to 32767. Thus, string types and the integer types longInt
and word are invalid selector types. All case constants must be unique and
of an ordinal type compatible with the selector type.

case statement ~ expression ~

I-;::::::==~~rl-::::~T-"'~~ Y else part P L.Q--t

Chapter 79, Statements 253

case

else part

The case statement executes the statement prefixed by a case constant equal
to the value of the selector or a case range containing the value of the
selector. If no such case constant of the case range exists and an else part is
present, the statement following else is executed. If there is no else part,
nothing is executed.

Examples of case statements follow:

case Operator of
plus: X:= X+Y;
minus: X:= X-Y;
times: X:= X*Y;

end;

case I of
0,2,4,6,8: Writeln('Even digit');
1,3,5,7,9: Writeln('Odd digit');
10 .. 100: Writeln('Between 10 and 100');

else
Writeln('Negative or greater than 100');

end;

Repetitive Statements

Repetitive statements specify certain statements to be executed repeatedly.

repetitive statement ---,r----.t repeat statement

while statement

for statement

If the number of repetitions is known beforehand, the for statement is the
appropriate construct. Otherwise, the while or repeat statement should be
used.

254 Turbo Pascal Owner's Handbook

Repeat Statements

A repeat statement contains an expression that controls the repeated
execution of a statement sequence within that repeat statement.

repeat statement 4 repea' ~I expression I-

The expression must produce a result of type boolean. The statements
between the symbols repeat and until are executed in sequence until, at the
end of a sequence, the expression yields True. The sequence is executed at
least once, because the expression is evaluated after the execution of each
sequence.

Examples of repeat statements follow:

repeat
K := I mod J;

I := J;

J := K;
until J = 0;

repeat
Write ('Enter value (0 .. 91: 'I;
Readln(II;

until (I >= 01 and (I <= 91;

While Statements

A while statement contains an expression that controls the repeated
execution of a statement (which can be a compound statement).

while statement ~ expression ~ statement ~

The expression controlling the repetition must be of type boolean. It is
evaluated before the contained statement is executed. The contained
statement is executed repeatedly as long as the expression is True. If the
expression is False at the beginning, the statement is not executed at all.

Examples of while statements include:

Chapter 79, Statements 255

while DatalI] <> X do I := I + 1;

while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X:=Sqr(X);

end;

while not Eof(InFile) do
begin

Readln(InFile,Line);
Process(Line);

end;

For Statements

The for statement causes a statement (which can be a compound statement)
to be repeatedly executed while a progression of values is assigned to a
control variable.

for statement control variable

®+I statement ~

control variable ---+/ variable identifier ~

initial value ---+/ expression ~

final value ---+/ expression ~

The control variable must be a variable identifier (without any qualifier)
that signifies a variable declared to be local to the block containing the for
statement. The control variable must be of an ordinal type. The initial and
final values must be of a type assignment-compatible with the ordinal type.

When a for statement is entered, the initial and final values are determined
once for the remainder of the execution of the for statement.

The statement contained by the for statement is executed once for every
value in the range initial value to final value. The control variable always

256 Turbo Pascal Owner's Handbook

starts off at initial value. When a for statement uses to, the value of the
control variable is incremented by one for each repetition. If initial value is
greater than final value, the contained statement is not executed. When a for
statement uses downto, the value of the control variable is decremented by
one for each repetition. If initial value value is less than final value, the
contained statement is not executed.

It's an error if the contained statement alters the value of the control
variable. After a for statement is executed, the value of the control variable
value is undefined, unless execution of the for statement was interrupted
by a goto from the for statement.

With these restrictions in mind, the for statement

for V := Exprl to Expr2 do Body;

is equivalent to

begin
TempI := Exprl;
Temp2 := Expr2;
if TempI <= Temp2 then
begin

V := TempI;
Body;
while V <> Temp2 do
begin

V := Succ (V) ;
Body;

end;
end;

end;

and the for statement

for V := Exprl downto Expr2 do Body;

is equivalent to

begin
TempI : = Exprl;
Temp2 := Expr2;
if TempI >= Temp2 then
begin

V := TempI;
Body;
while V <> Temp2 do
begin

V := Pred(V);
Body;

end;
end;

end;

Chapter 79, Statements 257

where Templ and Temp2 are auxiliary variables of the host type of the
variable V and don't occur elsewhere in the program.

Examples of for statements follow:

for I := 2 to 63 do
if Data[I] > Max then Max := Data[I]

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I,K] * Mat2[K,J];
Mat [I, J] := X;

end;

for C := red to blue do Check(C);

VVith State~ents

The with statement is shorthand for referencing the fields of a record.
Within a with statement, the fields of one or more specific record variables
can be referenced using their field identifiers only. The syntax of a with
statement follows:

with statement

record variable reference -.j variable reference ~

Following is an example of a with statement:

with Date do
if month = 12 then
begin

month := 1;
year := year + 1

end
else

month := month + 1;

This is equivalent to

258 Turbo Pascal Owner's Handbook

if Date.month = 12 then
begin

Date.month := 1;
Date.year := Date.year + 1

end
else

Date.month := Date.month + 1;

Within a with statement, each variable reference is first checked as to
whether it can be interpreted as a field of the record. If so, it is always
interpreted as such, even if a variable with the same name is also accessible.
Suppose the following declarations have been made:

type
Point = record

var

x,y: integer;
end;

x: Point;
y: integer;

In this case, both x and y can refer to a variable or to a field of the record. In
the statement

with x do
begin

x := 10;
y := 25;

end;

the x between with and do refers to the variable of type Point, but in the
compound statement, x and y refer to x.x and x.y.

The statement

with Vl,V2, '" Vn do s;

is equivalent to

with VI do
with V2 do

with Vn do
S;

In both cases, if Vn is a field of both Vl and V2, it is interpreted as V2.Vn,
not Vl.Vn.

If the selection of a record variable involves indexing an array or
dereferencing a pointer, these actions are executed once before the
component statement is executed.

Chapter 19, Statements 259

260 Turbo Pascal Owner's Handbook

c H A p T E R

20

Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main
program block. Each procedure or function declaration has a heading
followed by a block. A procedure is activated by a procedure statement; a
function is activated by the evaluation of an expression that contains its call
and returns a value to that expression.

This chapter discusses the different types of procedure and function
declarations and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a
procedure; that procedure can then be activated by a procedure statement.

procedure declaration -----I procedure heading ~ procedure body ~

formal parameter list

The procedure heading names the procedure's identifier and specifies the
formal parameters (if any).

parameter type

Chapter 20, Procedures and Functions 261

procedure body ---r---------~,.__~

The syntax for a formal parameter list is shown in the section "Parameters"
later in this chapter.

A procedure is activated by a procedure statement, which states the
procedure's identifier and any actual parameters required. The statements
to be executed on activation are noted in the statement part of the
procedure'S block. If the procedure'S identifier is used in a procedure
statement within the procedure's block, the procedure is executed
recursively (it calls itself while executing).

Here's an example of a procedure declaration:

procedure NumString(N: integer; var S: string);
var

V: integer;
begin

V := Abs (N);
S := ";
repeat

S := Chr(N mod 10 + Ord('O')) + S;
N :=Ndivl0;

until N = 0;
if N < 0 then S := '-' + S;

end;

A procedure declaration can optionally specify an interrupt directive
before the block, and the procedure is then considered an interrupt
procedure. Interrupt procedures are described in full in Chapter 26, "Inside
Turbo Pascal." For now, note that interrupt procedures cannot be called
from procedure statements, and that every interrupt procedure must
specify a parameter list exactly like the following:

procedure Mylnt(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP : word);
interrupt;

Instead of the block in a procedure or function declaration, you can write a
forward, external, or inline declaration.

262 Turbo Pascal Owner's Handbook

Forward Declarations

A procedure declaration that specifies the directive forward instead of a
block is a forward declaration. Somewhere after this declaration, the
procedure must be defined by a defining declaration-a procedure
declaration that uses the same procedure identifier but omits the formal
parameter list and includes a block. The forward declaration and the
defining declaration must appear in the same procedure and function
declaration part. Other procedures and functions can be declared between
them, and they can call the forward-declared procedure. Mutual recursion
is thus possible.

The forward declaration and the defining declaration constitute a complete
procedure declaration. The procedure is considered declared at the forward
declaration.

An example of a forward declaration follows:

procedure Walter(m,n : integer); forward;

procedure Clara(x,y : real);
begin

Walter(4,5);

end;

procedure Walter;
begin

Clara(8.3,2.4);

end;

A procedure's defining declaration can be an external declaration;
however, it cannot be an inline declaration or another forward declaration.
Likewise, the defining declaration cannot specify an interrupt directive.

Forward declarations are not allowed in the interface part of a unit.

External Declarations

External declarations allow you to interface with separately compiled
procedures and functions written in assembly language. The external code
must be linked with the Pascal program or unit through {$L filename}
directives. For further details on linking with assembly language, refer to
Chapter 26.

Chapter 20, Procedures and Functions 263

Examples of external procedure declarations follow:

procedure MoveWord(var source,dest; count: longlnt); external;
procedure MoveLong(var source,dest; count: longlnt); external;

procedure FillWord(var dest; data: integer; count: longlnt); external;
procedure FillLong(var dest; data: longlnt; count: longlnt); external;

{$L BLOCK.OBJ}

You should use external procedures when you need to incorporate
substantial amounts of assembly code. If you only require small amounts of
code, use inline procedures instead.

Inline Declarations

The inline directive permits you to write machine code instructions instead
of the block. When a normal procedure is called, the compiler generates
code that pushes the procedure'S parameters onto the stack, and then
generates a CALL instruction to call the procedure. When you "call" an
inline procedure, the compiler generates code from the inline directive
instead of the CALL. Thus, an inline procedure is "expanded" every time
you refer to it, just like a macro in assembly language. Here's a short
example of two inline procedures:

procedure Disablelnterrupts; inline($FA); CLI
procedure Enablelnterrupts; inline($FB); STI

Inline procedures are described in full in Chapter 26, "Inside Turbo Pascal."

Function Declarations

A function declaration defines a part of the program that computes and
returns a value.

function declaration --.j function heading ~ function body ~

The function heading specifies the identifier for the function, the formal
parameters (if any), and the function result type.

264 Turbo Pascal Owner's Handbook

function heading

formal parameter list

result type

A function is activated by the evaluation of a function call. The function
call gives the function's identifier and any actual parameters required by
the function. A function call appears as an operand in an expression. When
the expression is evaluated, the function is executed, and the value of the
operand becomes the value returned by the function.

The statement part of the function's block specifies the statements to be
executed upon activation of the function. The block should contain at least
one assignment statement that assigns a value to the function identifier. The
result of the function is the last value assigned. If no such assignment
statement exists or if it is not executed, the value returned by the function is
unspecified.

If the function's. identifier is used in a function call within the function's
block, the function is executed recursively.

Following are examples of function declarations:

function Max(a: Vector; n: integer): extended;
var

x: extended;
i: integer;

begin
x := a [1];
for i := 2 to n do

if x < a[i] then x := a[i];
Max := x;

end;

function Power(x: extended; y: integer): extended;
var

z: extended;
i: integer;

begin
z := 1.0; i := y;
while i > 0 do

Chapter 20, Procedures and Functions 265

begin
if Odd (i) then z := z * X;
i := i div 2;
x := Sqr (x);

end;
Power := Z;

end;

Like procedures, functions can be declared as forward, external, or inline;
however, interrupt functions are not allowed.

function body

Parameters

The declaration of a procedure or function specifies a formal parameter list.
Each parameter declared in a formal parameter list is local to the procedure
or function being declared, and can be referred to by its identifier in the
block associated with the procedure or function.

formal parameter list

parameter declaration "I identifier list II ". , .+ "
~ '-io\..:J-+I parameter type f--1

There are three kinds of parameters: value, variable, and untyped variable.
They are characterized as follows:

• A parameter group without a preceding var and followed by a type is a
list of value parameters.

• A parameter group preceded by var and followed by a type is a list of
variable parameters.

• A parameter group preceded by var and not followed by a type is a list of
untyped variable parameters.

266 Turbo Pascal Owner's Handbook

Value Parameters

A formal value parameter acts like a variable local to the procedure or
function, except that it gets its initial value from the corresponding actual
parameter upon activation of the procedure or function. Changes made to a
formal value parameter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure
statement or function call must be an expression, and its value must not be
of file type or of any structured type that contains a file type.

The actual parameter must be assignment-compatible with the type of the
formal value parameter. If the parameter type is string, then the formal
parameter is given a size attribute of 255.

Variable Parameters

A variable parameter is employed when a value must be passed from a
procedure or function to the caller. The corresponding actual parameter in a
procedure statement or function call must be a variable reference. The
formal variable parameter represents the actual variable during the
activation of the procedure or function, so any changes to the value of the
formal variable parameter are reflected in the actual parameter.

Within the procedure or function, any reference to the formal variable
parameter accesses the actual parameter itself. The type of the actual
parameter must be identical to the type of the formal variable parameter
(you can bypass this restriction through untyped variable parameters). If
the formal parameter type is string, it is given the length attribute 255, and
the actual variable parameter must be a string type with a length attribute
of 255.

File types can only be passed as variable parameters.

If referencing an actual variable parameter involves indexing an array or
finding the object of a pointer, these actions are executed before the
activation of the procedure or function.

Untyped Variable Parameters

When a formal parameter is an untyped variable parameter, the
corresponding actual parameter may be any variable reference, regardless
of its type.

Chapter 20, Procedures and Functions 267

Within the procedure or function, the untyped variable parameter is
typeless; that is, it is incompatible with variables of all other types, unless it
is given a specific type through a variable typecast.

An example of untyped variable parameters follows:

function Equal (var source,dest; size: word): boolean;
type

Bytes = array[O .. Maxlnt] of byte;
var

N: integer;
begin

N := 0;
while (N<size) and (Bytes (dest) [N] <> Bytes (source) [N]) do Inc(N);
Equal := N = size;

end;

This function can be used to compare any two variables of any size. For
instance, given the declarations

type
Vector = array[l .. lO] of integer;
Point = record

var

x,y: integer;
end;

Vecl,Vec2: Vector;
N: integer;
P: Point;

then the function calls

Equal(Vecl,Vec2,SizeOf(Vector))
Equal(Vecl,Vec2,SizeOf(integer)*N)
Equal(Vec[1],Vecl[6],SizeOf(integer)*5)
Equal(Vecl[1],P,4)

compare Vec1 to Vee2, compare the first N components of Vec1 to the first N
components of Vee2, compare the first five components of Veel to the last
five components of Vec1, and compare Vec1[1] to P.x and Vec1[2] to P.y.

268 Turbo Pascal Owner's Handbook

c H A p T E R

21

Programs and Units

Program Syntax

A Turbo Pascal program takes the form of a procedure declaration except
for its heading and an optional uses clause.

program ~ program heading ~f q 'p~~
. uses clause

The Program Heading

The program heading specifies the program's name and its parameters.

program heading

program parameters

program parameters -.1 identifier list ~

The program heading, if present, is purely decorative and is ignored by the
compiler.

Chapter 21, Programs and Units 269

The Uses Clause

The uses clause identifies all units used by the program, including units
used directly and units used by those units.

uses clause ~ l,-_~_I--1identif iet-r __ --,1 ~cr
- 0 4

The System unit is always used automatically. System implements all low
level, runtime support routines to support such features as file I/O, string
handling, floating point, dynamic memory allocation, and others.

Apart from System, Turbo Pascal implements many standard units, such as
Printer, Dos, and Crt. These are not used automatically; you must include
them in your uses clause, for instance,

uses Dos,Crti { Can now access facilities in Dos and Crt

The standard units are described in Chapter 24, "Standard Units."

To locate a unit specified in a uses clause, the compiler first checks the
resident units-those units loaded into memory at startup from the
TURBO.TPL file. If the unit is not among the resident units, the compiler
assumes it must be on disk. The name of the file is assumed to be the unit
name with extension .TPU. It is first searched for in the current directory,
and then in the directories specified in the 0 /D /Unit directories menu or
in a / U directive on the TPC command line. For instance, the construct

uses Memory;

where Memory is not a resident unit, causes the compiler to look for the file
MEMORY.TPU in the current directory, and then in each of the unit
directories.

The {$U filename} directive allows you to override the compiler'S file name
selection. If a {$U filename} directive appears just before a unit name in a
uses clause, the compiler uses that file name instead of the unit name. For
instance, the construct

uses {$U MEM} MemorYi

will cause the compiler to look for Memory in the file MEM.TPU. If the {$U
filename} directive specifies a drive letter and/ or a directory path, the unit is
only searched for in that directory.

270 Turbo Pascal Owner's Handbook

When the Compile/Make and Compile/Build commands compile the
units specified in a uses clause, the source files are searched for in the same
way as the. TPU files, and the name of a given unit's source file is assumed
to be the unit name with extension .P AS. If you want a different extension,
you can specify it in a {$U filename} directive. For example, the construct

uses {$U MEMORY.LIB} Memory;

will cause the compiler to look for Memory's source text in the file
MEMORY.LIB.

Unit Syntax

Units are the basis of modular programming in Turbo Pascal. They are
used to create libraries that you can include in various programs without
making the source code available, and to divide large programs into
logically related modules.

unit implementation part initialization part

The Unit Heading

The unit heading specifies the unit's name.

unit heading ~ unit identifier ~

The unit name is used when referring to the unit in a uses clause. The name
must be unique-two units with the same name cannot be used at the same
time.

The Interface Part

The interface part declares constants, types, variables, procedures, and
functions that are public, that is, available to the host (the program or unit
using the unit). The host can access these entities as if they were declared in
a block that encloses the host.

Chapter 2 7, Programs and Units 271

interface part

constant declaration part

type declaration part

variable declaration part

procedure and function heading part

procedure and function
heading part

procedure heading

function heading inline directive

Unless a procedure or function is inline, the interface part only lists the
procedure or function heading. The block of the procedure or function
follows in the implementation part. Note: the procedure and function
heading can be duplicated from the interface part. You don't have to
specify the formal parameter list, but if you do, the compiler will issue a
compile-time error if the interface and implementation declarations don't
match.

The Implementation Part

The implementation part defines the block of all public procedures and
functions. In addition, it declares constants, types, variables, procedures,
and functions that are private, that is, not available to the host.

272 Turbo Pascal Owner's Handbook

implementation part

implementation)
~~

~ label declaration part I
~ constant declaration part 1

H type declaration part I
I

~ variable declaration part I
I

L..j procedure and function declaration part

procedure and function
declaration part

procedure declaration

function declaration

. .

In effect, the procedure and function declarations in the interface part are
like forward declarations, although the forward directive is not specified.
Therefore, these procedures and functions can be defined and referenced in
any sequence in the implementation part.

The Initialization Part

The initialization part is the last part of a unit. It consists either of the
reserved word end (in which case the unit has no initialization code) or of a
statement part to be executed in order to initialize the unit.

initialization part

~~ statement part

The initialization parts of units used by a program are executed in the same
order that the units appear in the uses clause.

Chapter 2 7, Programs and Units 273

Units that Use Other Units

The uses clause in the host need not name all units used directly or
indirectly by the host. Consider the following example:

program Host;
uses Unit2;
const a = b;
begin
end.

unit Unitl;
interface
constc = 1;
implementation
const d = 2;
end.

unit Unit2;
interface
uses Unit!;
const b = c;
implementation
end.

Unit2 uses Unitl, so for Host to use Unit2, it first names Unitl in its uses
clause. Because Host does not· directly reference any identifiers in Unitl, it
doesn't have to name Unitl.

The uses statement of program Host can be written in several ways:

uses Un it 1 , Un i t 2 ; The identifiers in the interface sections of both
units may be referenced in program Host.

uses Unit2; Only the identifiers in the interface section of
Unit2 may be referenced in program Host.

In the second example, the compiler will recursively analyze unit
dependencies and will correctly determine that Unit2 is dependent on
Unitl, and that program Host is dependent on both. Note that none of the
identifiers declared in the interface section of Unitl are available to Host
because it does not use Unitl explicitly.

When changes are made in the interface part of a unit, other units using the
unit must be recompiled. However, if changes are only made to the
implementation or the initialization part, other units that use the unit need
not be recompiled. In the preceding example, if the interface part of Unitl is
changed (for example, c = 2) Unit2 must be recompiled; changing the
implementation part (for example, d = 1) doesn't require the recompilation
of Unit2.

When a unit is compiled, Turbo Pascal computes a unit version number,
which is basically a checksum of the interface part. In the preceding
example, when Unit2 is compiled, the current version number of Unitl is
saved in the compiled version of Unit2. When Host is compiled, the version
number of Unitl is checked against the version number stored in Unit2. If
the version numbers do not match, indicating that a change was made in
the interface part of Unitl since Unit2 was compiled, the compiler shows an
error or recompiles Unit2, depending on the mode of compilation.

274 Turbo Pascal Owner's Handbook

c H A p T E R

22

Input and Output

This chapter briefly describes the standard (or built-in) input and output
(I/O) procedures and functions of Turbo Pascal; for more detailed
information, refer to Chapter 27.

An Introduction to lID

A Pascal file variable is any variable whose type is a file type. There are
three classes of Pascal files: typed, text, and untyped. The syntax for writing
file types is given in the section "Structured Types" in Chapter 15.

Before a file variable can be used, it must be associated with an external file
through a call to the Assign procedure. An external file is typically a named
disk file, but it can also be a device, such as the keyboard or the display.
The external file stores the information written to the file or supplies the
information read from the file.

Once the association with an external file is established, the file variable
must be "opened" to prepare it for input and/or output. An existing file
can be opened via the Reset procedure, and a new file can be created and
opened via the Rewrite procedure. Text files opened with Reset are read
only, and text files opened with Rewrite and Append are write-only. Typed
files and untyped files always allow both reading and writing regardless of
whether they were opened with Reset or Rewrite.

The standard text-file variables Input and Output are opened automatically
when program execution begins. Input is a read-only file associated with
the keyboard and Output is a write-only file associated with the display.

Chapter 22, Input and Output 275

Every file is a linear sequence of components, each of which has the
component type (or record type) of the file. Each component has a
component number. The first component of a file is considered to be
component zero.

Files are normally accessed sequentially; that is, when a component is read
using the standard procedure Read or written using the standard procedure
Write, the current file position moves to the next numerically-ordered file
component. However, typed files and untyped files can also be accessed
randomly via the standard procedure Seek, which moves the current file
position to a specified component. The standard functions FilePos and
FileSize can be used to determine the current file position and the current
file size.

When a program completes processing a file, the file must be closed using
the standard procedure Close. After closing a file completely, its associated
external file is updated. The file variable can then be associated with
another external file.

By default, all calls to standard I/O procedures and functions are
automatically checked for errors: If an error occurs, the program terminates
displaying a runtime error message. This automatic checking can be turned
on and off using the {$I+} and {$I-} compiler directives. When I/O checking
is off-that is, when a procedure or function call is compiled in the {$I-}
state-an I/O error does not cause the program to halt. To check the result
of an I/O operation, you must instead call the standard function IOResult.

Standard Procedures and Functions for All
Files

Here's a summary of the procedures and functions you can use in all files.

Procedures

Assign

ChDir

Close

Erase

GetDir

MkDir

276

Assigns the name of an external file to a file variable.

Changes the current directory.

Closes an open file.

Erases an external file.

Returns the current directory of a specified drive.

Creates a subdirectory.

Turbo Pascal Owner's Handbook

Rename

Reset

Rewrite

RmDir

Renames an external file.

Opens an existing file.

Creates and opens a new file.

Removes an empty subdirectory.

Returns the end-of-file status of a file.

Functions

Eof

IOResult Returns an integer value that is the status of the last I/O
function performed.

Standard Procedures and Functions for Text
Files

This section summarizes input and output using file variables of the
standard type Text. Note that in Turbo Pascal the type Text is distinct from
the type file of char.

When a text file is opened, the external file is interpreted in a special way: It
is considered to represent a sequence of characters formatted into lines,
where each line is terminated by an end-of-line marker (a carriage-return
character, possibly followed by a line-feed character).

For text files, there are special forms of Read and Write that allow you to
read and write values that are not of type char. Such values are auto
matically translated to and from their character representation. For
example, Read(f,i), where i is a type integer variable, will read a sequence of
digits, interpret that sequence as a decimal integer, and store it in i.

As noted previously there are two standard text-file variables, Input and
Output. The standard file variable Input is a read-only file associated with
the operating system's standard input file (typically the keyboard), and the
standard file variable Output is a write-only file associated with the
operating system's standard output file (typically the display). Input and
Output are automatically opened before a program begins execution, as if
the following statements were executed:

Assign(Input,"); Reset(Input);
Assign(Output,"); Rewrite(Output);

Likewise, Input and Output are automatically closed after a program
finishes executing.

Chapter 22, Input and Output 277

Note: If a program uses the Crt standard unit, Input and Output will no
longer by default refer to the standard input and standard output files. For
further details, refer to the description of the Crt unit in Chapter 24,
"Standard Units").

Some of the standard procedures and functions listed in this section need
not have a file variable explicitly given as a parameter. If the file parameter
is omitted, Input or Output will be assumed by default, depending on
whether the procedure or function is input- or output-oriented. For
instance, Read(x) corresponds to Read(Input,x) and Write(x) corresponds to
Write(Output,x).

If you do specify a file when calling one of the procedures or functions in
this section, the file must have been associated with an external file using
Assign, and opened using Reset, Rewrite, or Append. An error message is
generated if you pass a file that was opened with Reset to an output
oriented procedure or function. Likewise, it's an error to pass a file that was
opened with Rewrite or Append to an input-oriented procedure or function.

Procedures

Append

Flush

Read

Readln

SetTextBuf

Write

Writeln

Functions

Eoln

SeekEof

SeekEoln

278

Opens an existing file for appending.

Flushes the buffer of an output file.

Reads one or more values from a text file into one or more
variables.

Does what a Read does and then skips to the beginning of
the next line in the file.

Assigns an I/O buffer to a text file.

Writes one or more values to a text file.

Does the same as a Write, and then writes an end-of-line
marker to the file.

Returns the end-of-line status of a file.

Returns the end-of-file status of a file.

Returns the end-of-line status of a file.

Turbo Pascal Owner's Handbook

Standard Procedures and Functions for
Untyped Files

Untyped files are low-level I/O channels primarily used for direct access to
any disk file regardless of type and structuring. An untyped file is declared
with the word file and nothing more, for example:

var
DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra
parameter to specify the record size used in data transfers.

For historical reasons, the default record size is 128 bytes. The preferred
record size is 1, because that is the only value that correctly reflects the
exact size of any file (no partial records are possible when the record size is
1).

Except for Read and Write, all typed file standard procedures and functions
are also allowed on untyped files. Instead of Read and Write, two
procedures called BlockRead and BlockWrite are used for high-speed data
transfers.

BlockRead Reads one or more records into a variable.

BlockWrite Writes one or more records from a variable.

With the exception of text files, the following procedures and
functions may be used on a file variable of any type:

FilePos

FileSize

Seek

Truncate

Returns the current file position of a file.

Returns the current size of a file.

Moves the current position of a file to a specified
component.

Truncates the file size at the current file position.

FileMode Variable

The FileMode variable defined by the System unit determines the access code
to pass to DOS when typed and untyped files (not text files) are opened
using the Reset procedure.

The default FileMode is 2, which allows both reading and writing.
Assigning another value to FileMode causes all subsequent Resets to use that
mode.

Chapter 22, Input and Output 279

The range of valid FileMode values depends on the version of DOS in use.
However, for all versions, the following modes are defined:

0: Read only
1: Write only
2: Read/Write

DOS version 3.x defines additional modes, which are primarily concerned
with file-sharing on networks. (For further details on these, please refer to
your DOS Programmer's Reference manual.)

Note: New files created using Rewrite are always opened in Read/Write
mode, corresponding to FileMode = 2.

Devices in Turbo Pascal

Turbo Pascal and the DOS operating system regard external hardware,
such as the keyboard, the display, and the printer, as devices. From the
programmer's point of view, a device is treated as a file, and is operated on
through the same standard procedures and functions as files.

Turbo Pascal supports two kinds of devices: DOS devices and text file
devices.

DOS Devices

DOS devices are implemented through reserved file names that have a
special meaning attached to them. DOS devices are completely
transparent-in fact, Turbo Pascal is not even aware when a file variable
refers to a device instead of a disk file. For example, the program

var
Lst: Text;

begin
Assign(Lst,'LPT1'); Rewrite(Lst);
Writeln(Lst,'Hello World ... ');
Close(Lst);

end.

will write the string Hello World ... on the printer, even though the syntax
for doing so is exactly the same as for a disk file.

The devices implemented by DOS are used for obtaining or presenting
legible input or output. Therefore, DOS devices are normally used only in
connection with text files. On rare occasions, untyped files can also be
useful for interfacing with DOS devices.

280 Turbo Pascal Owner's Handbook

Each of the DOS devices is described in the next section. Other DOS
implementations can provide additional devices, and still others cannot
provide all the ones described here.

The CON Device

CON refers to the CONsole device, in which output is sent to the display,
and input is obtained from the keyboard. The Input and Output standard
files and all files assigned an empty name refer to the CON device when
input and/ or output is not redirected.

Input from the CON device is line-oriented and uses the line-editing
facilities described in the DOS manual. Characters are read from a line
buffer, and when the buffer becomes empty, a new line is input.

An end-of-file character is generated by pressing Ctrl-Z, after which the. Eot
function will return True.

The LPTl, LPT2, and LPT3 Devices

The line printer devices are the three possible printers you can use. If only
one printer is connected, it is usually referred to as LPTl, for which the
synonym PRN can also be used.

The line printer devices are output-only devices-an attempt to Reset a file
assigned to one of these generates an immediate end-of-file.

Note: The standard unit Printer declares a text-file variable called Lst, and
makes it refer to the LPTI device. To easily write something on the printer
from one of your programs, include Printer in the program's uses clause,
and use Write(Lst, .. J and Writein(Lst, .. J to produce your output.

The COMl and COM2 Devices

The communication port devices are the two serial communication ports.
The synonym AUX can be used instead of COMl.

The NUL Device

The null device ignores anything written to it, and generates an immediate
end-of-file when read from. You should use this when you don't want to

Chapter 22, Input and Output 281

create a particular file, but the program requires an input or output file
name.

Text-File Devices

Text-file devices are used to implement devices unsupported by DOS or to
make available another set of features other than those provided by a
similar DOS device. A good example of a text file device is the CRT device
implemented by the Crt standard unit. Its main function is to provide an
interface to the display and the keyboard, just like the CON device in DOS.
However, the CRT device is much faster and supports such invaluable
features as color and windows (for further details on the CRT device, see
Chapter 24, "Standard Units").

Contrary to DOS devices, text-file devices have no reserved file names; in
fact, they have no file names at all. Instead, a file is associated with a text
file device through a customized Assign procedure. For instance, the Crt
standard unit implements an AssignCrt procedure that associates text files
with the CRT device.

In addition to the CRT device, Turbo Pascal allows you to write your own
text file device drivers. A full description of this is given in the section
"Writing Text File Device Drivers" in Chapter 26, "Inside Turbo Pascal."

282 Turbo Pascal Owner's Handbook

c H A p T E R

23

Standard Procedures and Functions

This chapter briefly describes all the standard (built-in) procedures and
functions in Turbo Pascal, except for the I/O procedures and functions
discussed in Chapter 22, "Input and Output." Additional procedures and
functions are provided by the standard units described in Chapter 24,
"Standard Units." For more detailed information, refer to Chapter 27,
"Turbo Pascal Reference Lookup."

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within
the program.

Exit and Halt Procedures

Exit Exits immediately from the current block.

Halt Stops program execution and returns to the operating system.

Dynamic Allocation Procedures and
Functions

These procedures and functions are used to manage the heap-a memory
area that occupies all or some of the free memory left when a program is
executed. A complete discussion of the techniques used to manage the heap
is given in the section "The Heap Manager" in Chapter 26, "Inside Turbo
Pascal."

Chapter 23, Standard Procedures and Functions 283

Procedures

Dispose

FreeMem

GetMem

Mark

New

Release

Functions

MaxAvail

MemAvail

Disposes a dynamic variable.

Disposes a dynamic variable of a given size.

Creates a new dynamic variable of a given size and sets a
pointer variable to point to it.

Records the state of the heap in a pointer variable.

Creates a new dynamic variable and sets a pointer variable
to point to it.

Returns the heap to a given state.

Returns the size of the largest contiguous free block in the
heap, corresponding to the size of the largest dynamic
variable that can be allocated at the time of the call to
MaxAvail.

Returns the number of free bytes of heap storage available.

Transfer Functions

The procedures Pack and Unpack, as defined in standard Pascal, are not
implemented by Turbo Pascal.

Chr Returns a character of a specified ordinal number.

Ord Returns the ordinal number of an ordinal-type value.

Round Rounds a type real value to a type longint value.

Trune Truncates a type real value to a type longint value.

Arithmetic Functions

Note: When compiling in numeric processing mode, {$N+}, the return
values of the floating-point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real:

($N+)
begin

Writeln(Pi);

284

(3.14159265358979E+OOOO)

Turbo Pascal Owner's Handbook

end.

{$N-}
begin

Writeln(Pi)
end.

{ 3.1415926536E+OO}

Abs Returns the absolute value of the argument.

ArcTan Returns the arctangent of the argument.

Cos Returns the cosine of the argument.

Exp Returns the exponential of the argument.

Frac Returns the fractional part of the argument.

Int Returns the integer part of the argument.

Ln Returns the natural logarithm of the argument.

Pi Returns the value of Pi (3.1415926535897932385).

Sin Returns the sine of the argument.

Sqr Returns the square of the argument.

Sqrt Returns the square root of the argument.

Ordinal Procedures and Functions

Procedures

Dec Decrements a variable.

Inc Increments a variable.

Functions

Odd Tests if the argument is an odd number.

Pred Returns the predecessor of the argument.

Succ Returns the successor of the argument.

Chapter 23, Standard Procedures and Functions 285

String Procedures and Functions

Procedures

Delete

Insert

Str

Val

Deletes a substring from a string.

Inserts a substring into a string.

Converts a numeric value to its string representation.

Converts the string value to its numeric representation.

Functions

Concat Concatenates a sequence of strings.

Copy Returns a substring of a string.

Length Returns the dynamic length of a string.

Pos Searches for a substring in a string.

Pointer and Address Functions

Addr

CSeg

DSeg

Dfs

Ptr

Seg

SPtr

SSeg

286

Returns the address of a specified object.

Returns the current value of the CS register.

Returns the current value of the DS register.

Returns the offset of a specified object.

Converts a segment base and an offset address to a pointer-type
value.

Returns the segment of a specified object.

Returns the current value of the SP register.

Returns the current value of the SS register.

Turbo Pascal Owner's Handbook

Miscellaneous Procedures and Functions

Procedures

FillChar Fills a specified number of contiguous bytes with a
specified value.

Move Copies a specified number of contiguous bytes from a
source range to a destination range.

Randomize Initializes the built-in random generator with a random
value.

Functions

Hi Returns the high-order byte of the argument.

Lo Returns the low-order byte of the argument.

ParamCount Returns the number of parameters passed to the program
on the command line.

ParamStr Returns a specified command-line parameter.

Random Returns a random number.

SizeO£ Returns the number of bytes occupied by the argument.

Swap Swaps the high- and low-order bytes of the argument.

UpCase Converts a character to uppercase.

Chapter 23, Standard Procedures and Functions 287

288 Turbo Pascal Owner's Handbook

c H A p T E R

24

Standard Units

Chapters 20 and 23 described all the built-in procedures and functions of
Turbo.Pascal, which can be referred to without explicitly requesting them
(as standard Pascal specifies). It's through Turbo Pascal's standard units,
though,that you'll get the most programming power (see Chapter 27 for
more information).

Standard units are no different from the units you can write yourself. The
following standard units are available to you:

Crt Exploits the full power of your PC's display and keyboard,
including screen mode control, extended keyboard codes, color,
windows, and sound.

Dos Supports numerous DOS functions, including date-and-time
control, directory search, and program execution.

Graph3 Implements Turbo Pascal 3.0 Turtlegraphics.

Printer Allows you to easily access your printer.

System Turbo Pascal's runtime library. This unit is automatically used
by any unit or program.

Turbo3 Provides an even higher degree of compatibility with Turbo
Pascal 3.0.

Graph A powerful graphics package with device-independent graphics
support for CGA, EGA, VGA, HERC, IBM 3270 PC, MCGA, and
AT&T 6300.

Chapter 24, Standard Units 289

To use one of the standard units, simply include its name in your uses
clause, for instance:

uses Dos,Crt,Graph;

The standard units usually all reside in the TURBO.TPL library, which is
automatically loaded when you start up Turbo Pascal. To save memory,
you can move seldom-used units, such as Turbo3 and Graph3, out of the
TURBO.TPL file by using the TPUMOVER utility.

Standard Unit Dependencies

Both the compatibility units, Turbo3 and Graph3, depend on facilities made
available by the Crt unit. So, when using Turbo3 and Graph3, you must first
specify Crt in your uses clause. Table 24.1 lists the standard units.

Table 24.1: Standard Units

Unit Uses

System
Printer
Dos
Crt
Graph
Turb03
Graph3

None
None
None
None
None
Crt
Crt

We purposefully didn't indicate in the table that all units use the System
unit; that's because System is always used implicitly, and need never be
specified in a uses clause.

The System Unit

The System unit is, in fact, Turbo Pascal's runtime library. It implements
low-level, runtime support routines for all built-in features, such as file
I/O, string handling, floating point, and dynamic memory allocation. The
System unit is used automatically by any unit or program, and need never
be referred to in a uses clause.

The procedures and functions provided by System are described in
Chapters 22, "Input and Output," and 23, "Standard Procedures and
Functions." A number of predeclared variables are also available,
including:

290 Turbo Pascal Owner's Handbook

var
Input
Output
PrefixSeg
HeapOrg
HeapPtr
FreePtr
FreeMin
HeapError
ExitProc
RandSeed
FileMode

text;
text;
word;
pointer
pointer

: pointer
: word;
: pointer;

pointer;
longint;

: byte;

Input and Output are the standard I/O files required by every Pascal
implementation. By default, they refer to the standard input and output
files in DOS. For further details, refer to Chapter 23.

PrefixSeg is a word variable containing the segment address of the Program
Segment Prefix (PSP) created by DOS when the program was executed. For
a complete description of the PSP, refer to your DOS manual.

HeapOrg, HeapPtr, FreePtr, FreeMin, and HeapError are used by the heap
manager to implement Turbo Pascal's dynamic memory allocation
routines. The heap manager is described in full in Chapter 26, "Inside
Turbo Pascal."

The ExitProc pointer variable is used to implement exit procedures. This is
also described in Chapter 26.

RandSeed stores the built-in random number generator's seed. By assigning
a specific value to RandSeed, the Random function can be made to generate a
specific sequence of random numbers over and over. This is useful in
applications that deal with data encryption, statistics, and simulations.

The FileMode variable allows you to change the access mode in which typed
files and untyped files are opened. For further details, refer to Chapter 22,
"Input and Output."

The System unit "steals" several interrupt vectors. Before installing its own
interrupt handling routines, System stores the old vectors in five global
pointer variables:

SaveIntOO,
SaveInt02,
SaveInt23,
SaveInt24,
SaveInt75 : pointer;

$00
{ $02 }
{ $23 }
{ $24 }
{ $75 }

Note that the System unit contains an INT 24 handler for trapping critical
errors. When running an .EXE program created by Turbo Pascal, a DOS
critical error will be treated like any other I/O error: The program counter

Chapter 24, Standard Units 291

and an error number will display, and the program will terminate. Disk
errors are detected by using {$I-} and checking IOResult. Here's a simple
program that re-installs the original vector:

program Restore;
uses Dos;
begin

SetlntVec($24, Savelnt24);

end.

{ Restore original vector }

Note that the original INT 24 vector is saved in a pointer variable in the
System unit (SaveInt24).

The Printer Unit

The Printer unit is a very small unit designed to make life easier when
you're using the printer from within a program. Printer declares a text file
called Lst, and associates it with the LPTI device. Using Printer saves you
the trouble of declaring, assigning, opening, and closing a text file yourself.
Here's an example of a short program using Printer:

program HelloPrinter;
uses Printer;
begin

Writeln(Lst,'Hello Printer ... ');
end.

The Dos Unit

The Dos unit implements a number of very useful operating system and
file-handling routines. None of the routines in the Dos unit are defined by
standard Pascal, so they have been placed in their own module.

For a complete description of DOS operations, refer to the IBM DOS
Technical Manual.

Constants, Types, and Variables

Each of the constants, types, and variables defined by the Dos unit are
briefly discussed in this section. For more detailed information, see the
descriptions of the procedures and functions that depend on these objects
in Chapter 27, "Turbo Pascal Reference Lookup."

292 Turbo Pascal Owner's Handbook

Flags Constants

The following constants are used to test individual flag bits in the Flags
register after a call to Intr or MsDos:

const
FCarry = $0001;
FParity = $0004;
FAuxiliary = $0010;
FZero = $0040;
FSign = $0080;
FOverflow = $0800;

For instance, if R is a register's record, the tests

R.Flags and FCarry <> 0
R.Flags and FZero = 0

are True respectively if the Carry flag is set and if the Zero flag is clear.

File Mode Constants

These constants are used by the file-handling procedures when opening
and closing disk files. The mode fields of Turbo Pascal's file variables will
contain one of the values specified below.

const
fmClosed = $D7BO;
fmInput = $D7B1;
fmOutput = $D7B2;
fmInOut = $D7B3;

File Record Types

The record definitions used internally by Turbo Pascal are also declared in
the Dos unit. FileRec is used for both typed and untyped files, while TextRec
is the internal format of a variable of type text.

type
{ Typed and untyped files
FileRec = record

Handle: word;
Mode: word;
RecSize: word;
Private: array[1 .. 26] of byte;
UserData: array[1 .. 16] of byte;
Name: array[0 .. 79] of char;

end;

Chapter 24, Standard Units 293

(Textfile record)
TextBuf = array[0 .. 127]
TextRec = record

Handle
Mode
BufSize
Private
BufPos
BufEnd
BufPtr
OpenFunc
InOutFunc
FlushFunc
CloseFunc
UserData
Name
Buffer

end;

of char;

word;
word;
word;
word;
word;
word;
ATextBuf;
pointer;
pointer;
pointer;
pointer;
array [1. .16]
array[0 .. 79]
TextBuf;

of Byte;
of Char;

File Attribute Constants

These constants are used to test, set, and clear file attribute bits in
connection with the GetFAttr, SetFAttr, FindFirst, and FindNext procedures:

const
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

The constants are additive, that is, the statement

FindFirst('*.*', ReadOnly + Directory, S);

will locate all normal files as well as read-only files and subdirectories in
the current directory. The AnyFile constant is simply the sum of all
attributes.

The Registers Type

Variables of type Registers are used by the Intr and MsDos procedures to
specify the input register contents and examine the output register contents
of a software interrupt.

294 Turbo Pascal Owner's Handbook

type
Registers = record

case integer of

end;

0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: word);
1: (AL,AH,BL,BH,CL,CH,DL,DH: byte);

Notice the use of a variant record to map the 8-bit registers on top of their
16-bit equivalents.

The DateTime Type

Variables of DateTime type are used in connection with the UnpackTime and
PackTime procedures to examine and construct 4-byte, packed date-and
time values for the GetFTime, SetFTime, FindFirst, and FindNext procedures.

type
DateTime = record

Year,Month,Day,Hour,Min,Sec: integer;
end;

Valid ranges are Year 1980 . .2099, Month 1..12, Day 1..31, Hour 0 .. 23, Min
0 . .59, and Sec 0 . .59.

The SearchRec Type

Variables of type SearchRec are used by the FindFirst and FindNext
procedures to scan directories.

type
SearchRec = record

Fill: array[1 .. 21] of byte;
Attr: byte;
Time: longint;
Size: longint;
Name: string[12];

end;

The information for each file found by one of these procedures is reported
back in a SearchRec. The Attr field contains the file's attributes (constructed
from file attribute constants), Time contains its packed date and time (use
UnpackTime to unpack), Size contains its size in bytes, and Name contains its
name. The Fill field is reserved by DOS and should never be modified.

Chapter 24, Standard Units 295

The DosError Variable

DosError is used by many of the routines in the Dos unit to report errors.

var DosError: integer;

The values stored in Dos Error are DOS error codes. A value of 0 indicates
no error; other possible error codes include:

2 = File not found
3 = Path not found
5 = Access denied
6 = Invalid handle
8 = Not enough memory

10 = Invalid environment
11 = Invalid format
18 = No more files

Interrupt Support Procedures

Here's a brief listing of the interrupt support procedures:

GetIntVec Returns the address stored in a specified interrupt
vector.

Intr

MsDos

SetIntVec

Executes a specified software interrupt.

Executes a DOS function call.

Sets a specified interrupt vector to a specified address.

Date and Time Procedures

GetDate

GetFTime

GetTime

PackTime

SetDate

SetFTime

SetTime

296

Returns the current date set in the operating system.

Returns the date and time a file was last written.

Returns the current time set in the operating system.

Converts a DateTime record into a 4-byte, packed date
and-time character longint used by SetFTime. The fields
of the DateTime record are not range-checked.

Sets the current date in the operating system.

Sets the date and time a file was last written.

Sets the current time in the operating system.

Turbo Pascal Owner's Handbook

UnpackTime Converts a 4-byte, packed date-and-time character
longint returned by GetFTime, FindFirst, or FindNext into
an unpacked DateTime record.

Disk Status Functions

DiskFree

DiskSize

Returns the number of free bytes of a specified disk
drive.

Returns the total size in bytes of a specified disk drive.

File-Handling Procedures

FindFirst

FindNext

GetFAttr

SetFAttr

Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

Returns the attributes of a file.

Sets the attributes of a file.

Process-Handling Procedures and Functions

Procedures

Execute

Keep

Functions

DosExitCode

Executes a specified program with a specified command
line.

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Returns the exit code of a subprocess.

Chapter 24, Standard Units 297

The Crt Unit

The Crt unit implements a range of powerful routines that give you full
control of your pC's features, such as screen mode control, extended key
board codes, colors, windows, and sound. Crt can only be used in
programs that run on IBM PCs, ATs, PS/2s, and true compatibles.

One of the major advantages to using Crt is the added speed and flexibility
of screen output operations. Programs that do not use the Crt unit send
their screen output through DOS, which adds a lot of overhead. With the
Crt unit, output is sent directly to the BIOS or, for even faster operation,
directly to video memory.

The Input and Output Files

The initialization code of the Crt unit assigns the Input and Output standard
text files to refer to the CRT instead of to DOS's standard input and output
files. This corresponds to the following statements being executed at the
beginning of a program:

AssignCrt(Input); Reset(Input);
AssignCrt(Output); Rewrite(Output);

This means that I/O redirection of the Input and Output files is no longer
possible unless these files are explicitly assigned back to standard input
and output by executing

Assign(Input,"); Reset(Input);
Assign(Output,"); Rewrite(Output);

Windows

Crt supports a simple yet powerful form of windows. The Window
proced ure lets you define a window anywhere on the screen. When you
write in such a window, the window behaves exactly as if you were using
the entire screen, leaving the rest of the screen untouched. In other words,
the screen outside the window is not accessible. Inside the window, lines
can be inserted and deleted, the cursor wraps around at the right edge, and
the text scrolls when the cursor reaches the bottom line.

All screen coordinates, except the ones used to define a window, are
relative to the current window, and screen coordinates (1,1) correspond to
the upper left corner of the screen.

298 Turbo Pascal Owner's Handbook

The default window is the entire screen.

Screen modes for EGA (43 line) and VGA (50 line) are also supported (see
the TextMode description in Chapter 27).

Special Characters

When writing to Output or to a file that has been assigned to the CRT, the
following control characters have special meanings:

#7 Bell-emits a beep from the internal speaker.

#8 Backspace-moves the cursor left one character. If the cursor is
already at the left edge of the current window, nothing happens.

#10 Line feed-moves the cursor one line down. If the cursor is
already at the bottom of the current window, the window scrolls
up one line.

#13 Carriage return-returns the cursor to the left edge of the current
window.

All other characters will appear on the screen when written.

Line Input

When readingfrom Input or from a text file that has been assigned to Crt,
text is input one line at a time. The line is stored in the text file's internal
buffer, and when-variables are read, this buffer is used as the input source.
Whenever the buffer has been emptied, a new line. is input.

When entering lines, the following editing keys are available:

BackSpace Deletes the last character. entered.

Esc Deletes the entire input line.

Enter Terminates the input line and stores the end-of-line marker
. (carriage return/line feed) in the buffer.

Ctrl-S Same as BackSpace

Ctrl-D Recalls one character from the last input line.

Ctrl-A Same as Esc.

Ctrl-F Recalls the last input line.

Ctrl-Z Terminates the input line and generates an end-of-file
marker.

Chapter 24, Standard Units 299

Ctrl-Z will only generate an end-of-file marker if the CheckEOF variable has
been set to True; it is False by default.

To test keyboard status and input single characters under program control,
use the Key Pressed and ReadKey functions.

Constants and Types

Each of the constants, types, and variables defined by the Crt unit are
briefly discussed in this section.

Crt Mode Constants

The following constants are used as parameters to the TextMode procedure:

const
BW40 = 0;
BW80 = 2;
Mono = 7;
C040 = 1;
C080 = 3;
Font8x8 = 256;
C40 = C040;
C80 = C080;

{ 40x25 B/W on color adapter }
{ 80x25 B/W on color adapter }

80x25 B/W on monochrome adapter }
{ 40x25 color on color adapter }
{ 80x25 color on color adapter }

{ For EGA/VGA 43 and 50 line }
{ For 3.0 compatibility}
{ For 3.0 compatibility}

BW40, C040, BWBO, and COBO represent the four color text modes supported
by the IBM PC Color/Graphics Adapter (CGA). The Mono constant repre
sents the single black-and-white text mode supported by the. IBM PC
Monochrome Adapter. FontBxB represents EGA/VGA 43- and 50-line
modes. The C40 and CBO constants are for 3.0 compatibility.

Text Color Constants

The following constants are used in connection with the TextColor and
TextBackground procedures:

const
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;

300 Turbo Pascal Owner's Handbook

DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;
Blink = 128;

Colors are represented by the numbers between 0 and 15; to easily identify
each color, these constants can be used instead of numbers. In the color text
modes, the foreground of each character is selectable from 16 colors, and
the background from 8 colors. The foreground of each character can also be
made to blink.

Crt Variables

Here are the variables in Crt:

boolean;
boolean;
boolean;
boolean;
word;
byte;
word;
word;

var
CheckBreak
CheckEof
CheckSnow
DirectVideo
LastMode
TextAttr
WindMin
WindMax
SavelntlB : pointer;

CheckBreak

Enables and disables checks for etr/-Break.

var CheckBreak: boolean;

When CheckBreak is True, pressing etr/-Break will abort the program when it
next writes to the display. When CheckBreak is False, pressing etr/-Break has
no effect. CheckBreak is True by default. (At runtime, Crt stores the old
Control-Break interrupt vector, $IB, in a global pointer variable called
SavelntlB.)

CheckEOF

Enables and disables the end-of-file character:

Chapter 24, Standard Units 301

var CheckEOF: boolean;

When CheckEOF is True, an end-of-file character is generated if you press
Ctrl-Z while reading from a file assigned to the screen. When CheckEOF is
False, pressing Ctrl-Z has no effect. CheckEOF is False by default.

CheckSnow

Enables and disables "snow-checking" when storing characters directly in
video memory.

var CheckSnow: boolean;

On most CGAs, interference will result if characters are stored in video
memory outside the horizontal retrace intervals. This does not occur with
Monochrome Adapters or EGAs.

When a color text mode is selected, CheckS now is set to True, and direct
video-memory writes will occur only during the horizontal retrace
intervals. If you are running on a newer CGA, you may want to set
CheckS now to False at the beginning of your program and after each call to
TextMode. This will disable snow-checking, resulting in significantly higher
output speeds.

Checksnow has no effect when DirectVideo is False.

Direct Video

Enables and disables direct memory access for Write and Writeln statements
that output to the screen.

var DirectVideo: boolean;

When DirectVideo is True, Writes and Writelns to files associated with the
CRT will store characters directly in video memory instead of calling the
BIOS to display them. When DirectVideo is False, all characters are written
through BIOS calls, which is a significantly slower process.

DirectVideo always defaults to True. If, for some reason, you want char
acters displayed through BIOS calls, set DirectVideo to False at the
beginning of your program and after each call to TextMode.

LastMode

Each time TextMode is called, the current video mode is stored in LastMode.
In addition, LastMode is initialized at program startup to the then-active
video mode.

302 Turbo Pascal Owner's Handbook

var LastMode: word;

TextAttr

Stores the currently selected text attributes.

var TextAttr: byte;

The text attributes are normally set through calls to TextColor and
TextBackground. However, you can also set them by directly storing a value
in TextAttr. The color information is encoded in TextAttr as follows:

7 6 5 4 3 2 o
B b b b

where iff! is the 4-bit foreground color, bbb is the 3-bit background color,
and B is the blink-enable bit. If you use the color constants for creating
TextAttr values, note that the background color can only be selected from
the first 8 colors, and that it must be multiplied by 16 to get it into the
correct bit positions. The following assignment selects blinking yellow
characters on a blue background:

TextAttr := Yellow + Blue * 16 + Blink;

WindMin and WindMax

Store the screen coordinates of the current window.

var WindMin, WindMax : word;

These variables are set by calls to the Window procedure. WindMin defines
the upper left corner, and WindMax defines the lower right corner. The X
coordinate is stored in the low byte, and the Y coordinate is stored in the
high byte. For example, Lo(WindMin) produces the X coordinate of the left
edge, and Hi(WindMax) produces the Y coordinate of the bottom edge. The
upper left corner of the screen corresponds to (X,Y) = (0,0). Note, however,
that for coordinates passed to Window and GotoXY, the upper left corner is
at (1,1).

Procedures

Assignert Associates a text file with the CRT.

Chapter 24, Standard Units 303

ClrEol

ClrScr

Delay

DelLine

GotoXY

HighVideo

InsLine

LowVideo

NoSound

Sound

TextBackground

TextColor

TextMode

Window

Functions

KeyPressed

NormVideo

ReadKey

WhereX

WhereY

304

Clears all characters from the cursor position to the
end of the line without moving the cursor.

Clears the screen and places the cursor in the upper
left-hand corner.

Delays a specified number of milliseconds.

Deletes the line containing the cursor and moves all
lines below that line one line up. The bottom line is
cleared.

Positions the cursor. X is the horizontal position. Y is
the vertical position.

Selects high intensity characters.

Inserts an empty line at the cursor position.

Selects low intensity characters.

Turns off the internal speaker.

Starts the internal speaker.

Selects the background color.

Selects the foreground character color.

Selects a specific text mode.

Defines a text window on the screen.

Returns True if a key has been pressed on the
keyboard, and False otherwise.

Selects normal characters.

Reads a character from the keyboard.

Returns the X-coordinate of the current cursor
position, relative to the current window. X is the
horizontal position.

Returns the Y-coordinate of the current cursor
position, relative to the current window. Y is the
vertical position.

Turbo Pascal Owner's Handbook

The Graph Unit

The Graph unit implements a complete library of more than 50 graphics
routines that range from high-level calls, like Set ViewPort, Circle, Bar3D,
and DrawPoly, to bit-oriented routines, like GetImage and PutImage. Several
fill and line styles are supported, and there are several fonts that may be
magnified, justified, and oriented horizontally or vertically.

To compile a program that uses the Graph unit, you'll need your program's
source code, the compiler, access to the standard units in TURBO.TPL and
the Graph unit in GRAPH.TPU. To run a program that uses the Graph unit,
in addition to your .EXE program, you'll need one or more of the graphics
drivers CBGI files, see below). In addition, if your program uses any
stroked fonts, you'll need one or more font (.CHR) files as well.

(Pursuant to the terms of the license agreement, you can distribute the
.CHR and .BGI files along with your programs.)

Drivers

Graphics drivers are provided for the following graphics adapters (and true
compatibles):

.CGA
• MCGA
• EGA
.VGA
• Hercules
• AT&T 400 line
.3270 PC

Each driver contains code and data and is stored in a separate file on disk.
At runtime, the InitGraph procedure identifies the graphics hardware, loads
and initializes the appropriate graphics driver, puts the system into
graphics mode, and then returns control to the calling routine. The
CloseGraph procedure unloads the driver from memory and restores the
previous video mode. You can switch back and forth between text and
graphics modes using the RestoreCrtMode and setGraphMode routines. To
load the driver files yourself or link them into your .EXE, refer to
RegisterBGldriver in Chapter 27.

Graph supports computers with dual monitors. When Graph is initialized by
calling InitGraph, the correct monitor will be selected for the graphics driver
and mode requested. When terminating a graphics program, the previous
video mode will be restored. If auto-detection of graphics hardware is

Chapter 24, Standard Units 305

requested on a dual monitor system, InitGraph will select the monitor and
graphics card that will produce the highest quality graphics output.

CGA.BGI Driver for IBM CGA, MCGA
EGA VGA.BGI Driver for IBM EGA, VGA
HERC.BGI Driver for Hercules monochrome
ATT.BGI Driver for AT&T 6300 (400 line)
PC3270.BGI Driver for IBM 3270 PC

Coordinate System

By convention, the upper left corner of the graphics screen is (0,0). The x
values, or columns, increment to the right. The y values, or rows, increment
downward. Thus, in 320x200 mode on a CGA, the screen coordinates for
each of the four corners with a specified point in the middle of the screen
would look like this:

(0,0) (319,0)

• (159,99)

(0,199) (319,199)

Current Pointer

Many graphics systems support the notion of a current pointer (CP). The
CP is similar in concept to a text mode cursor except that the CP is not
visible.

Write (' ABC') ;

In text mode, the preceding Write statement will leave the cursor in the
column immediately following the letter C. If the C is written in column 80,
then the cursor will wrap around to column 1 of the next line. If the C is
written in column 80 on the 25th line, the entire screen will scroll up one
line, and the cursor will be in column 1 of line 25.

306 Turbo Pascal Owner's Handbook

MoveTo(O,O)
LineTo(20,20)

In graphics mode, the preceding LineTo statement will leave the CP at the
last point referenced (20,20). The actual line output would be clipped to the
current viewport if clipping is active. Note that the CP is never clipped.

The MoveTo command is the equivalent of GoToXY. It's only purpose is to
move the CPo Only the commands that use the CP move the CP: InitGraph,
MoveTo, MoveRel, LineTo, LineRel, OutText, SetGraphMode,* GraphDefaults,*
ClearDevice,* SetViewPort,* and ClearViewPort*. (The * indicates procedures
that move the CP to (0,0).)

Text

An 8x8 bit-mapped font and several "stroked" fonts are included for text·
output while in graphics mode. A bit-mapped. character is defined by an
8x8 matrix of pixels. A stroked font is defined by a series of vectors that tell
the graphics system how to draw the font.

The advantage to using a stroked font is apparent when you start to draw
large characters. Since a stroked font is defined by vectors, it will still retain
good resolution and quality when the font is enlarged.

When a bit-mapped font is enlarged, the matrix is multiplied by a scaling
factor and as the scaling factors becomes larger, the characters' resolution
becomes coarser. For small characters, the bit-mapped font should be
sufficient, but for larger text you will want to select a "stroked" font.

The justification of graphics text is controlled by the SetTextJustify
procedure. Scaling and font selection is done with the SetTextStyle
procedure. Graphics text is output by calling either the OutText or
OutTextXY procedures. Inquiries about the current text settings are made
by calling the GetTextSettings procedure. The size of stroked fonts can be
customized by the SetUserCharSize procedure.

Stroked fonts are each kept in a separate file on disk with a .CHR file
extension. Font files can be loaded from disk automatically by the Graph
unit at runtime (as described), or they can also be linked in or loaded by the
user program and "registered" with the Graph unit.

A special utility, BINOBJ.EXE, is provided that converts a font file (or any
binary data file, for that matter) to an .OBJ file that can be linked into a unit
or program using the {$L} compiler directive. This makes it possible for a
program to have all its font files built into the .EXE file. (Read the
comments at the beginning of the GRLINK.P AS sample program Disk 3.)

Chapter 24, Standard Units 307

Figures and Styles

All kinds of support routines are provided for drawing and filling figures,
including points, lines, circles, arcs, ellipses, rectangles, polygons, bars, 3-D
bars, and pie slices. Use SetLineStyle to control whether lines are thick or
thin, or whether they are solid, dotted, or built using your own pattern.

Use SetFillStyle and SetFillPattern, FillPoly and FloodFill to fill a region or a
polygon with cross-hatching or other intricate patterns.

Viewports and Bit Images

The ViewPort procedure makes all output commands operate in a
rectangular region on the screen. Plots, lines, figures-all graphics
output-are viewport-relative until the viewport is changed. Other
routines are provided to clear a viewport and read the current viewport
definitions. If clipping is active, all graphics output is clipped to the current
port. Note that the CP is never clipped.

GetPixel and PutPixel are provided for reading and plotting pixels. GetImage
and PutImage can be used to save and restore rectangular regions on the
screen. They support the full complement of BitBlt operations (normal, XOf,

Of, and, not).

Paging and Colors

There are many other support routines, including support for multiple
graphic pages (EGA, VGA, and Hercules only; especially useful for doing
animation), palettes, colors, and so on.

Error Handling

Internal errors in the Graph unit are returned by the function GraphResult.
GraphResult returns an error code that reports the status of the last graphics
operation. The following error return codes are defined:

.0: No error
• -1: (BGI) graphics not installed (use InitGraph)
• -2: Graphics hardware not detected
• -3: Device driver file not found
• -4: Invalid device driver file

308 Turbo Pascal Owner's Handbook

• -5: Not enough memory to load driver
• -6: Out of memory in scan fill
• -7: Out of memory in flood fill
• -8: Font file not found
• -9: Not enough memory to load font
• -10: Invalid graphics mode for selected driver
• -11: Graphics error
• -12: Graphics I/O error
• -13: Invalid font file
• -14: Invalid font number
• -15: Invalid device number

The following routines set GraphResult:

Bar
Bar3D
ClearViewPort
DetectGraph
DrawPoly
FillPoly
FloodFill
ImageSize

InitGraph
PieSlice
RegisterBGldriver
RegisterBGlfont
SetAliPalette
SetFillPattern
SetFillStyle
SetGraphBufSize

SetGraphMode
SetLineStyle
SetPalette
SetTextJustify
SetTextStyle
Set ViewPort
ValidMode

Note that GraphResult is reset to zero after it has been called. Therefore, the
user should store the value of GraphResult into a temporary variable and
then test it. The following return code constants are defined:

const
{ GraphResult error return codes
grOk 0;
grNolnitGraph -1;
grNotDetected -2;
grFileNotFound -3;
grlnvalidDriver -4;
grNoLoadMem -5;
grNoScanMem -6;
grNoFloodMem -7;
grFontNotFound -8;
grNoFontMem -9;
grlnvalidMode = -10;
grError = -11;
grIOError = -12;
grlnvalidFont = -13;
grlnvalidFontNum = -14;
grlnvalidDeviceNum = -15;

Chapter 24, Standard Units 309

Getting Started

Here's a simple graphics program:

1 program GraphTest;
2 uses
3 Graph;
4
5
6
7
8

var
GraphDriver integer;
GraphMode integer;
ErrorCode integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

{ Set flag: do detection

{ Error?

9
10
11
12
13
14
15
16
17
18
19
20
21
22

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Writeln('Program aborted ... ');
Halt(1);

end;
Rectangle (0, 0, GetMaxX, GetMaxY);
SetTextJustify(CenterText, CenterText);
SetTextStyle(DefaultFont, HorizDir, 3);
OutTextXY(GetMaxX div 2, GetMaxY div 2,

'Borland Graphics Interface (BGI)');
23 Readln;
24 CloseGraph;
25 end. { GraphTest

Draw full screen box
{ Center text

Center of screen

The program begins with a call to InitGraph, which autodetects the hard
ware and loads the appropriate graphics driver (located in C:\DRIVERS). If
no graphics hardware is recognized or an error occurs during initialization,
an error message is displayed and the program terminates. Otherwise, a
box is drawn along the edge of the screen and text is displayed in the center
of the screen.

Note: The AT&T 400 line card is not autodetected. You can still use the
AT&T graphics driver by overriding autodection and passing InitGraph the
AT&T driver code and a valid graphics mode. Replace lines 9 and 10 in the
preceding example with the following three lines of code:

GraphDriver := ATT400;
GraphMode := ATT400Hi;
InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');

This instructs the graphics system to load the AT&T 400 line driver located
in C: \ DRIVERS and set the graphics mode to 640 by 400.

Here's another example that demonstrates how to switch back and forth
between graphics and text modes:

310 Turbo Pascal Owner's Handbook

1 program GraphTest;
2 uses
3 Graph;
4 var
5 GraphDriver integer
6 GraphMode integer
7 ErrorCode integer
8 begin
9 GraphDriver:= Detect; { Set flag: do detection
10 InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');
11 ErrorCode:= GraphResult;
12 if ErrorCode <> grOk then { Error?
13 begin
14 Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
15 Writeln('Program aborted ... ');
16 Halt(I);
17 end;
18 OutText('In Graphics mode. Press <RETURN>');
19 Readln;
20 RestoreCRTMode;
21 Write('Now in text mode. Press <RETURN>');
22 Readln;
23 SetGraphMode(GraphMode);
24 OutText('Back in Graphics mode. Press <RETURN>');
25 Readln;
26 CloseGraph;
27 end. { GraphTest

Note that the SetGraphMode call on line 23 resets all the graphics parameters
(palette, current pointer, foreground, and background colors, and so on) to
the default values.

The call to Close Graph restores the video mode that was detected initially by
InitGraph and frees the heap memory that was used to hold the graphics
driver.

User-Written Heap Management Routines

Two heap management routines are used by the Graph unit: GraphGetMem
and GraphFreeMem. GraphGetMem allocates memory for graphics device
drivers, stroked fonts, and a scan buffer. GraphFreeMem deallocates the
memory allocated to the drivers. The standard routines take the following
form:

procedure GraphGetMem(var P : pointer; Size: word);
{ Allocate memory for graphics }

procedure GraphFreeMem(var P : pointer; Size : word);
{ Deallocate memory for graphics }

Chapter 24, Standard Units 311

Two pointers are defined by Graph that by default point to the two
standard routines described here. The pointers are defined as follows:

var
GraphGetMemPtr
GraphFreeMemPtr

pointer;
pointer

{ Pointer to memory allocation routine
Pointer to memory deal location routine

The heap management routines referenced by GraphGetMemPtr and
GraphFreeMemPtr are called by the Graph unit to allocate and deallocate
memory for three different purposes:

• a multi-purpose graphics buffer whose size can be set by a call to
SetGraphBufSize (default = 4K)

• a device driver that is loaded by InitGraph (*.BGI files)

• a stroked font file that is loaded by SetTextStyle (*.CHR files)

The graphics buffer is always allocated on the heap. The device driver is
allocated on the heap unless your program loads or links one in and calls
RegisterBGldriver, and the font file is allocated on the heap when you select
a stroked font using SetTextStyle-unless your program loads or links one
in and calls RegisterBGlfont.

Upon initialization of the Graph unit, these pointers point to the standard
graphics allocation and deallocation routines that are defined in the
implementation section of the Graph unit. You can insert you own memory
management routines by assigning these pointers the address of your own
routines. The user-defined routines must have the same parameter lists as
the standard routines and must be far procedures. The following is an
example of user-defined allocation and deallocation routines; notice the use
of MyExitProc to automatically call CloseGraph when the program
terminates:

program UserHeapManagement;
{ Illustrates how the user can steal the heap
{ management routines used by the Graph unit.
uses

Graph;
var

GraphDriver, GraphMode : integer;
ErrorCode : integer;
PreGraphExitProc : pointer;

{ Used to store GraphResult return code
{ Used to save original exit proc

{$F+} {User routines must be far call model}

procedure MyGetMem(var P : pointer; Size: word);
{ Allocate memory for graphics device drivers, fonts, and scan buffer }
begin

GetMem(P, Size)
end; { MyGetMem }

procedure MyFreeMem(var P pointer; Size word);

312 Turbo Pascal Owner's Handbook

{ Deallocate memory for graphics device drivers, fonts, and scan buffer}
begin

if P <> Nil then { Don't free Nil pointers!
begin

FreeMem(P, Size);
P := Nil;

end;
end; { MyFreeMem

procedure MyExitProc;
{ Always gets called when program terminates
begin

ExitProc := PreGraphExitProc;
CloseGraph;

end; { MyExitProc
{$F-}
begin

{ Install clean-up routine }
PreGraphExitProc := ExitProc;
ExitProc := @MyExitProc;

GraphGetMemPtr := @MyGetMem;
GraphFreeMemPtr := @MyFreeMem;

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

{ Restore original exit proc
{ Do heap clean up

{ Steal memory allocation
Steal memory deallocation

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Readln;
Ralt(l);

end;
Line(O, 0, GetMaxX, GetMaxY);
OutTextXY(I, I, 'Press <Return>:');
Readln;

end. {UserReapManagment}

Graph Interface Section: Constants, Types, and
Variables

There are many useful constant and type declarations in the Graph unit.
Here is an excerpt from the interface section of GRAPH. TPU for your
reference:

const
{ GraphResult error return codes }
grOk 0;
grNoInitGraph -1;
grNotDetected -2;
grFileNotFound -3;
grInvalidDriver -4;
grNoLoadMem -5;
grNoScanMem -6;

Chapter 24, Standard Units 313

grNoFloodMem -7;
grFontNotFound -8;
grNoFontMem -9;
grlnvalidMode = -10;
grError = -11; (Generic error }
grIOerror = -12;
grlnvalidFont = -13;
grlnvalidFontNum = -14;
grlnvalidDeviceNum = -15;

{ Define graphics drivers
Detect = 0; { Requests autodetection }
CGA = 1;
MCGA = 2;
EGA = 3;
EGA64 = 4;
EGAMono = 5;
RESERVED = 6;
HercMono = 7;
ATT400 = 8;
VGA = 9;
PC3270 = 10;

(Graphics modes
CGACO = 0;
CGAC1 = 1;
CGAC2 = 2;
CGAC3 = 3;
CGAHi = 4;
MCGACO = 0;
MCGAC1 = 1;
MCGAC2 = 2;
MCGAC3 = 3;
MCGAMed = 4;
MCGAHi = 5;
EGALo = 0;
EGAHi = 1;
EGA64Lo = 0;
EGA64Hi = 1;
EGAMonoHi = 3;
HercMonoHi = 0;
ATT400CO = 0;
ATT400C1 = 1;
ATT400C2 = 2;
ATT400C3 = 3;
ATT400Med = 4;
ATT400Hi = 5;
VGALo = 0;
VGAMed = 1;
VGAHi = 2;
PC3270Hi = 0;

for each driver }
{ 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page

{ 320x200 palette 2: Green, Red, Brown; 1 page
{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page

{ 640x200 1 page
(320x200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page

{ 320x200 palette 2: Green, Red, Brown; 1 page
{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page

{ 640x200 1 page }
{ 640x480 1 page }

640x200 16 color 4 page }
640x350 16 color 2 page }

{ 640x200 16 color 1 page }
{ 640x350 4 color 1 page }

{ 640x350 64K on card, 1 page; 256K on card, 2 page }
{ 720x348 2 page }

{ 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page}
320x200 palette 1: LightCyan, LightMagenta, White; 1 page}

{ 320x200 palette 2: Green, Red, Brown; 1 page}
{ 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }

{ 640x200 1 page }
{ 640x400 1 page }

640x200 16 color 4 page }
640x350 16 color 2 page }
640x480 16 color 1 page }

{ 720x350 1 page }

{ Colors for SetPalette and SetAllPalette
Black = 0;
Blue
Green
Cyan
Red

314

= 1;
= 2;
= 3;
= 4;

Turbo Pascal Owner's Handbook

Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

{ Line styles and widths for Get/SetLineStyle }
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;

NormWidth = 1;
ThickWidth = 3;

{ Set/GetTextStyle constants
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

HorizDir = 0;
VertDir = 1;

UserCharSize = 0;

{ Clipping constants
ClipOn = True;
ClipOff = False;

{ Bar3D constants
TopOn = True;
TopOff = False;

{ Fill patterns for Get/SetFillStyle
EmptyFill = 0;
SolidFill = 1;
LineFill = 2;
LtSlashFill = 3;
SlashFill = 4;
BkSlashFill = 5;
LtBkSlashFill 6;
HatchFill = 7;
XHatchFill = 8;
InterleaveFill = 9;
WideDotFill = 10;
CloseDotFill = 11;
UserFill = 12;

Chapter 24, Standard Units

{ User-defined line style }

8x8 bit-mapped font
{ "Stroked" fonts

{ Left to right
{ Bottom to top

User-defined character size

Fills area in background color
Fills area in solid fill color }

{ --- fill }
{ I I I fill }

{ III fill with thick lines}
{ \\\ fill with thick lines}

{ \\\ fill }
{ Light hatch fill }

Heavy cross hatch fill }
Interleaving line fill }

{ Widely spaced dot fill }
Closely spaced dot fill }

{ User-defined fill }

315

{ BitBlt operators for Put Image }
NormalPut 0;
XORPut 1;
OrPut 2;
AndPut 3;
NotPut 4;

MOV
XOR
OR
AND
NOT

{ Horizontal and vertical justification for SetTextJustify }
LeftText 0;
CenterText 1; { CenterText = 1; already defined above
RightText 2;

BottomText 0;
TopText 2;

const
MaxColors 15;

type

byte;
PaletteType record

Size
Colors

end;
array[O .. MaxColors] of shortint;

LineSettingsType = record
LineStyle word;
Pattern word;
Thickness word;

end;

TextSettingsType = record
Font word;
Direction word;
CharSize word;
Horiz word;
Vert word;

end;

FillSettingsType record
Pattern word;
Color word;

end;

FillPatternType = array[I .. 8] of byte;
Point Type = record

X, Y : integer;
end;

ViewPort Type = record
xl, yl, x2, y2
Clip

end;

ArcCoordsType record
X, Y

316

Xstart, Ystart
Xend, Yend

end;

integer;
boolean;

integer;
integer;
integer;

{ Predefined fill style }

{ User-defined fill style }

Turbo Pascal Owner's Handbook

var
GraphGetMemPtr
GraphFreeMemPtr

pointer;
pointer;

{ Allows user to steal heap allocation
Allows user to steal heap deal location

{ *** High-level error handling *** }
function GraphErrorMsg(ErrorCode : integer)
function GraphResult : integer;

string;

{ *** Detection, initialization, and CRT mode routines *** }
procedure DetectGraph(var GraphDriver, GraphMode : integer);
procedure InitGraph(var GraphDriver : integer;

var GraphMode : integer;
PathToDriver : string);

function RegisterBGlfont(font : pointer) : integer;
function RegisterBGldriver(driver : pointer) : integer;
procedure SetGraphBufSize(BufSize : word);
procedure GetModeRange(GraphDriver : integer; var LoMode, HiMode integer);
procedure SetGraphMode(Mode : integer);
function GetGraphMode : integer;
procedure GraphDefaults;
procedure RestoreCrtMode;
procedure CloseGraph;
function GetX : integer;
function GetY : integer;
function GetMaxX integer;
function GetMaxY : integer;

{ *** Screen, viewport, page routines *** }
procedure ClearDevice;
procedure SetViewPort(xl, yl, x2, y2 : integer; Clip: boolean);
procedure GetViewSettings(var ViewPort: ViewPortType);
procedure ClearViewPort;
procedure SetVisualPage(Page word);
procedure SetActivePage(Page word);

{ *** Point-oriented routines *** }
procedure PutPixel(X, Y integer; Pixel word);
function GetPixel(X, Y : integer) : word;

{ *** Line-oriented routines *** }
procedure LineTo(X, Y : integer);
procedure LineRel(Dx, Dy : integer);
procedure MoveTo(X, Y : integer);
procedure MoveRel(Dx, Dy : integer);
procedure Line(xl, yl, x2, y2 : integer);
procedure GetLineSettings(var Linelnfo : LineSettingsType);
procedure SetLineStyle(LineStyle word;

Pattern word;
Thickness word);

{ *** Polygon, fills and figures *** }
procedure Rectangle (xl, yl, x2, y2 : integer);
procedure Bar(xl, yl, x2, y2 : integer);
procedure Bar3D(xl, yl, x2, y2 : integer; Depth: word; Top boolean);
procedure DrawPoly(NumPoints : word; var PolyPoints);
procedure FillPoly(NumPoints : word; var PolyPoints);
procedure GetFillSettings(var Filllnfo : FillSettingsType);
procedure GetFillPattern(var FillPattern : FillPatternType);

Chapter 24, Standard Units 317

procedure SetFillStyle(Pattern : word; Color: word);
procedure SetFillPattern(Pattern : FillPatternType; Color word);
procedure FloodFill(X, Y : integer; Border: word);

{ *** Are, circle, and other curves *** }
procedure Arc (X, Y : integer; StAngle, EndAngle, Radius word);
procedure GetArcCoords(var ArcCoords : ArcCoordsType);
procedure Circle (X, Y : integer; Radius: word);
procedure Ellipse(X, Y : integer;

StAngle, EndAngle : word;
XRadius, YRadius : word);

procedure GetAspectRatio(var Xasp, Yasp : word);
procedure PieSlice(X, Y : integer; StAngle, EndAngle, Radius word);

{ *** Color and palette routines ***
procedure SetBkColor(Color : word);
procedure SetColor(Color : word);
function GetBkColor : word;
function GetColor : word;
procedure SetAllPalette(var Palette);
procedure SetPalette(ColorNum : word; Color: shortint);
procedure GetPalette(var Palette: PaletteType);
function GetMaxColor : word;

{ *** Bit-image routines *** }
function ImageSize(xl, yl, x2, y2 : integer) : word;
procedure Get Image (xl, yl, x2, y2 : integer; var BitMap);
procedure PutImage(X, Y : integer; var BitMap; BitBlt : word);

{ *** Text routines *** }
procedure GetTextSettings(var TextInfo : TextSettingsType);
procedure OutText(TextString : string);
procedure OutTextXY(X, Y : integer; TextString : string);
procedure SetTextJustify(Horiz, Vert: word);
procedure SetTextStyle(Font, Direction: word; CharSize : word);
procedure SetUserCharSize(MultX, DivX, MultY, DivY : word);
function TextHeight(TextString : string) : word;
function TextWidth(TextString : string) : word;

Procedures

Arc

Bar

Bar3D

Circle

ClearDevice

318

Draws a circular arc from start angle to end angle,
using (x,y) as the center point.

Draws a bar using the current fill style and color.

Draws a 3-D bar using the current fill style and
color.

Draws a circle using (x,y) as the center point.

Clears the currently selected output device and
homes the current pointer.

Turbo Pascal Owner's Handbook

ClearViewPort

Close Graph

DetectGraph

DrawPoly

Ellipse

FillPoly

FloodFill

GetArcCoords

GetAspectRatio

GetFillPattem

GetFillSettings

Getlmage

GetLineSettings

GetModeRange

GetPalette

GetTextSettings

Get ViewSettings

GraphDefaults

Clears the current viewport.

Shuts down the graphics system.

Checks the hard ware and determines which
graphics driver and mode to use.

Draws the outline of a polygon using the current
line style and color.

Draws an elliptical arc from start angle to end angle,
using (X, Y) as the center point.

Fills a polygon, using the scan converter.

Fills a bounded region using the current fill pattern
and fill color.

Allows the user to inquire about the coordinates of
the last Arc command.

Returns the effective resolution of the graphics
screen from which the aspect ratio (Xasp:Yasp) can
be computed.

Returns the last fill pattern set by a call to
SetFillPattern.

Allows the user to inquire about the current fill
pattern and color as set by SetFillStyle or
SetFillPattern.

Saves a bit image of the specified region into a
buffer.

Returns the current line style, line pattern, and line
thickness as set by SetLineStyle.

Returns the lowest and highest valid graphics mode
for a given driver.

Returns the current palette and its size.

Returns the current text font, direction, size, and
justification as set by SetTextStyle and SetTextJustify.

Allows the user to inquire about the current
viewport and clipping parameters.

Homes the current pointer (CP) and resets the
graphics system.

Chapter 24, Standard Units 319

InitGraph

Line

LineRel

LineTo

MoveRel

MoveTo

OutText

OutTextXY

PieSlice

PutImage

PutPixel

Rectangle

RestoreCrtMode

SetActivePage

SetAllPalette

SetBkColor

SetColor

SetFillPattern

SetFillStyle

SetGraphBufSize

SetGraphMode

SetLineStyle

SetPalette

320

Initializes the graphics system and puts the
hardware into graphics mode.

Draws a line from the (xl, y1) to (x2, y2).

Draws a line to a point that is a relative distance
from the current pointer (CP).

Draws a line from the current pointer to (x,y).

Moves the current pointer (CP) a relative distance
from its current position.

Moves the current graphics pointer (CP) to (x,y).

Sends a string to the output device at the current
pointer.

Sends a string to the output device.

Draws and fills a pie slice, using (X, Y) as the center
point and drawing from start angle to end angle.

Puts a bit image onto the screen.

Plots a pixel at x,y.

Draws a rectangle using the current line style and
color.

Restores the original screen mode before graphics is
initialized.

Set the active page for graphics output.

Changes all palette colors as specified.

Sets the current background color using the palette.

Sets the current drawing color using the palette.

Selects a user-defined fill pattern.

Sets the fill pattern and color.

Allows you to change the size of the buffer used for
scan and flood fills.

Sets the system to graphics mode and clears the
screen.

Sets the current line width and style.

Changes one palette color as specified by ColorNum
and Color.

Turbo Pascal Owner's Handbook

SetTextJustify

SetTextStyle

SetUserCharSize

SetViewPort

SetVisualPage

Functions

Sets text justification values used by OutText and
OutTextXY.

Sets the current text font, style, and character
magnification factor.

Lets you change the character width and height for
stroked fonts.

Sets the current output viewport or window for
graphics output.

Sets the visual graphics page number.

GetBkColor Returns the current background color.

GetColor Returns the current drawing color.

GetGraphMode Returns the current graphics mode.

GetMaxColor Returns the highest color that can be passed to
SetColor.

GetMaxX Returns the rightmost column (x resolution) of the
current graphics driver and mode.

GetMaxY Returns the bottommost row (y resolution) of the
current graphics driver and mode.

GetPixel Gets the pixel value at X, Y.

GetX Returns the X coordinate of the current position
(CP).

GetY Returns the Y coordinate of the current position
(CP).

GraphErrorMsg Returns an error message string for the specified
ErrorCode.

GraphResult Returns an error code for the last graphics
operation.

ImageSize Returns the number of bytes required to store a
rectangular region of the screen.

RegisterBGIdriver Registers a valid BGI driver with the graphics
system.

RegisterBGIfont Registers a valid BFI font with the graphics system.

Chapter 24, Standard Units 321

TextHeight

TextWidth

Returns the height of a string in pixels.

Returns the width of a string in pixels.

For a detailed description of each procedure or function, refer to Chapter
27.

The Turbo3 Unit

Every routine in this unit is duplicated or improved upon in other standard
units. The Turbo3 unit is provided for backward compatibility only. By
using Turbo3, you gain more 3.0-compatibility, but lose direct access to
important new features built into some of the standard routines duplicated
here. (Note that you can still call these standard routines by using the unit
override syntax; for example, Turbo3' s MemAvail calls the System.MemAvail
function even if you are using the Turbo3 unit in your program. For more
information about referring to routines with the same name in other units,
look at Chapter 4, "Units and Related Mysteries.")

Note: The routines that follow are not described in Chapter 27, the lookup
section. For more detailed information about Turbo3 routines, refer to your
Turbo Pascal 3.0 reference manual.

Interface Section

Here's a look at the interface section of the Turbo3 unit:

unit Turbo3;
interface
uses Crt;
var

Kbd Text;
CBreak : boolean absolute CheckBreak;

function MemAvail: integer;
function MaxAvail: integer;
function LongFileSize(var F): real;
function LongFilePos(var F): real;
procedure LongSeek(var F; Pos: real);
procedure HighVideo;
procedure NormVideo;
procedure LowVideo;
function IOResult : integer;

As you can see, there are two global variables, five functions, and four
procedures declared in the Turbo3 unit.

322 Turbo Pascal Owner's Handbook

Kbd

This is provided for 3.0 programs that read from.the keyboard device; for
example, Read(Kbd, CharVar). Note that there is now a function in the Crt
unit called ReadKey that should be used in place of Read(Kbd, CharVar). Here
are two programs that read a character and report whether an extended
key was typed (F1, F2, Left arrow, and so on):

In version 3.0:

program TestKbd;
uses Crt, Turbo3;
var

c : char;
begin

Read (Kbd, c);
if (c = #27) and KeyPressed then
begin

Read (Kbd, c);
Writeln('Extended key: " c);

end
else

Writeln(c);
end.

Notice that the Kbd device handler converts extended keys from (null +
character) to (ESC + second character). Since Esc (#27) is a perfectly valid
key to enter from the keyboard, a call to KeyPressed must be made to
determine whether the #27 is the first key from an extended key or an
actual Esc typed on the keyboard. If an Esc is typed, followed quickly by
another character before the program detected the Esc, the two keys would
be mistaken as an extended keystroke.

In version 4.0:

program TestReadKey;
uses Crt;
var

c : char;

begin
c := ReadKey;
if (c = #0) then

Writeln('Extended key: " ReadKey);
else

Writeln(c);
end.

The code in 4.0 is smaller (and faster), and contains none of the ambiguity
about the leading character of an extended keystroke. (It is impossible to
generate a null character from the keyboard except when using the
extended keys.)

Chapter 24, Standard Units 323

Cbreak

Cbreak has been renamed to CheckBreak in version 4.0. Backward
compatibility is achieved by giving Cbreak the same address as CheckBreak,
which is declared in the Crt unit. The statement Cbreak := False turns off
Control-Break checking; Cbreak := True turns it back on.

Procedures

LongSeek

HighVideo

NormVideo

LowVideo

Functions

MemAvail

MaxAvail

LongFileSize

. LongFilePos

IOResult

Moves the current position of a file to a specified
. component. Uses a real number parameter to specify the
component number.

Sets the video attribute to yellow on black (color
systems) or white on black (black and white, mono
systems).

Same as HighVideo. Sets the video attribute to yellow on
black (color systems) or white on black (black and white,
mono systems).

Sets the video attribute to LightGray on black.

Returns the number of free paragraphs of heap storage
available.

Returns the size of the largest contiguous free block in
the heap (in paragraphs).

Returns the size of the file. The value returned is a real
number.

Returns the current file position of a file. The value
returned is a real number.

IOResuit returns an integer value that is the status of the
last I/O operation performed. The Turbo3 IOResuit
function returns 3.0-compatible return codes wherever
possible.

The Graph3 Unit

The Graph3 unit is a direct implementation of the turtlegraphics driver
provided by Turbo Pascal 3.0. In Turbo Pascal 3.0, the turtlegraphics driver

324 Turbo Pascal Owner's Handbook

was made up of two files, GRAPH.P and GRAPH. BIN that supported the
IBM CGA and compatibles. GRAPH.P actually defines the external
machine code routines contained in GRAPH.BIN.

Graph3 combines GRAPH.P and GRAPH.BIN into a single unit, still
retaining the same functionality. The only modification you need to make
to a Turbo Pascal 3.0 program that uses the turtlegraphics driver is to
remove the {$I GRAPH.P} compiler directive, replacing it with a reference
to Crt and Graph3 in your program's uses clause.

Note: The routines that follow are not described in Chapter 27, the lookup
section. For more detailed information about Graph3J routines, refer to your
Turbo Pascal 3.0 reference manual.

Here are Graph3' s constants:

const
North = 0;
East = 90;
South = 180;
West = 270;

Procedures

Arc

Back

Circle

ClearScreen

ColorTable

Draw

FillPattem

FillScreen

FillShape

Forwd

Draws an arc using the given parameters.

Moves the turtle backward by the given distance.
(Turtlegraphics)

Draws a circle.

Clears the active window and homes the turtle.
(Turtlegraphics)

Defines a color translation table that lets the
current color of any given point determine the new
color of that point when it is redrawn.

Draws a line between the specified endpoints and
in the specified color.

Fills a rectangular area with the current pattern
using the specified color.

Fills the entire active window with the indicated
color.

Fills an area of any shape with the specified color.

Moves the turtle forward by the given distance.
(Turtlegraphics)

Chapter 24, Standard Units 325

GetDotColor

GetPic

GraphBackground

GraphColorMode

GraphMode

Graph Window

Heading

HideTurtle

HiRes

HiRes Color

Home

NoWrap

Palette

Pattern

PenDown

PenUp

Plot

PutPic

SetHeading

326

Returns the color value of the dot at the indicated
location.

Copies the contents of an area on the screen into a
buffer; the contents can later be restored using
PutPic.

Sets background color of screen.

Sets you in 320x200 color graphics mode.

Sets you in 320x200 black-and-white graphics
mode.

Lets you define an area of the screen as the active
window in any of the graphics modes.

Returns the current heading of the turtle.
(Turtlegraphics)

Hides the turtle. (Turtlegraphics)

Sets screen in 640x200 high-resolution graphics
mode.

Selects the color used for drawing in high
resolution graphics.

Puts the turtle in its home position.
(Turtlegraphics)

Disables "wrapping" for the turtle.
(Turtlegraphics)

Activates the color palette specified.

Defines an 8x8 pattern to be used by FillPattern.

Pu ts the turtle's pen "down" so tha t any
movement of the turtle results in drawing.
(Turtlegraphics)

Puts the turtle's pen "up" so that the turtle can be
moved without drawing. (Turtlegraphics)

I

Plots a point at the specified coordinates and in the
specified color. ~

Copies the contents of a buffer.
,

Turns the turtle to the specified angle.
(Turtlegraphics) I

Turbo Pascal Owner's Handbook

SetPenColor

SetPosition

ShowTurtle

TumLeft

TumRight

TurtleWindow

TurtleThere

TurtleDelay

Wrap

XCor

YCor

Sets the color used for the turtle's pen.
(Turtle graphics)

Moves the turtle to the given coordinates without
drawing a line. (Turtlegraphics)

Makes the turtle visible. (Turtlegraphics)

Turns the turtle's heading to the left (counter
clockwise). (Turtlegraphics)

Turns the turtle's heading to the right (clockwise).
(Turtlegraphics)

Defines an area of the screen as the active turtle
graphics screen. (Turtle graphics)

Tests if the turtle is visible and in the active
window. (Turtlegraphics)

Sets a delay between each step of the turtle.
(Turtlegraphics)

Forces wraparound when the turtle attempts to
move past the boundaries of the active window.
(Turtlegraphics)

Returns the current X-coordinate of the turtle.
(Turtlegraphics)

Returns the current Y-coordinate of the turtle.
(Turtlegraphics)

Chapter 24, Standard Units 327

328 Turbo Pascal Owner's Handbook

c H A p T E R

25

Using the 8087

There are two kinds of numbers you can work with in Turbo Pascal:
integers (shortint, integer, longint, byte, word) and reals (real, single,
double, extended, comp). Reals are also known as floating-point numbers.
The 8086 processor is designed to easily handle integer values, but it takes
considerably more time and effort to handle reals; The 8086 family of
processors has a corresponding family of math coprocessors, the 8087s.

The 8087 is a special hardware numeric processor that can be installed in
your PC. It executes floating-point instructions very quickly, so if you use
floating point a lot, you'll probably want a coprocessor.

Turbo Pascal is designed to provide optimal floating-point performance
whether or not you have an 8087 .

• For programs running on any PC, with or without an 8087, Turbo Pascal
provides the real type and an associated library of-software routines that
handle floating-point operations. The real type occufies 6 bytes of
memory, providing a range of 2.9 x 10-39 to 1.7 X 103 with 11 to 12
significant digits. The software floating.;.point library is optimized for
speed and size, trading in some of the fancier features provided by the
8087 processor .

• If you're only writing programs for systems that have a math
coprocessor, you can instruct Turbo Pascal to produce code that uses the
8087 chip. This gives you access to four additional real types (single,
double, extended, and comp), and an extended floating-point range of 1.9
x 10E-4951 .. 1.1 x 10E4932 with 19 to 20 significant digits.

You can switch between the two different models of floating-point code
generation with the $N compiler directives or with the Ole/Numeric

Chapter 25, Using the 8087 329

processing menu item. {$N-} indicates software floating point (the default),
and {$N+} indicates hardware floating point.

The remainder of this chapter discusses special issues concerning Turbo
Pascal programs that use the 8087 coprocessor.

The 8087 Data Types

For programs that use the 8087, Turbo Pascal provides four new real types
in addition to the type real.

.• The single type is the smallest format you can use with floating-point
numbers. It occupies 4 bytes of memory, providing a range of 1.5 x 10-45
to 3.4 X 1038 with 7to 8 significant digits.

, • The double type occupies 8 bytes of memory, providing a range of 5.0
x 10-324 to 1.7 x 10308with 15 to 16 significant digits .

• The extended type is the largest floating-point type supported by the
8087. It occupies 10 bytes of memory, providing a range of 1.9 x 10E-4951
to 1.1 x 10E4932 with 19 to 20 significant digits. Any arithmetic involving
real-type values is performed with the range and precision of the
'extended type .

• The comp tfpe stores integral values in 8 bytes, rroviding a range of
_263+1 to 26 -1, which is approximately -9.2 x 101 to 9.2 X 1018• Comp
may be compared to a double ... precision longint, but it is considered a
real type because arithmetic done with comp uses the 8087 coprocessor.
Comp is well suited for representing monetary values as' integral values
of cents or mils (thousands) in business applications.

Whether or not you have an 8087, the 6-byte real type is always available,
so you need not modify your source code when switching to the 8087, and
you can still read data files generated by programs 'that use software
floating point.

Note, however, that hardware floating-point calculations on variables of
type real are slightly slower than on other types. This is because the 8087
cannot directly process the real format-instead, calls must be made to
library routines to convert real values to extended before operating on
them. If you are concerned with optimum speed and never need to run on
a system without an 8087, you may want to use the single, double,
extended, and comp types exclusively.

330 Turbo Pascal Owner's Handbook

Extended Range Arithmetic

The extended type is the basis of all floating-point computations with the
8087. Turbo Pascal uses the extended format to store all non-integer
numeric constants and evaluates all non-integer numeric expressions to
extended. The entire right side of the following assignment, for instance,
will be computed in extended before being converted to the type on the left
side:

var
X,A,B,C : real;

begin
X := (B + Sqrt(B * B - A * Cll / A;

end;

With no special effort by the· programmer, Turbo Pascal performs compu
tations using the precision and range of the extended type. The added
precision means smaller round-off errors, and the additional range means
overflow and underflow are less common, so that programs work more
often.

You can go beyond Turbo Pascal's automatic extended capabilities. For
example, you can declare- variables used for intermediate results to be of
type extended. The following example computes a sum of products:

var
Sum : single;
X,Y array[1 .. 100] of single;
I integer;
T extended;

begin
T := 0.0;
for I := 1 to 100 do T := T + XlI] * Y[I];
Sum := T;

end;

{ For intermediate results }

Had T been declared single, the assignment to T would have caused a
round-off error at the limit of single precision at each loop entry. But
because T is extended, all round-off errors are at the limit of extended
precision, except for the one resulting from the assignment of T to Sum.
Fewer round-off errors mean more accurate results.

You can also declare formal value parameters and function results to be of
type extended. This avoids unnecessary conversions between numeric
types, which can result in loss of accuracy. For example:

Chapter 25, Using the 8087 331

function Area (Radius: extended): extended;
begin

Area := Pi * Radius * Radius;
end;

Comparing Reals

Because real-type values are approximations, the results of comparing
values of different real types are not always as expected. For example, if X
is a variable of type single and Y is a variable of type double, then the
following statements will output False:

x := 1/3;
Y := 1/3;
Writeln(X = Y);

The reason is that X is accurate only to 7 to 8 digits, where Y is accurate to
15 to 16 digits, and when both are converted to extended, they will differ
after 7. to 8 digits. Likewise, the statements

x := 1/3;
Writeln(X = 1/3);

will output False, since the result of 1/3 in the Writeln statement is
calculated with 20 significant digits.

The 8087 Evaluation Stack

The 8087 coprocessor has an internal evaluation stack that can be up to
eight levels deep. Accessing a value on the 8087 stack is much faster than
accessing a variable in memory; so to achieve the best possible perfor
mance, Turbo Pascal uses the 8087' s stack for storing temporary results and
passing parameters to procedures and functions.

The implication of using the 8087 stack for parameter transfers is that a
procedure or function cannot have more than eight value parameters of the
8087 types (single, double, extended, orcomp). The compiler will not give
an error if you attempt to declare more, but the program will terminate
with a runtime error when you call the subprogram. There are no limits to
the number of parameters of type real you can have, and likewise, you can
declare any number of var parameters.

Note: As part of its entry code, a procedure or function stores any 8087-
type value parameters in temporary locations allocated on the 8086 stack.

332 Turbo Pascal Owner's Handbook

The parameters only occupy 8087 stack space during the call, not during
execution of the procedure or function.

In theory, very complicated real-type expressions can cause an 8087 stack
overflow. However, this is not likely to occur, since it would require the
expression to generate more than eight temporary results.

A more tangible danger lies in nested function calls. If such constructs are
not coded correctly, they can very well cause an 8087 stack overflow.

Assuming function Test is an extended function that takes three extended
value parameters, then the construct

X := Test(A,B,Test(C,D,Test(E,F,Test(X,Y,Z))));

will cause an 8087 stack overflow. This is because at the innermost call to
Test, six floating-point values have already been pushed on the 8087 stack,
leaving room for only two more. The correct construct in this case is

X := Test(X,Y,Z);
X := Test(E,F,X);
X := Test(C,D,X);
X := Test(A,B,X);

A corresponding situation can arise in functions that execute recursively.
Consider the following procedure that calculates Fibonacci numbers using
recursion:

function Fib(N: integer): extended;
begin

if N = a then Fib := 0.0 else
if N = 1 then Fib := 1.0 else
Fib := Fib(N-1) + Fib(N-2);

end;

A call to this version of Fib will cause an 8087 stack overflow for values of N
larger than 8. The reason is that the calculation of the last assignment
requires a temporary on the 8087 stack to store the result of Fib(N-l). Each
recursive invocation allocates one such temporary, causing an overflow the
ninth time. The correct construct is this case is

function Fib(N: integer): extended;
var

F1,F2: extended;

begin
if N = a then

Fib := 0.0
else

if N = 1 then
Fib := 1. a

Chapter 25, Using the 8087 333

end;

else
begin

Fl := Fib(N-l); F2 := Fib(N-2);
Fib := Fl + F2;

end;

The temporary results are now stored in variables allocated on the 8086
stack. (The 8086 stack can of course also overflow, but this would typically
require significantly more recursive calls.)

Writing Reals with the 8087

In the {$N+} state, the Write and Writeln standard procedures output four
digits, not two, for the exponent in a floating-point decimal string to
provide for the extended numeric range. Likewise, the Str standard
procedure returns a four-digit exponent when floating-point format is
selected.

Units Using the 8087

Units that use the 8087 can only be used by other units or programs that are
compiled in the {$N+} state.

The fact that a unit uses the 8087 is determined by whether it contains 8087
instructions-not by the state of the $N compiler directive at the time of its
compilation. This makes the compiler more forgiving in cases where you
accidentally compile a unit (that doesn't use the 8087) in the {$N+} state.

Note that the use of 8087 instructions from object code linked in from .OBJ
files is not detected. If you link with an .OBJ file that uses the math
coprocessor, the .OBJ must do its own initialization and error-checking.

334 Turbo Pascal Owner's Handbook

c H A p T E R

26

Inside Turbo Pascal

In this chapter, we provide technical information for advanced Turbo
Pascal programmers. We'll cover such topics as memory maps, the heap
manager, internal data formats, calling conventions, and more.

Figure 26.1 (on page 336) depicts the memory map of a Turbo Pascal
program.

The Program Segment Prefix (PSP) is a 256-byte area built by MS-DOS
when the .EXE file is loaded. The segment address of PSP is stored in the
predeclared word variable PrefixSeg.

Each module (which includes the main program and each unit) has its own
code segment. The main program occupies the first code segment; the code
segments that follow it are occupied by the units (in reverse order from
how they are listed in the uses clause), and the last code segment is
occupied by the runtime library (the System unit). The size of a single code
segment cannot exceed 64K, but the total size of the code is limited only by
the available memory.

Chapter 26, Inside Turbo Pascal 335

FreePfr -+

HeapPfr -+

HeapOrg -+

DSeg -+

Uses A a
c. D. E;

PrefixSeg -+

~
"'7

Top of D OS M emory

~ The free list
keeps track of available heap space

Free memory

1
The Heap
grows
toward high
memory ...

The Stack Segment The Stack grows ! toward low
memory ...

Global Variables

The Data Segment

Typed Constants

Runtime Library Code Segment

Unit '1\ Code Segment

(Other Unit Code Segments)

Unit 'F Code Segment

Main Program Code Segment

Program Segment Prefix (PSP)

Figure 26.1: Turbo Pascal Memory Map

<:

·s
"'7'

+- Sptr

+- SSeg

Contents
of .EXE
File
Image

The data segment (addressed through D5) contains all typed constants
followed by all global variables. The D5 register is never changed during
program execution. The size of the data segment cannot exceed 64K.

On entry to the program, the stack segment register (55) and the stack
pointer (5P) are loaded so that 55:5P points to the first byte past the stack
segment. The 55 register is never changed during program execution, but
5P can move downward until it reaches the bottom of the segment. The size
of the stack segment cannot exceed 64K; the default size is 16K, but this can
be changed with a $M compiler directive.

The heap stores dynamic variables, that is, variables allocated through calls
to the New and GetMem standard procedures. It occupies all or some of the
free memory left when a program is executed. The actual size of the heap
depends on the minimum and maximum heap values, which can be set

336 Turbo Pascal Owner's Handbook

with the $M compiler directive. Its size is guaranteed to be at least the
minimum heap size and never more than the maximum heap size. If the
minimum amount of memory is not available, the program will not
execute. The default heap minimum is 0 bytes, and the default heap
maximum is 640 Kb; this means that by default the heap will occupy all
remaining memory.

As you might expect, the heap manager (which is part of Turbo Pascal's
runtime library) manages the heap. It is described in detail in the following
section.

The Heap Manager

The heap is a stack-like structure that grows from low memory in the heap
segment. The bottom of the heap is stored in the variable HeapOrg, and the
top of the heap, corresponding to the bottom of free memory, is stored in
the variable HeapPtr. Each time a dynamic variable is allocated on the heap
(via New or GetMem), the heap manager moves HeapPtr upward by the size
of the variable, in effect stacking the dynamic variables on top of each other.

HeapPtr is always normalized after each operation, thus forcing the offset
part into the range $0000 to $OOOF. The maximum size of a single variable
that can be allocated on the heap is 65521 bytes (corresponding to $10000
minus $OOOF), since every variable must be completely contained in a single
segment.

Disposal Methods

The dynamic variables stored on the heap are disposed of in one of two
ways: (1). through Dispose or FreeMem or (2) through Mark and Release. The
simplest scheme is that of Mark and Release; for example, if the following
statements are executed:

New (Ptrl) ;
New(Ptr2) ;
Mark(P);
New(Ptr3);
New(Ptr4);
New(PtrS);

the layout of the heap will then look like Figure 26.2.

Chapter 26, Inside Turbo Pascal 337

Pfr1 -+

Pfr2 -+

Pfr3 -+

Pfr4 -+

PfrS -+

HeapPfr -+

Contents of Pfr1"

Contents of Pfr2~

Contents of Pfr3"

Contents of Pfr4"

Contents of PfrS"

Figure 26.2: Disposal Method Using Mark and Release

low
Memory

High
Memory

The Mark(P) statement marks the state of the heap just before Ptr3 is
allocated (by storing the current ReapPtr in P). If the statement Release(P) is
executed, the heap layout becomes like that of Figure 26.3, effectively
disposing of all pointers allocated since the call to Mark.

Pfr1 -+

Pfr2 -+

HeapPfr -+

Contents of Pfr1"

Contents of Pfr2"

Figure 26.3: Heap Layout with Release(P) Executed

low
Memory

High
Memory

Note: Executing Release(ReapOrg) completely disposes of the entire heap
because HeapOrg points to the bottom of the heap.

For applications that dispose of pointers in exactly the reverse order of
allocation, the Mark and Release procedures are very efficient. Yet most

338 Turbo Pascal Owner's Handbook

programs tend to allocate and dispose of pointers in a more random
manner, requiring the more-sophisticated management technique imple
mented by Dispose and FreeMem. These procedures allow an application to
dispose of any pointer at any time.

When a dynamic variable that is not the topmost variable on the heap is
disposed of through Dispose or FreeMem, the heap becomes fragmented.
Assuming that the same statement sequence has been executed, then after
executing Dispose(Ptr3), a "hole" is created in the middle of the heap (see
Figure 26.4).

ptr1 --+ Low

Contents of ptr1"
Memory

ptr2 --+

Contents of ptr2"

ptr4 --+

Contents of ptr4"
ptrS --+

Contents of ptrS"
Heapptr --+

High
L--_________________ ----1 Memory

Figure 26.4: Creating a 'Hole' in the Heap

If at this time New(Ptr3) has been executed, it would again occupy the same
memory area. On the other hand, executing Dispose(Ptr4) enlarges the free
block, since Ptr3 and Ptr4 were neighboring blocks (see Figure 26.5).

Chapter 26, Inside Turbo Pascal 339

ptr1 -+

ptr2 -+

ptr5 -+

Heapptr -+

Contents of ptr1"

Contents of ptr2"

Contents of ptr5"

Low
Memory

High
L--_________________ ------I Memory

Figure 26.5: Enlarging the Free Block

Finally, executing Dispose(Ptr5) first creates an even bigger free block, and
then lowers HeapPtr. This, in effect, releases the free block, since the last
valid pointer is now Ptr2 (see Figure 26.6).

ptr1 -+

ptr2 -+

Heapptr -+

Contents of ptr1"

Contents of ptr2"

Low
Memory

High
~-----------------------I Memory

Figure 26.6: Releasing the Free Block

The heap is now in the same state as it would be after executing Release(P),
as shown in Figure 26.2. However, the free blocks created and destroyed in
the process were tracked for possible reuse.

340 Turbo Pascal Owner's Handbook

The Free List

The addresses and sizes of the free blocks generated by Dispose and
FreeMem operations are kept on a free list, which grows downward from
high memory in the heap segment. Whenever a dynamic variable is
allocated, the free list is checked before the heap is expanded. If a free block
of adequate size (greater than or equal to the size of the requested block
size) exists, it is used.

Note: The Release procedure always clears the free list, thus causing the
heap manager to "forget" about any free blocks that might exist below the
heap pointer. If you mix calls to Mark and Release with calls to Dispose and
FreeMem, you must ensure that no such free blocks exist.

The free list pointer is stored in a variable called FreePtr. Although declared
to be of type pointer, FreePtr is actually a pointer to an array of free-list
records, as indicated by the FreeListP type:

type
FreeRec = record

OrgPtr,EndPtr: pointer;
end;

FreeList = array[O .. 8190] of FreeRec;
FreeListP = AFreeList;

The OrgPtr and EndPtr fields of each record define the origin and end of
each free block. (EndPtr is in fact a pointer to the first byte after the block.)
Both are normalized pointers. The number of entries in the FreeList array is
calculated from

FreeCount = (8192 - Ofs(FreePtrA) div 8) mod 8192

This means that there can be up to 8191 entries in the free list. When the
offset part of FreePtr is 0, the free list is empty. FreePtr can be compared to
the stack pointer in the sense that it grows downward, and that all bytes
from FreePtr to the end of the heap segment are part of the "free stack."

Note: Trying to dispose of a pointer when the free list is full causes a
runtime error. However, a full free list is a highly unlikely situation-it
would reqire 8191 completely noncontiguous blocks to be disposed of and
not reused.

FreePtr also serves to mark the top of free memory in the heap (the bottom
of which is pointed to by HeapPtr). Note, though, that when the offset part
of FreePtr is 0, $1000 must be added to the segment part to produce the true
top-of-heap pointer. (In fact, the segment part of FreePtr always contains the
segment address of top-of-memory minus $1000.)

Chapter 26, Inside Turbo Pascal 341

When disposing of a range of noncontiguous pointers, the free list grows
(expands downward) to make room for an entry for each block. As long as
there is enough room between ReapPtr and FreePtr, this presents no
problem. However, when the heap is almost full, there may not be enough
room to cater to the larger free list, in which case a runtime error will occur.

In particular, imagine that the free list is empty and that the heap is almost
full. In that situation, disposing of a range of pointers other than the
topmost pointer will cause a block expansion of the free list.

To prevent, or foresee, such problems, the heap manager provides a word
variable FreeMin that can be set to control the minimum allowable size of
the memory region between ReapPtr and FreePtr. You cannot use New or
GetMem to allocate a variable that would make the size of that region less
than FreeMin. Likewise, MemAvail and MaxAvail will subtract FreeMin from
the size of that region before returning their results.

The value stored in FreeMin is in bytes. To ensure room for a specific
number of free-list entries, multiply that number by 8 and store it in
FreeMin.

A final note on the free list concerns a potential problem with "granularity."
The granularity of Turbo Pascal's heap manager is 1 byte; that is, if you
allocate 1 byte, it will only occupy that 1 byte. In most situations, and
especially when using Mark and Release or when not disposing of anything
at all, this guarantees optimum use of the memory available. However, it
can also be deceiving.

When randomly allocating and disposing of a lot of blocks of differing
sizes, such as line records in a text-processing program, a number of very
small free blocks can result and possibly cause the free list to overflow. As
an example, assume a block of 50 bytes is allocated and disposed of, thus
becoming an entry on the free list. If the next allocation request is for a
block of 49 bytes, that block will be reused, leaving a 1-byte free block entry
on the free list. Until one of the neighboring blocks are disposed of (thereby
merging the 1-byte block into a bigger block), the 1-byte block is very
unlikely to become re-allocated. Thus, it will occupy a free-list entry for a
long time, if not for the program's duration.

If a free list overflow occurs because of this, you can introduce a "resolution
factor" to round upward the size specified by each call to GetMem and
FreeMem to a factor of some number. In general, the higher the number, the
less likely unusable free blocks will occur. To do this you would write your
own GetMem and FreeMem routines that would modify the Size parameter
and then call System.GetMem or System.FreeMem:

342 Turbo Pascal Owner's Handbook

procedure GetMem(var P : pointer; Size: word);
begin

System.GetMem(P, (Size + 15) and $FFFO);
end;

procedure FreeMem(var P : pointer; Size: word);
begin

System.FreeMem(P, (Size + 15) and $FFFO);
end;

The Heap Error Function

{ 16 byte blocks }

{ 16 byte blocks }

The HeapError variable allows you to install a heap error function, which
gets called whenever the heap manager cannot complete an allocation
request. HeapError is a pointer that points to a function with the following
header:

{$F+} function HeapFunc(Size: word): integer; {$F-}

Note that the {$F+} compiler directive forces the heap error function to use
the far call model.

The heap error function is installed by assigning its address to the
HeapError variable:

HeapError:=@HeapFunc;

The heap error function gets called whenever a call to New or GetMem
cannot complete the request. The Size parameter contains the size of the
block that could not be allocated, and the heap error function should
attempt to free a block of at least that size.

Depending on its success, the heap error function should return 0, 1, or 2. A
return of ° indicates failure, causing a runtime error to occur immediately.
A return of 1 also indicates failure, but instead of a runtime error, it causes
New or GetMem to return a nil pointer. Finally, a return of 2 indicates
success and causes a retry (which could also cause another call to the heap
error function).

The standard heap error function always returns 0, thus causing a runtime
error whenever a call to New or GetMem cannot be completed. However, for
many applications, the simple heap error function that follows is more
appropriate:

{$F+} function HeapFunc(Size: word) integer; {$F-}
begin

HeapFunc:=l;
end;

Chapter 26, Inside Turbo Pascal 343

When installed, this function causes New or GetMem to return nil when
they cannot complete the request, instead of aborting the program.

Internal Data Formats

Integer Types

The format selected to represent an integer-type variable depends on its
minimum and maximum bounds:

• If both bounds are within the range -128..127 (shortint), the variable is
stored as a signed byte.

• If both bounds are within the range 0 .. 255 (byte), the variable is stored as
an unsigned byte.

• If both bounds are within the range -32768 . .32767 (integer), the variable
is stored as a signed word.

• If both bounds are within the range 0 .. 65535 (word), the variable is
stored.

• Otherwise, the variable is stored as a signed double word (longint).

Char Types

A char, or a subrange of a char type, is stored as an unsigned byte.

Boolean Types

A boolean type is stored as a byte that can assume the value of 0 (False) or
1 (True).

Enumerated Types

An enumerated type is stored as an unsigned byte if the enumeration has
256 or fewer values; otherwise, it is stored as an unsigned word.

344 Turbo Pascal Owner's Handbook

Floating-Point Types

The floating-point types (real, single, double, extended, and camp) store the
binary representations of a sign (+ or -), an exponent, and a significand. A
represented number has the value

+/- significand x 2exponent

where the significand has a single bit to the left of the binary decimal point
(that is, 0 <= significand < 2).

Note: In the figures that follow, msb means most significant bit, and lsb
means least significant bit. The left-most items are stored at the highest
addresses. For example, for a real-type value, e is stored in the first byte, fin
the following five bytes, and s in the most significant bit of the last byte.

The-Real.Type

A 6-byte (48-bit) Real number is divided into three fields:

39

msb Isb msb

The value v of the number is determined by

if 0 < e <= 255, then v = (-1)s * 2(e-129) * (1.f).

if e = 0, then v = o.

8 width

e

Isb order

Note: The real type cannot store denormals, _NaNs, and infinities.
Denormals become zero when stored in a real, and NaNs and infinities
produce an overflow error if an attempt is made to store them in a real.

The Single Type

A 4-byte (32-bit) Single number is divided into three fields:

8 23 width

e I .
msb Isb msb Isb order

The value v of the number is determined by

if 0 < e < 255, then v = (-1)s * 2(e-127) * (1.f).

Chapter 26, Inside Turbo Pascal 345

if e = ° and f <> 0, then v = (-1)5 * 2(-126) * (O.f).
if e = ° and f = 0, then v = (-1)5 * 0.
if e = 255 and f = 0, then v = (-1)5 * Inf.
if e = 255 and f <> 0, then v is a NaN.

The Double Type

An 8-byte (64-bit) Double number is divided into three fields:

11 52 width

I s e

msb Isb msb Isb order

The value v of the number is determined by

if ° < e < 2047, then v = (-1)5 * 2{e-1023) * (1.f).
if e = ° and f <> 0, then v = (-1)5 * 2{-1022) * (O.f).
if e = ° and f = 0, then v = (-1)5 * 0.
if e = 2047 and f = 0, then v = (-1)5 * Inf.
if e = 2047 and f <> 0, then v is a NaN.

The Extended Type

A la-byte (80-bit) Extended number is divided into four fields:

15 63 width

e

msb Isb msb Isb order

The value v of the number is determined by

if ° <= e < 32767, then v = (-1)5 * 2{e-16383) * (Lf).
if e = 32767 and f = O,then v = (-1)5 * Inf.
if e = 32767 and f <> 0, then v is a NaN.

The Comp Type

An 8-byte (64-bit) Comp number is divided into two fields:

63 width

d

msb Isb order

346 Turbo Pascal Owner's Handbook

The value v of the number is determined by

if s = 1 and d = 0, then v is a NaN

Otherwise, v is the two's complement 64-bit value.

Pointer Types

A pointer type is stored as a double word, with the offset part in the low
word and the segment part in the high word. The pointer value nil is
stored as a double-word zero.

String Types

A string occupies as many bytes as its maximum length plus one. The first
byte contains the' current dynamic length of the string, and the following
bytes contain the characters of the string. The length byte and the

. characters are considered unsigned values. Maximum string length is 255
characters plus a length byte (string[255]).

Set Types

A setis a bit array, where each bit indicates whether an element is in the set
or not. The maximum. number of elements in a set is 256, so a set never
occupies more than 32 bytes. The number of bytes occupied by a particular
set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base type of
that set. The byte number of a specific element E is

ByteNumber = (E div 8) - (Min div 8)

and the bit number within that byte is

BitNumber = E mod 8

where E denotes the ordinal value of the element.

Chapter 26, Inside Turbo Pascal 347

Array Types

An array is stored as a contiguous sequence of variables of the component
type of the array. The components with the lowest indexes are stored at the
lowest memory addresses. A multidimensional array is stored with the
right-most dimension increasing first.

Record Types

The fields of a record are stored as a contiguous sequence of variables. The
first field is stored at the lowest memory address. If the record contains
variant parts, then each variant starts at the same memory address.

File Types

File types are represented as records. Typed files and untyped files occupy
128 bytes, which are laid out as follows:

type
FileRec = record

Handle
Mode
RecSize
Private
UserData
Name

end;

word;
word;
word;
array[1 .. 26] of byte;
array[1 .. 16] of byte;
array[O .. 79] of char;

Text files occupy 256 bytes, which are laid out as follows:

type
CharBuf = array[O .. 127] of char;
TextRec = record

348

Handle word;
Mode word;
BufSize word;
Private word;
BufPos word;
BufEnd word;
BufPtr ACharBuf;
OpenFunc pointer;
InOutFunc: pointer;
FlushFunc: pointer;
CloseFunc: pointer;
UserData array[1 .. 16] of byte;
Name array[O .. 79] of char;
Buffer CharBuf;

end;

Turbo Pascal Owner's Handbook

Handlt> contains the file's handle (when open) as returned by MS-DOS.

The Mode field can assume one of the following "magic" values:

const
fmClosed = $D7BO;
fmlnput = $D7Bl;
fmOutput = $D7B2;
fmlnOut = $D7B3;

fmClosed indicates that the file is closed. fmlnput and fmOutput indicate that
the file is a text file that has been reset (fmlnput) or rewritten (fmOutput).
fmlnOut indicates that the file variable is a typed or an untyped file that has
been reset or rewritten. Any other value indicates that the file variable has
not been assigned (and thereby not initialized).

The UserData field is never accessed by Turbo Pascal, and is free for user
written routines to store data in.

Name contains the file name, which is a sequence of characters terminated
by a null character (#0).

For typed files and untyped files, RecSize contains the record length in
bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of But Size bytes, BufPos is the
index of the next character in the buffer to read or write, and BufEnd is a
count of valid characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and
CloseFunc are pointers to the I/O routines that control the file. The
upcoming section entitled "Text File Device Drivers" provides information
on that subject.

Calling Conventions

Parameters are transferred to procedures and functions via the stack.
Before calling a procedure or function, the parameters are pushed onto the
stack in their order of declaration. Before returning, the procedure or
function removes all parameters from the stack.

The skeleton code for a procedure or function call looks like this:

PUSH Paraml
PUSH Param2

PUSH PararnX
CALL ProcOrFunc

Chapter 26, Inside Turbo Pascal 349

Parameters are passed either by reference or by value. When a parameter is
passed by reference, a pointer that points to the actual storage location is
pushed onto the stack. When a parameter is passed by value, the actual
value is pushed onto the stack.

Variable Parameters

Variable parameters (var parameters) are always passed by reference-a
pointer points to the actual storage location.

Value Parameters

Value parameters are passed by value or by reference depending on the
type and size of the parameter. In general, if the value parameter occupies
1, 2, or 4 bytes, the value is pushed directly onto the stack. Otherwise a
pointer to the value is pushed, and· the procedure or function then copies
the value into a local storage location.

Note: The 8086 does not support byte-sized PUSH and POP instructions, so
byte-sized parameters are always transferred onto the stack as words. The
low-order byte of the word contains the value, and the high-order byte is
unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a double word,
using the same format as an integer-type variable. (For double words, the
high-order word is pushed before the low-order word so that the low-order
word ends up at the lowest address.)

A char-type parameter is passed as an unsigned byte.

A boolean-type parameter is passed as a byte with the value 0 or 1.

An enumerated-type parameter is passed as an unsigned byte if the
enumeration has 256 or fewer values; otherwise it is passed as an unsigned
word.

A real-type parameter (type real) is passed as 6 bytes on the stack, thus
being an exception to the rule that only 1,2, and 4 byte values are passed
directly on the stack.

An 8087-type parameter (type single, double, extended, or comp) is not
passed on the 8086 stack. Instead, 8087 -type parameters are pushed in
order of appearance onto the internal stack of the 8087 numeric co
processor. This limits to eight the allowable number of 8087 -type value

350 Turbo Pascal Owner's Handbook

parameters of a procedure or function (the 8087 stack is only eight levels
deep).

A pointer-type parameter is passed as a double word (the segment part is
pushed before the offset part so that the offset part ends up at the lowest
address).

A string-type parameter is passed as a pointer to the value.

A set-type parameter is passed as a pointer to an "unpacked" set that
occupies 32 bytes.

Arrays and records with 1, 2, or 4 bytes are passed directly onto the stack.
Other arrays and records are passed as pointers to the value.

Function Results

Ordinal-type function results (integer, char, boolean, and enumeration
types) are returned in the CPU registers: Bytes are returned in AL, words
are returned in AX, and double words are returned in DX:AX (high-order
word in DX, low-order word in AX).

Real-type function results (type real) are returned in the DX:BX:AX
registers (high-order word in DX, middle word in BX, low-order word in
AX).

8087-type function results (type single, double, extended, and comp) are
returned in the 8087 coprocessor's top-of-stack register (ST(O».

Pointer-type function results are returned in DX:AX (segment part in DX,
offset part in AX).

For a string-type function result, the caller pushes a pointer to a temporary
storage location before pushing any parameters, and the function returns a
string value in that temporary location. The function must not remove the
pointer.

Near and Far Calls

The 8086 CPU supports two kinds of call and return instructions: near and
far. The near instructions transfer control to another location within the
same code segment, and the far instructions allow a change of code
segment.

A near CALL instruction pushes a 16-bit return address (offset only) onto
the stack, and a far CALL instruction pushes a 32-bit return address (both

Chapter 26, Inside Turbo Pascal 351

segment and offset). The corresponding RET instructions pop only an offset
or both an offset and a segment.

Turbo Pascal will automatically select the correct call model based on the
procedure's declaration. Procedures declared in the interface section of a
unit are far-they can be called from other units. Procedures declared in a
program or in the implementation section of a unit are near-they can only
be called from within that program or unit.

For some specific purposes, a procedure may be required to be far; for
instance, exit procedures, text file device drivers, and other features that
involve procedure pointers. The $F compiler directive forces the far model
into effect. Procedures and functions compiled in the {$F+} state are always
far; Turbo Pascal automatically selects the correct model in the {$F-} state.
The default state is {$F-}.

A procedure or function is said to be nested when it is declared within
another procedure or function. Nested procedures and functions always
use the near call model regardless of the setting of the {$F} compiler switch,
since they are only IIvisible" within a specific procedure or function in the
same code segment.

When calling a nested procedure or function, the compiler generates a
PUSH BP instruction just before the CALL, in effect passing the caller's BP
as an additional parameter. Once the called procedure has set up its own
BP, the caller's BP is accessible as a word stored at [BP+4]. Using this "link"
at [BP+4], the called procedure can access the local variables in the caller's
stack frame. If the caller itself is also a nested procedure, it also has a link at
[BP+4], and so on. The following demonstrates how to access local
variables from an inline statement in a nested procedure:

procedure A;
var IntA: Integer;
procedure B;
var IntB: Integer;
procedure C;
var IntC: Integer;

begin inline (
$8B/$46/<IntC/
$8B/$5E/$04/
$36/$8B/$47/<IntB/
$8B/$5E/$04/
$36/$8B/$5F/$04/
$36/$8B/$47/<IntA);

end; {C}
begin {B}
end; {B}
begin {A}
end; {A}

352

{ MOV AX, IntC[BP] ;AX = IntA }
{ MOV BX, [BPt4] ;BX = B's stack frame}

{ MOV AX,SS:IntB[BX] ;AX = IntB }
{ MOV BX, [BPt4] ;BX = B's stack frame}

{ MOV BX,SS:[BXt4] jBX = C's stack frame}
{ MOV AX,SS:IntA[BX] ;AX = IntA }

Turbo Pascal Owner's Handbook

Note: Nested procedures and functions cannot be declared with the
external directive.

Entry and Exit Code

Each Pascal procedure and function begins and ends with standard entry
and exit code that creates and removes its activation.

The standard entry code is

PUSH BP
MOV BP,SP
SUB SP,LocalSize

;Save BP
;Set up stack frame

;Allocate local variables

where LocalSize is the size of the local variables. The SUB instruction is only
present if LocalSize is not O. If the procedure's call model is near, the
parameter5 start at BP + 4; if it is far, they start at BP + 6.

The standard exit code is

MOV SP,BP
POP BP
RET ParamSize

;De-allocate local variables
;Restore BP

;Remove parameters and return

where ParamSize is the size of the parameters. The RET instruction is either
a near or a far return, depending on the procedure's call model.

. Register-Saving Conventions

Procedures and functions should preserve the BP, SP, 55, and DS registers.
All other registers may be modified.

Linking with Assembly Language

Procedures and functions written in assembly language can be linked with
Turbo Pascal programs or units using the $L compiler directive. The
assembly language source file must be assembled into an object file
(extension .OBJ) using an assembler. Multiple object files can be linked with

. a program or unit through multiple $L directives.

Procedures and functions written in assembly language must be declared
as external in the Pascal program or unit, for example,

function LoCase(Ch: char): char; external;

Chapter 26, Inside Turbo Pascal 353

In the corresponding assembly language source file, all procedures and
functions must appear in a segment· named CODE, and· the names of the
external procedures and functions must appear in PUBLIC directives.
(CSEG is also accepted as a segment name in place of CODE.) .

You must ensure that an assembly language procedure or function matches
its Pascal definition with respect to call model (near or far.), number of
parameters, types of parameters, and result type.

An assembly language source file can declare variables in a segment named
DATA. Such variables are private to the assembly language source file and·
cannot be referenced from the Pascal program or unit. However,· they
reside in the' same segment as the Pascal globals, and can be accessed
through the DS segment register. (DSEG is also accepted as a segment name
in place of DATA.)

All procedures, functions, and variables declared in the Pascal program or
unit, and the ones declared in the interface section of the used units, can be
referenced from the assembly language source file through EXTRN
directives. Again, it is up to you to supply the correct type in the EXTRN
definition.

When an object file appears in a $L directive, Turbo Pascal converts the file
from the Intel relocatable object module format (.OB]) to its own internal
relocatable format. This conversion is possible only if certain rules are
observed:

• All procedures and functions must be placed in a segment named CODE,
and all private variables must be placed in a segment named DATA. All
other segments are ignored, and so are GROUP directives. The segment
definitions can specify BYTE or WORD alignment; when linked, they are
always word-aligned. The segment definitions can optionally specify
PUBLIC (which is ignored), but they should not specify a class name.
(CSEG is also accepted as a segment name in place of CODE, and DSEG
is accepted as'a segment name in place of DATA.)

• When declaring variables in the DATA or DSEG segment,always use a
question mark (?) to specify the value, for instance:

Count DW ?
Buffer DB 128 DUP(?)

Turbo Pascal ignores any request to create initialized variables in the
DATA or DSEG segment.

• When referring to EXTRN procedures and functions, do not specify an
offset. For example, the following construct is not allowed:

EXTRN MyProc: NEAR
CALL MyProc + 8

354 Turbo Pascal Owner's Handbook

Note that this restriction does not apply to EXTRN variables .
• Byte-sized references to EXTRN symbols are not allowed. For example,

this means that the HIGH and LOW operators cannot .be used with
EXTRN symbols.

Examples of Assembly Language Routines

The following code is an example of a unit that implements two assembly
language string-:-handling routines. The UpperCase function converts all
characters in a string to uppercase, and the. StringOf function returns a
string of characters of a specified length.

unit Stringsi
interface
function UpperCase(S: string): stringi
function StringOf(Ch: chari Count: byte): stringi
implementation
{$L STRS}
function UpperCasei externali
function StringOfi externali
end.

The assembly language file that implements the UpperCase and StringOf
routines is shown next. It must be assembled into a file called STRS.OBJ
before the Strings unit can be compiled. Note that the routines use the far
call model because they are declared in the interface section of the unit.

CODE SEGMENT BYTE PUBLIC

ASSUME CS:CODE

PUBLIC UpperCase,StringOf

function UpperCase(S: string): string

UpperRes EQU DWORD PTR [BPtlO]
UpperStr EQU DWORD PTR [BP+6]

UpperCase PROC FAR

PUSH BP
MOV BP,SP
PUSH OS
LOS SI,UpperStr
LES DI,UpperRes
CLD
LODSB
STOSB
MOV CL,AL
XOR CH,CH
JCXZ U3

Chapter 26, Inside Turbo Pascal

iMake them known

iSave BP
iSet up stack frame

iSave OS
iLoad string address
iLoad result address
iForward string-ops
iLoad string length

i Copy to result
iString length to CX

iSkip if empty string

355

U1 : LODSB
CMP AL,' a'
JB U2
CMP AL,' z'
JA U2
SUB AL,'a'-'A'

U2: STOSB
LOOP U1

U3: POP OS
POP BP
RET 4

UpperCase ENDP

;Load character
;Skip if not 'a' .. 'z'

;Convert to uppercase
iStore in result

iLoop for all characters
iRestore OS
;Restore BP

;Remove parameter and return

; function StringOf(Ch: char; Count: byte): string

StrOfRes
StrOfchar
StrOfCount

StringOf

PUSH
MOV
LES
MOV
CLD
STOSB
MOV
XOR
MOV
REP
POP
RET

EQU
EQU
EQU

PROC FAR

BP

DWORD PTR [BPt10]
BYTE PTR [BPt8]
BYTE PTR [BPt6]

BP,SP
DI,StrOfRes
AL,StrOfCount

CL,AL
CH,CH
AL,StrOfChar
STOSB

StringOf ENDP

CODE ENDS

END

iSave BP
iSet up stack frame

;Load result address
iLoad count

;Forward string-ops
iStore length
iCount to CX

;Load character
;Store string of characters

iRestore BP
;Remove parameters and return

The next example shows how an assembly language routine can refer to
Pascal routines and variables. The Numbers program reads up to 100
integer values, and then calls an assembly language procedure to check the
range of each of these values. If a value is out of range, the assembly
language procedure calls a Pascal procedure to print it.

program Numbers;
{$L CHECK}
var

Data: array[1 .. 100] of integer;
Count,I: integer;

procedure RangeError(N: integer);
begin

Writeln('Range error: ' ,N);

356 Turbo Pascal Owner's Handbook

end;

procedure CheckRange(Min,Max: integer); external;
begin

Count := 0;
while not Eof and (Count<100) do
begin

Count := Count+1; Readln(Data[Count]);
end;
CheckRange(-10,10);

end.

The assembly language file that implements the CheckRange procedure is
shown next. It must be assembled into a file called CHECK.OB] before the
NUMBERS program can be compiled. Note that the procedure uses the
near call model because it is declared in a program.

DATA SEGMENT WORD PUBLIC

EXTRN Data:WORD,Count:WORD

OATA ENOS

CODE SEGMENT BYTE PUBLIC

ASSUME CS:CODE,OS:DATA

EXTRN RangeError:NEAR

PUBLIC CheckRange

CheckRange PROC NEAR

SOl:

S02:

SD3:

MOV
MOV
MOV
XOR
MOV
JCXZ
CMP
JL
CMF
JLE
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
POP
POP
POP
POP
INC
INC
LOOP

BX,SP
AX,SS: [BX+4]
OX,SS: [BX+2]
BX,BX
CX,Count
S04
Data[BX],AX
SD2
Oata[BX] ,OX
S03
AX
BX
CX
DX
Oata[BX]
RangeError
DX
CX
BX
AX
BX
BX
SD1

Chapter 26, Inside Turbo Pascal

;Pascal variables

;Implemented in Pascal

; Implemented here

;Get parameters pointer
;Load Min
;Load Max

;Clear Oata index
;Load Count

; Skip if zero
;Too small?
;Yes, jump

iToo large?
iNo, jump

iSave registers

;Pass offending value to Pascal
iCall Pascal procedure

iRestore registers

iPoint to next element

iLoop for each item

357

SD4: RET ;Clean stack and return

CheckRange ENDP

CODE ENDS

END

Inline Machine Code

For very short assembly language subroutines, Turbo Pascal's inline
statements and directives are very convenient. They allow you to insert
machine code instructions directly into the program or unit text instead of
through an object file.

Inline Statements

An inline statement consists of the reserved word inline followed by one
or more inline elements, separated by slashes and enclosed in parentheses:

inline(lO/$2345/Count+l/Data-Offset);

Here's the syntax of an inline statement:

inline statement ~ intin. element ~

LI-----t0M41----'-

Each inline element consists of an optional size specifier, < or >, and a
constant or a variable identifier, followed by zero or more offset specifiers
(see the syntax that follows). An offset specifier consists of a + or a -
followed by a constant.

inline element

358 Turbo Pascal Owner's Handbook

Each inline element generates 1 byte or one word of code. The value is
computed from the value of the first constant or the offset of the variable
identifier, to which is added or subtracted the value of each of the constants
that follow it.

An inline element generates 1 byte of code if it consists of constants only
and if its value is within the 8-bit range (0 .. 255). If the value is outside the
8-bit range or if the inline element refers to a variable, one word of code is
generated (least-significant byte first).

The < and> operators can be used to override the automatic size selection
we described earlier. If an inline element starts with a < operator, only the
least-significant byte of the value is coded, even if it is a 16-bit value. If an
inline element starts with a > operator, a word is always coded, even
though the most-significant byte is O. For example, the statement

inline«$1234/>$44);

generates 3 bytes of code: $34,$44,$00.

The value of a variable identifier in an inline element is the offset address of
the variable within its base segment. The base segment of global
variables-variables declared at the outermost level in a program or a
unit-and typed constants is the data segment, which is accessible through
the DS register. The base segment of local variables-variables declared
within the current subprogram-is the stack segment. In this case the
variable offset is relative to the BP register, which automatically causes the
stack segment to be selected.

Note: Registers BP, SP, SS, and DS must be preserved by inline statements;
all other registers can be modified.

The following example of an inline statement generates machine code for
storing a specified number of words of data in a specified variable. When
called, procedure FillWord stores Count words of the value Data in memory,
starting at the first byte occupied by Dest.

procedure FillWord(var Dest,Count,Data: word);
begin

inline(
$C4/$BE/Dest/
$8B/$8E/Count/
$8B/$86/Data/
$FC/
$F3/$AB);

end;

{ LES DI,Dest[BP] }
{ MOV CX,Count[BP] }
{ MOV AX,Data[BP] }

{ CLD }
{ REP STOSW }

Inline statements can be freely mixed with other statements throughout the
statement part of a block.

Chapter 26, Inside Turbo Pascal 359

Inline Directives

Inline directives let you write procedures and functions that expand into a
given sequence of machine code instructions whenever they are called.
These are comparable to macros in assembly language. The syntax for an
inline directive is the same as that of an inline statement:

inline directive ----'1 inline statement I

When a normal procedure or function is called (including one that contains
inline statements), the compiler generates code that pushes the parameters
(if any) onto the stack, and then generates a CALL instruction to call the
procedure or function. However, when you call an inline procedure or
function, the compiler generates code from the inline directive instead of
the CALL. Here's a short example of two inline procedures:

procedure Oisablelnterrupts; inline($FA);
procedure Enablelnterrupts; inline($FB);

{ eLI }
{ STI }

When Disablelnterrupts is called, it generates 1 byte of code-a CLI
instruction.

Procedures and functions declared with inline directives can have
parameters; however, the parameters cannot be referred to symbolically in
the inline directive (other variables can, though). Also, because such
procedures and functions are in fact macros, there is no automatic entry
and exit code, nor should there be any return instruction.

The following function multiplies two integer values, producing a longint
result:

function LongMul(X,Y : integer): longint;
inline(

$58/
$5A/
$F7/$EA) ;

{ POP AX ;Pop Y }
{ POP ox ;Pop X }

IMUL OX ;OX : AX = X*Y }

Note the lack of entry and exit code and the missing return instruction.
These are not required, because the 4 bytes are inserted into the instruction
stream when LongMul is called.

Inline directives are intended for very short (less than 10 bytes) procedures
and functions only.

Because of the macro-like nature of inline procedures and functions, they
cannot be used as arguments to the @ operator and the Addr, Ofs, and Seg
functions.

360 Turbo Pascal Owner's Handbook

Direct Memory and Port Access

The Mem, Mem W, and MemL Arrays

Turbo Pascal implements three predefined arrays, Mem, Mem W, and MemL,
which are used to directly access memory. Each component of Mem is a
byte, each component of Mem W is a word, and each component of MemL is
a longint.

The Mem arrays use a special syntax for indexes: Two expressions of the
integer-type word, separated by a colon, are used to specify the segment
base and offset of the memory location to access. Some examples include

Mem [$ 0 0 4 0 : $ 004 9) : = 7;
Data := MemW[Seg(V) :Ofs(V));
MemLong := MemL[64:3*4);

The first statement stores the value 7 in the byte at $0040:$0049. The second
statement moves the word value stored in the first 2 bytes of the variable V
into the variable Data. The third statement moves the longint value stored
at $0040:$000C into the variable MemLong.

The Port and PortW Arrays

For access to the 80x86 CPU data ports, Turbo Pascal implements two
predefined arrays, Port and Port W. Both are one-:dimensional arrays, and.
each element represents a data port, whose port address corresponds to its
index. The index type is the integer-type word. Components of the Port
array are of type byte, and components of the Port W array are of type word.

When a value is assigned to a component of Port or Port W, the value is
output to the selected port. When a component of Port or PortW is
referenced in an expression, its value is input from the selected port. Some
examples include:

Port [$20) := $20;
Port [Base) := Port[Base) xor Mask;
while Port[$B2) and $80 = 0 do { Wait };

Use of the Port and PortW arrays is restricted to assignment and reference
in expressions only, that is, components of Port and Port W cannot be ·used
as variable parameters. Furthermore, references to the entire Port or Port W
array (reference without index) are not allowed.

Chapter 26, Inside Turbo Pascal 361

Interrupt Handling

The Turbo Pascal runtime library and the code generated by the compiler
are fully interruptible. Also, most of the runtime library is reentrant, which
allows you to write interrupt service routines in Turbo Pascal.

Writing Interrupt Procedures

Interrupt procedures are declared with the interrupt directive. Every
interrupt procedure must specify· the following procedure header (or a
subset of it, as explained later):

procedure IntHandler(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP: word);
interrupt;
begin

end;

As you can see, all the registers are passed as pseudo!..parameters so you
. can use and modify them in your code. You can omit some or all of the
parameters, starting with Flags and moving towards BP. It is an error to
declare more parameters than are listed in the preceding example or to
omit a specific parameter without also omitting the ones before it (although
no error is reported). For example:

procedure IntHandler(DI,ES,BP : word);
procedure IntHandler(SI,DI,DS,ES,BP : word);

On entry, an interrupt procedure automatically saves all registers
(regardless of the procedure header) and. initializes the OS register:

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH BP
MOV BP,SP
SUB SP,LocalSize
MOV AX,SEG DATA
MOV DS,AX

362 Turbo Pascal Owner's Handbook

· Notice the lack of a STI instruction to enable further interrupts. You should
code this yourself (if required) using an inline statement. The exit code
restores the registers and executes an interrupt-return instruction:

MOV SP,BP
POP BP
pOP ES
pOP os
pOP 01
POP SI
POP ox
POP ex
POP BX
POP AX
IRET

An interrupt procedure can modify its parameters. Changing the declared
parameters will modify the corresponding register when the interrupt
handler returns. This can be useful when you are using an interrupt
handler as a user service, much like the DOS INT 21H services.

Interrupt procedures that handle hardware-generated interrupts should
refrain from using any of Turbo Pascal's input and output or dynamic
memory allocation routines, because they are not reentrant. Likewise, no
DOS functions can be used, because DOS is not reentrant.

Text File Device Drivers

As mentioned in Chapter 8, Turbo Pascal allows you to define your own
text file device drivers. A text file device driver. is a set of four functions that
completely implement an interface between Turbo Pascal's file system and
some device.

The four functions that define each device driver are Open, InOut, Flush,
and Close. The function header of each function is

function OeviceFunc(var F: TextRec): integer;

where TextRec is the text file record type defined in the earlier section, "File
Types." Each function must be compiled in the {$F+} state to force it to use
the far call model. The return value of a device interface function becomes
the value returned by IOResult. The return value of 0 indicates a successful
operation.

To associate the device interface functions with a specific file, you must
write a customized Assign procedure (like the AssignCrt procedure in the
Crt unit). The Assign procedure must assign the addresses of the four
device interface functions to the four function pointers in the text file

Chapter 26, Inside Turbo Pascal 363

variable. In addition, it should store the fmClosed "magic" constant in the
Mode field, store the size of the text file buffer in Bu[Size, store a pointer to
the text file buffer in BufPtr, and clear the Name string.

Assuming, for example, that the four device interface functions are called
DevOpen, DevIn Out, DevFlush, and DevClose, the Assign procedure might
look like this:

procedure AssignDev(var F: Text);
begin

with TextRec(F) do
begin

Mode := fmClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name [0) := #0;

end;
end;

The device interface functions can use the UserData field in the file record to
store private information. This field is not modified by the Turbo Pascal file
system at any time.

The Open Function

The Open function is called by the Reset, Rewrite, and Append standard
procedures to open a text file associated with a device. On entry, the Mode
field contains fmInput, fmOutput, orfmInOut to indicate whether the Open
function was called from Reset, Rewrite, or Append.

The Open function prepares the file for input or output, according to the
Mode value. If Mode specified fmInOut (indicating that Open was called from
Append), it must be changed to fmOutput before Open returns.

Open is always called before any of the other device interface functions. For
that reason, Assign only initializes the OpenFunc field, leaving initialization
of the remaining vectors up to Open. Based on Mode, Open can then install
pointers to either input- or output-oriented functions. This saves the InOut,
Flush, and Close functions from determining the current mode.

364 Turbo Pascal Owner's Handbook

The InOut Function

The InOut function is called by the Read, Readln, Write, Writeln, Page, Eof,
Eoln, SeekEof, SeekEoln, and Close standard procedures and functions
whenever input or output from the device is required.

When Mode is fmlnput, the InOut function reads up to BufSize characters
into BufPtrA

, and returns the number of characters read in BufEnd. In
addition, it stores 0 in BufPos. If the InOut function returns 0 in BufEnd as a
result of an input request, Eof becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from
BufPtrA

, and returns 0 in BufPos.

The Flush Function

The Flush function is called at the end of each Read, Readln, Write, and
Writeln. It can optionally flush the text file buffer.

If Mode is fmlnput, the Flush function can store 0 in BufPos and BufEnd to
flush the remaining (un-read) characters in the buffer. This feature is
seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer,
exactly like the InOut function, which ensures that text written to the device
appears on the device immediately. If Flush does nothing, the text will not
appear on the device until the buffer becomes full or the file is closed.

The Close Function

The Close function is called by the Close standard procedure to close a text
file associated with a device. (The Reset, Rewrite, and Append procedures
also call Close if the file they are opening is already open.) If Mode is
fmOutput, then before calling Close, Turbo Pascal's file system calls InOut to
ensure that all characters have been written to the device.

Examples of Text File Device Drivers

The following unit implements a text file device driver for the
comI?unication ports (serial ports) of an IBM PC:

unit AuxlnOut;
interface
uses Dos;

Chapter 26, Inside Turbo Pascal 365

procedure AssignAux(var F: Text; Port,Params: word);
implementation
{$R-,S-)
type

AuxRec = record
Port,Params: word;
Unused: array[I .. 12) of byte;

end;

procedure AuxInit(Port,Params: word);
inline (

$58/
$5A/
$B4/$00/
$CD/$14);

function AuxInChar(Port: word): char;
in line (

$5A/
$B4/$02/
$CD/$14);

procedure AuxOutChar(Port: word; Ch: char);
inline (

$58/
$5A/
$B4/$01/
$CD/$14);

function AuxInReady(Port: word): booleani
inline (

$5A/
$B4/$03/
$CD/$14/
$88/$EO/
$24/$01)i

{$F+)

function AuxInput(var F: TextRec): integer;
var

P: word;
begin

with F,AuxRec(UserData) do
begin

P := 0;
while AuxInReady(Port) and (P<BufSize) do
begin

BufPtr" [P) := AuxInChar (Port); Inc (P);
end;
BufPos := 0; Bufend := P;

end;
AuxInput := 0;

end;

function AuxOutput(var F: TextRec): integer;
var

P: word;

366

{ pOP AX ;Pop parameters
{ POP DX ;Pop port number

MOV AH,O ;Code for initialize
{ INT 14H ;Call BIOS

{ POP DX ;Pop port number
{ MOV AH,2 ;Code for input

{ INT 14H ;Call BIOS

{ POP AX ;Pop character
POP DX iPOP port number
MOV AH,1 iCode for output

{ INT 14H ;Call BIOS

POP DX ;Pop port number
MOV AH,3 ;Code for status

{ INT 14H ;Call BIOS
{ MOV AL,AH ;Get line status in AH

{ AND AL,1 iIsolate Data Ready bit

Turbo Pascal Owner's Handbook

begin
with F,AuxRec(UserData) do
begin

P := 0;
while P<BufPos do
begin

AuxOutChar(Port,BufPtrA[P]); Inc(P);
end;
BufPos := 0;

end;
AuxOutput := 0;

end;

function AuxIgnore(var F: TextRec): integer;
begin

AuxIgnore := 0;
end;

function AuxOpen(var F: TextRec): integer;
begin

with F,AuxRec(UserData) do
begin

Auxlnit(Port,Pararns);
if Mode=frnlnput then
begin

InOutFunc
FlushFunc

end else
begin

@Auxlnput;
@AuxIgnore;

Mode := frnOutput;
InOutFunc := @AuxOutput;
FlushFunc := @AuxOutput;

end;
CloseFunc := @AuxIgnore;

end;
AuxOpen .- 0;

end;

($F-j

procedure AssignAux;
begin

with TextRec(F) do
begin

Handle := $FFFF;
Mode := frnClosed;
BufSize := Sizeof(Buffer);
BufPtr := @Buffer;
OpenFunc := @AuxOpen;
AuxRec(UserData) .Port := Port;
AuxRec(UserData) .Pararns := Pararns;
N arne [0] . - # 0 ;

end;
end;
end.

Chapter 26, Inside Turbo Pascal 367

The TextRec record is defined in the Dos unit. The first two words of the 16-
byte UserData array are used for storing the communications port number
and parameter byte. The remaining 12 bytes are not used. Note that the
AuxRec record is used only for typecasting.

The AuxInit procedure initializes a specified communications port
according to a specified parameter byte. The AuxInChar function reads a
character from the specified port. The AuxOutChar procedure outputs a
character to the specified port. The AuxInReady function returns True if a
character is ready to be read from the specified port. Notice the use of inline
directives to implement these procedures and functions. For further details
on the communication ports, refer to the IBM PC Technical Reference Manual.

AssignAux initializes a specified text file variable to refer to a specified
communication port with a specified parameter byte. Port numbers 0 and 1
correspond to COM1 and COM2. The parameter byte is described in the
IBM PC Technical Reference Manual.

AuxOpen initializes the selected communication port and sets up the
function pointers according to the Mode field. Note that for output,
FlushFunc is set to the same address as InOutFunc, causing the text file
buffer to be flushed after each Write or Writeln.

AuxInput inputs up to BufSize characters from the selected port, and
AuxOutput outputs the contents of the buffer to the selected port.

AuxIgnore is used in those cases where no special action is required, such as
for Close and for Flush (when in input mode).

The following short program uses the AuxIn Out unit to write a string to
one of the communication ports. Through the AssignAux procedure, the
Coml file is associated with the COM1 port using 1200 baud, no parity, 1
stop bit, and 8 data bits:

program TestAux;
uses AuxlnOut;
var

Coml: Text;
begin

AssignAux(Coml,O,$83);
Rewrite (Coml) ;
Writeln(Coml,'Device Drivers are fun!');
Close(Coml);

end.

Exit Procedures

By installing an exit procedure, you can gain control over a program's
termination process. This is useful when you want to make sure specific

368 Turbo Pascal Owner's Handbook

actions are carried out before a program terminates; a typical example is
updating and closing files.

The ExitProc pointer variable allows you to install an exit procedure. The
exit procedure always gets called as a part of a program's termination,
whether it is a normal termination, a termination through a call to Halt, or a
termination due to a runtime error.

An exit procedure takes no parameters, and must be compiled in the {$F+}
state to force it to use the far call model.

When implemented properly, an exit procedure actually becomes part of a
chain of exit procedures. This chain makes it possible for units as well as
programs to install exit procedures. Some units install an exit procedure as
part of their initialization code, and then rely on that specific procedure to
be called to clean up after the unit; for instance, to close files or to restore
interrupt vectors. The procedures on the exit chain get executed in reverse
order of ir.stallation. This ensures that the exit code of one unit does not get
executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents of ExitProc
before changing it to the address of your own exit procedure. Furthermore,
just before returning, your exit procedure must re-install the saved value of
ExitProc. The following program demonstrates a skeleton method of
implementing an exit procedure:

program Testexit;
var

ExitSave: pointer;

{$F+}
procedure MyExit; {$F-}
begin

ExitProc := ExitSave;
end;
begin

ExitSave := ExitProc;
ExitProc := @MyExit;

end.

On entry, the program saves the contents of ExitProc in ExitSave, and then
installs the MyExit exit procedure. After having been called as part of the
termination process and just before returning, MyExit re-installs the
previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures
until ExitProc becomes nil. To. avoid infinite loops, ExitProc is set to nil

Chapter 26, Inside Turbo Pascal 369

before every call, so the next exit procedure is called only if the current exit
procedure assigns an address to ExitProc. If an error occurs in an exit
procedure, the exit procedure will not yet have assigned a new value to
ExitProc, since this is done just before it returns.

An exit procedure may learn the cause of termination by examining the
ExitCode integer variable and the ErrorAddrpointer variable.

In case of normal termination, ExitCode is zero and Error Addr is nil. In case
of termination through a call to Halt, ExitCode contains the value passed to
Halt and Error Addr is nil. Finally, in case of termination due to a runtime
error, ExitCode contains the error code and Error Addr contains the address
of the statement in error.

The last exit procedure (the one installed by the runtime library) closes the
Input and Output files, and restores the interrupt vectors that were captured
by Turbo Pascal. In addition, if Error Addr is not nil, it outputs a runtime
error message.

If you wish to present runtime error messages yourself, install an exit
procedure that examines ErrorAddr and outputs a message if it is not nil. In
addition, before returning, make sure to set ErrorAddrto nil, so that the
error is not reported again by other exit procedures.

Once the runtime library has called all exit procedures, it returns to DOS,
passing as a return code the value stored in ExitCode.

Automatic Optimizations

Turbo Pascal performs several different types of code optimizations,
ranging from constant folding and short-circuit Boolean expression
evaluation all the way up to smart linking. Here are some of the types·of
optimizations performed.

Constant Folding

If the operand(s) of an operator are constants of an ordinal type, Turbo
Pascal evaluates the expression at compile time. For example, X := 3 + 4 * 2
produces the exact same code as X:= 11.

Likewise, if the operand of an Abs, Sqr, Succ, Pred, Odd, Lo, Hi, or Swap
function call is a constant of an ordinal type, the function is evaluated at
compile time.

370 Turbo Pascal Owner's Handbook

If an array index expression is a constant, the address· of the component is
evaluated at compile time. For example, accessing Data[5,5] is just as
efficient as accessing a simple variable.

Constant Merging

Using the same string constant two or more times in a statement part
generates only one copy of the constant. For example, two or more
Write('Done') statements in the same statement part will reference the same
copy of the string constant 'Done'.

Short-Circuit Evaluation

Turbo Pascal implements short-circuit Boolean evaluation, which means
that evaluation of a Boolean expression stops as soon as the result of the
entire expression becomes evident. This guarantees minimum execution
time, and usually minimum code size. Short-circuit evaluation also makes
possible the evaluation of constructs that would not otherwise be legal; for
instance:

while (I<=Length (S)) and. (8 [I] <>' ') do Inc (I) i
while (P<>nil) and (pA.Value<>S) do P:=PA.Nexti

In both cases, the second test is not evaluated if the first test is False.

The opposite of short-circuit evaluation is complete evaluation, which is
selected through a {$B+} compiler directive. In this state, every operand of a
Boolean expression is guaranteed to be evaluated.

Order of Evaluation

As permitted by the Pascal standards, operands of an expression are
frequently evaluated differently from the left to right order in which they
are written. For example, the statement

I:=F(J) div G(J);

where F and G are functions of type integer, causes G to be evaluated before
F, since this enables the compiler to produce better code. Because of this, it
is important that an expression never depend on any specific order of
evaluation of the embedded functions. Referring to the previous example, if
F must be called before G, use a temporary variable:

T:=F(J)i I:=T div G(J)i

Chapter 26, Inside Turbo Pascal 371

Note: As an exception to this rule, when short-circuit evaluation is enabled
(the {$B-} state), boolean operands grouped with and or or are always
evaluated from left to right.

Range-Checking

Assignment of a constant to a variable and use of a constant as a value
parameter is range-checked at compile time; no runtime range-check code
is generated. For example, X: =999, where X is of type Byte, causes a
compile-time error.

Shift instead of Multiply

The operation X * C, where C is a constant and a power of 2, is coded using
a Shl instruction.

Likewise, when the size of an array's components is a power of 2, a Shl
instruction (not a Mul instruction) is used to scale the index expression.

Dead Code Removal

Statements that are known never to execute do not generate any code. For
example, these constructs don't generate any code:

if False then statement
while False do statement

Smart Linking

The linker automatically removes unused code on a per-procedure basis;
that is, procedures and functions that are part of a compilation but never
get called are removed in the .EXE file.

372 Turbo Pascal Owner's Handbook

c H A p T E R

27

Turbo Pascal Reference Lookup

This chapter describes all the procedures and functions of Turbo Pascal 4.0.
For your convenience, they're arranged alphabetically. Here's a sample
layout so you can easily understand the format of the lookup; note that
only the relevant items are listed in each entry.

Sample procedure What unit it occupies

Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

Example

What it does

How it's declared; italicized items are user-defined

What it returns if it's a function

General information about the procedure or function

Things to be aware of

From 3.0

Related procedures/functions, etc.

Sample program or code fragment

Note: When compiling in numeric processing mode, {$N+}, the return
values of the floating point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real.

Chapter 27, Turbo Pascal Reference Lookup 373

Abs function

Function

Declaration

Result type

Remarks

Example

Returns the absolute value of the argument.

Abs (x)

Same type as parameter.

x is an integer-type or real-type expression. The result,
of the same type as x, is the absolute value of x.

var
r: real;
i: integer;

begin
r := Abs(-2.3);
i := Abs (-157);

end.

{ 2.3 }
{ 157 }

Addr function

Function

Declaration

Result type

Remarks

See also

Example

Returns the address of a specified object.

Addr (x)

pointer

x is any variable, or a procedure or function identifier.
The result is a pointer that points to x. Like nil, the result
of Addr is assignment compatible with all pointer types.

Note: The @ operator produces the same result as Addr.

Ptr

var p: pointer;
begin

p := Addr (p) ;

end.
{ Now points to itself }

Append procedure

Function Opens an existing file for appending.

374 Turbo Pascal Owner's Handbook

Declaration

Remarks

See also

Example

Append(var f: text)

f is a text-file variable that must have been associated
with an external file using Assign.

Append opens the existing external file with the name
assigned to f. It is an error if there is no existing external
file of the given name. If f was already open, it is first
closed and then re-opened. The current file position is
set to the end of the file.

If a Ctrl-Z (ASCII 26) is present in the last 128-byte block
of the file, the current file position is set to overwrite the
first Ctrl-Z in the block. In this way, text can be appended
to a file that terminates with a Ctrl-Z.

If f was assigned an empty name, such as Assign(f,"),
then, after the call to Append, f will refer to the standard
output file (standard handle number 1).

After a call to Append, f becomes write-only, and Eof(f) is
always True.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Reset, Rewrite

var f: text;
begin

Assign(f, 'TEST.TXT');
Rewrite (f) ;
Writeln(f, 'original text');
Close (f);
Append (f) ;
Writeln(f, 'appended text');
Close(f);

end.

{ Create new file

{ Close file, save changes
{ Add more text onto end }

{ Close file, save changes }

Arc procedure Graph

Function

Declaration

Draws a circular arc around start angle to end angle,
using (x,y) as the center point.

Arc(X, Y: integer; StAngle, EndAngle, Radius: word)

Chapter 27, Turbo Pascal Reference Lookup 375

Remarks

Restrictions

See also

Example

Draws a circular arc around (x,y), with a radius of
Radius. The Arc travels from StAngle to EndAngle and is
drawn in the current drawing color.

Each graphics driver contains an aspect ratio that is used
by Circle, Arc, and PieS lice. A start angle of 0 and an end
angle of 360 will draw a complete circle. The angles for
Arc, Ellipse, and PieSlice are counterclockwise with 0
degrees at 3 o'clock, 90 degrees at 12 o'clock, and so on.
Information about the last call to Arc can be retrieved
with a call to GetArcCoords.

Must be in graphics mode.

Circle, Ellipse, GetArcCoords, GetAspectRatio, PieSlice

uses Graph;
var

Gd, Gm: integer;
Radius: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

for Radius := 1 to 5 do
Arc(100, 100, 0, 90, Radius*10);

Readln;
CloseGraph;

end.

ArcTan function

Function

Declaration

Result type

Remarks

Example

376

Returns the arctangent of the argument.

ArcTan(x: real)

real

x is a real-type expression. The result is the principal
value, in radians, of the arctangent of x.

var r: real;
begin

r := ArcTan(Pi);
end.

Turbo Pascal Owner's Handbook

Assign procedure

Function

Declaration

Remarks

Restrictions

Example

Assigns the name of an external file to a file variable.

Assign(f; name: string)

f is a file variable of any file type, and name is a string
type expression. All further operations on f will operate
on the external file with the file name name.

After a call to Assign, the association between f and the
external file continues to exist until another Assign is
done onf.

A file name consists of a path of zero or more directory
names separated by backslashes, followed by the actual
file name:

Drive:\DirName\ ... \DirName\FileName

If the path begins with a backslash, it starts in the root
directory; otherwise, it starts in the current directory.

Drive is a disk drive identifier (A-Z). If Drive and the
colon are omitted, the default drive is used.
\DirName\ ... \ DirName is the root directory and sub
directory path to the file name. FileName consists of a
name of up to eight characters, optionally followed by a
period and an extension of up to three characters.

The maximum length of the entire file name is 79
characters.

Assign must never be used on an open file.

A special case arises when name is an empty string; that
is, when Length(name) is zero. In that case, f becomes
associated with the standard input or standard output
file. These special files allow a program to utilize the IIO
redirection feature of the DOS operating system. If
assigned an empty name, then after a call to Reset (f) , f
will refer to the standard input file, and after a call to
Rewrite(f), f will refer to the standard output file.

{ Try redirecting this program from DOS
to PRN, disk file, etc. }

var f: text;
begin

Chapter 27, Turbo Pascal Reference Lookup 377

Assign(f, ");
Rewrite (f) ;
Writeln(f, 'standard output ... ');
Close(f);

end.

{ Standard output }

AssignCrt procedure Crt

Function

Declaration

Remarks

Example

Associates a text file with the CRT.

AssignCrt(var f: Text)

AssignCrt works exactly like the Assign standard pro-
. cedure except that no file name is specified. Instead, the
text file is associated with the CRT.

This allows faster output (and input) than would
normally be possible using standard output (or input).

uses Crt;
var f: text;

begin
Write('Output to screen or printer [S, P)? ');
if UpCase(ReadKey) = 'P' then

Assign(f, 'PRN') { Output to printer}
else

AssignCrt(f); { Output to screen, use
fast CRT write routines

Rewrite (f) ;
Writeln(f, 'Fast output via CRT routines ... ');
Close(f);

end.

Bar procedure Graph

Function

Declaration

Remarks

. Restrictions

378

Draws a bar using the current fill style and color.

Bar(xl, yl, x2, y2: integer)

Draws a filled-in rectangle (used in bar charts, for
example). Uses the pattern and color defined by
SetFillStyle or SetFillPattern. To draw an outlined bar, call
Bar3D with a depth of zero.

Must be in graphics mode .

Turbo Pascal Owner's Handbook

See also

Example

Bar3D, GraphResult, SetFillStyle, SetFillPattern,
SetLineStyle

uses Graph;
var

Gd, Gm : integer;
I, Width: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Width := 10;
for I := 1 to 5 do

Bar(I*Width, 1*10, Succ(I)*Width, 200);
Readln;
CloseGraph;

end.

Bar3D procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Draws a 3-D bar using the current fill style and color.

Bar3D(x1, y1, x2, y2: integer; Depth: word; Top: boolean)

Draws a filled-in, three-dimensional bar. Uses the
pattern and color defined by SetFillStyle or SetFillPattern.
The 3-D outline of the bar is drawn in the current line
style and color as set by SetLineStyle and SetColor. Depth
is the number of pixels deep of the 3-D outline. If Top is
True, a 3-D top is put on the bar; if Top is False, no top is
put on the bar (making it possible to stack several bars
on top one another).

A typical depth could be calculated by taking 25% of the
width of the bar:

Bar3d(x1,y1,x2,y2, (x2-x1+1) div 4, TopOn);

The following constants are defined:

const
TopOn = True;
TopOff = False;

Must be in graphics mode.

Bar, GraphResult, SetFillStyle, SetFillPattern, SetLineStyle

Chapter 27, Turbo Pascal Reference Lookup 379

Example uses Graph;
var

Gd, Gm: integer;
yO, yl, y2, xl, x2: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
yO := 10;
yl := 60;
y2 := 110;
xl := 10;
x2 := 50;
Bar3D(xl, yO, x2, yl, 10, TopOn);
Bar3D(xl, yl, x2, y2, 10, TopOff);
Readln;
CloseGraph;

end.

BlockRead procedure

Function

Declaration

Remarks

380

Reads one or more records into a variable.

BlockRead(var f: file; var buf; count: word
[; var result: word])

f is an untyped file variable, buf is any variable, count is
an expression of type word, and result is a variable of
type word.

BlockRead reads count or less records from the file f into
memory, starting at the first byte occupied by buf. The
actual number of complete records read (less than or
equal to count) is returned in the optional parameter
result. If result is not specified, an I/O error will occur if
the number read is not equal to count.

The entire block transferred occupies at most count *
recsize bytes, where recsize is the record size specified
when the file was opened (or 128 if it was omitted). It's
an error if count * recsize is greater than 65535 (64 Kb).

result is an optional parameter. Here is how it works: If
the entire block was transferred, result will be equal to
count on return. Otherwise, if result is less than count, the

Turbo Pascal Owner's Handbook

Restrictions

Differences

See also

Example

end of the file was reached before the transfer was
completed. In that case, if the file's record size is greater
than one, result returns the number of complete records
read; that is, a possible last partial record is not included
in result.

The current file position is advanced by result records as
an effect of the BlockRead.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

3.0 read partial records; 4.0 discards them.

BlockWrite

program CopyFile;
{ Simple, fast file copy program with NO error-checking
var

FromF, ToF: file;
NumRead, NumWritten: word;
buf: array[1 .. 2048] of char;

begin
Assign (FromF, ParamStr(1));
Reset (FromF, 1);
Assign (ToF, ParamStr(2));
Rewrite (ToF, 1);

{ Open input file }
{ Record size = 1 }

{ Open output file }
{ Record size = 1 }

Writeln('Copying " FileSize(FromF), , bytes ... ');
repeat

BlockRead(FromF,buf,SizeOf(buf),NumRead);
BlockWrite(ToF,buf,NumRead,NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead) ;
Close(FromF);
Close (ToF) ;

end.

BlockWrite procedure

Function

Declaration

Remarks

Writes one or more records from a variable.

BlockWrite(BlockWrite(var f: file; var buf; count: word
[; var result: word])

f is an untyped file variable, buf is any variable, count is
an expression of type word, and result is a variable of
type word.

Chapter 27, Turbo Pascal Reference Lookup 381

Restrictions

Differences

See also

Example

Block Write writes count or less records to the file f from
memory, starting at the first byte occupied by buf. The
actual number of complete records written (less than or
equal to count) is returned in the optional parameter
result. If result is not specified, an I/O error will occur if
the number written is not equal to count.

The entire block transferred occupies at most count *
recsize bytes, where recsize is the record size specified
when the file was opened (or 128 if it was omitted). It is
an error if count * recsize is greater than 65535 (64K).

result is an optional parameter. Here is how it works: If
the entire block was transferred, result will be equal to
count on return. Otherwise, if result is less than count, the
disk became full before the transfer was completed. In
that case, if the file's record size is greater than one,
result returns the number of complete records written;
that is, it's possible a remaining partial record is not
included in result.

The current file position is advanced by result records as
an effect of the BlockWrite.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

3.0 read partial records; 4.0 discards them.

BlockRead

See example for BlockRead.

ChDir procedure

Function

Declaration

Remarks

382

Changes the current directory.

ChDir (s: string)

s is a string-type expression. The current directory is
changed to a path specified by s. If s specifies a drive
letter, the current drive is also changed.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Turbo Pascal Owner's Handbook

See also

Example

GetDir, RmDir, MkDir

begin
{$I-}
{ Get directory name from command line
ChDir(ParamStr(l));
if IOResult <> 0 then

Writeln('Cannot find directory');
end.

Chr function

Function

Declaration

Result type

Remarks

See also

Example

Returns a character with a specified ordinal number.

Chr(x: byte)

char

x is an integer-type expression. The result is the
character with an ordinal value (ASCII value) of x.

Ord

uses Printer;
begin

Writeln(Lst, Chr(12));
end.

{ Send form feed to printer }

Circle procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Draws a circle using (X, Y) as the center point.

Circle (X, Y: integer; Radius: word)

The circle is drawn in the current color set by setColor.
Each graphics driver contains an aspect ratio that is used
by Circle, Arc, and PieS lice to make circles.

Must be in graphics mode.

Arc, Ellipse, GetArcCoords, GetAspectRatio, Pieslice

uses Graph;
var

Gd, Gm: integer;
Radius: integer;

begin
Gd := Detect;

Chapter 27, Turbo Pascal Reference Lookup 383

InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(I);

for Radius := 1 to 5 do
Circle(100, 100, Radius*10);

Readln;
CloseGraph;

end.

ClearDevice procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Clears the graphics screen and prepares it for output.

ClearDevice

ClearDevice moves the current pointer to (0,0) and clears
the screen using the background color set by SetBkColor
and prepares it for output.

Must be in graphics mode.

ClearViewPort, CloseGraph, InitGraph, RestoreCrtMode,
SetGraphMode, GraphDefaults

uses Crt, Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Randomize;
repeat

LineTo(Random(200), Random(200));
until KeyPressed;
ClearDevice;
Readln;
CloseGraph;

end.

ClearViewPort procedure Graph

Function Clears the current viewport.

Declaration ClearViewPort

384 Turbo Pascal Owner's Handbook

Remarks

Restrictions

See also

Example

Sets the fill color to the background color (Palette[O]),
calls Bar, and moves the current pointer to (0,0).

Must be in graphics mode.

Set ViewPort, GetViewSettings, Bar

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Rectangle (19, 19, GetMaxX-19, GetMaxY-19);
SetViewPort(20, 20, GetMaxX-20, GetMaxY-20, ClipOn);
OutTextXY(O, 0, '<RETURN> clears viewport:');
Readln;
ClearViewPort;
OutTextXY(O, 0, '<RETURN> to quit:');
Readln;
CloseGraph;

end.

Close procedure

Function

Declaration

Remarks

See also

Example

Closes an open file.

Close (f)

f is a file variable of any file type that was previously
opened with Reset, Rewrite, or Append. The external file
associated with f is completely updated and then closed,
and its DOS file handle is freed for reuse.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Append, Assign, Reset, Rewrite

var f: file;
begin

Assign(f, '\AUTOEXEC.BAT');
Reset(f, 1);
Writeln('File size = " FileSize(f));
Close(f);

end.

{ Open file }

{ Close file }

Chapter 27, Turbo Pascal Reference Lookup 385

CloseGraph· procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Shuts down the graphics system. '

CloseGraph

CloseGraph restores the original screen mode before
graphics was initialized and frees the memory allocated
on the heap for the graphics scan buffer. CloseGraph also
deallocates driver and font memory buffers if they were
allocated by calls to GraphGetMem and GraphFreeMem.

Must be in graphics mode.

InitGraph, RestoreCrtMode

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.
{ Shut down graphics }

ClrEol procedure Crt

Function

Declaration

Remarks

386

Clears all characters from the cursor position to the end
of the line without moving the cursor.

ClrEol

All character positions are set to blanks with the
currently defined text attributes. Thus, if TextBackground
is not black, the column from the cursor to the right
edge of the screen becomes the background color.

This procedure is window-relative:

Window(1,1,60,20);
ClrScr;

Turbo Pascal Owner's Handbook

See also

Example

will clear from the current cursor position (l,l) to the
right edge of the active window (60,1).

ClrSer, Window

uses Crt;
begin

TextBackground(LightGray);
ClrEol; {Changes cleared columns to LightGray background }

end.

ClrScr procedure. Crt

Function

Declaration

Remarks

See also

Example

Clears the screen and places the cursor in the upper
left-hand corner.

ClrScr

All character positions are set to blanks with the cur
rently defined text attributes. Thus, if TextBackground is
not black, the entire screen becomes the background
color. This also applies to characters cleared by ClrEol,
InsLine, and· DeiLine, as well as empty lines created· by
scrolling.

This-procedure is window-relative:

Window(l,l,60,20);
ClrScr;

will clear a 60 x 20 rectangle beginning at (1,1).

ClrEol, Window

uses Crt;
begin

TextBackground(LightGray);
ClrScr; { Changes entire screen to LightGray background }

end.

Concat function

Function

Declaration

Result type

Concatenates a sequence of strings.

Concat (sl [, s2, ... , sn l: ; string)

string

Chapter 27, Turbo Pascal Reference Lookup 387

Remarks

Example

Each parameter is a string-type expression. The result is
the concatenation of all the string parameters. If the
resulting string is longer than 255 characters, it is
truncated after the 255th character.

var s: string;
begin

s := Concat('ABC', 'DEF');

end.
{ , ABCDEF' }

Copy function

Function

Declaration

Result type

Remarks

Example

Returns a substring of a string.

Copy(s: string; index: integer; count: integer)

string

s is a string-type expression. index and count are integer
type expressions. Copy returns a string containing count
characters starting with the indexth character in s. If
index is larger than the length of s, an empty string is
returned. If count specifies more characters than remain
starting at the indexth position, only the remainder of the
string is returned.

var s: string;
begin

s := ' ABCDEF';
s := Copy(s, 2, 3)

end.
{ 'BCD' }

Cos function

Function

Declaration

Result type

Remarks

Example

388

Returns the cosine of the argument.

Cos (x: real)

real

x is a real-type expression. The result is the cosine of x. x
is assumed to represent an angle in radians.

var r: real;

begin
r :=Cos(Pi);

Turbo Pascal Owner's Handbook

end.

CSeg function

Function

Declaration

Result type

Remarks

See also

Returns the current value of the CS register.

CSeg

word

The result of type word is the segment address of the
code segment within which CSeg was called.

DSeg,Sseg

Dec procedure

Function

Declaration

Remarks

See also

Example

Decrements a variable.

Dec (var x [; n: longint])

x is an ordinal-type variable, and n is an integer-type
expression. x is decremented by 1, or by n if n is
specified; that is, Dec(x) corresponds to x := x-I, and
Dec(x,n) corresponds to x := x-no

Dec generates optimized code and is especially useful in
a tight loop.

Inc, Pred, Succ

var
IntVar: integer;
LongintVar: longint;

begin
Dec (IntVar);
Dec (LongintVar, 5);

end.

{ IntVar := IntVar - 1
LongintVar := LongintVar - 5

Delay procedure Crt

Function

Declaration

Delays a specified number of milliseconds.

Delay(ms: word)

Chapter 27, Turbo Pascal Reference Lookup 389

Remarks ms specifies the number of milliseconds to wait.

Delay is an approximation, so the delay period will not
last exactly ms milliseconds.

Delete procedure

Function

Declaration

Remarks

See also

Deletes a substring from a string.

Delete(var s: string;
index: integer; count: integer)

s is a string-type variable. index and count are integer
type expressions. Delete deletes count characters from s
starting at the indexth position. If index is larger than the
length of s, no characters are deleted. If count specifies
more characters than remain starting at the indexth
position, the remainder of the string is deleted.

Insert, Copy, Concat, Pas

DelLine procedure Crt

Function

Declaration

Remarks

See also

390

Deletes the line containing the cursor.

DelLine

The line containing the cursor is deleted, and all lines
below are moved one line up (using the BIOS scroll
routine). A new line is added at the bottom.

All character positions are set to blanks with the
currently defined text attributes. Thus, if TextBackground
is not black, the new line becomes the background color.

This procedure is window-relative:

Window(l,l,60,20);
DelLine;

will delete the first line in the window, which is the
tenth line on the screen.

Insline, Window

Turbo Pascal Owner's Handbook

DetectGraph procedure Graph

Function

Declaration

Remarks

See also

Example

Checks the hardware and determines which graphics
driver and mode to use.

DetectGraph(var GraphDriver, GraphMode: integer)

Returns the detected driver and mode value that can be
passed to InitGraph, which will then load the correct
driver. If no graphics hardware was detected, the
GraphDriver parameter and GraphResult will return a
value of -2 (grNotDetected).

The following constants are defined:

const
Detect
CGA
MCGA
EGA
EGA64

0;
1;
2;
3;
4;

EGAMono 5;
RESERVED = 6;
HercMono = 7;
ATT400 8;
VGA 9;
PC3270 = 10;

(Request autodetection

Unless instructed otherwise, InitGraph calls DetectGraph,
finds and loads the correct driver, and initializes the
graphics system. The only reason to call DetectGraph
directly is to override the driver that DetectGraph
recommends. The example that follows identifies the
system as a 64K or 256K EGA, and loads the CGA driver
instead. Note that when you pass InitGraph a Graph
Driver other than Detect, you must also pass in a valid
GraphMode for the driver requested.

InitGraph, GraphResult

uses Graph;
var

GraphDriver, GraphMode: integer;

begin
DetectGraph(GraphDriver, GraphMode);
if (GraphDriver = EGA) or

(GraphDriver = EGA64) then
begin

GraphDriver := CGA;

Chapter 27, Turbo Pascal Reference Lookup 391

GraphMode := CGAHi;
end;
InitGraph(GraphDriver,GraphMode,");
if GraphResult <> grOk then

Halt(l);
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

DiskFree function Dos

Function

Declaration

Result type

Remarks

See also

Example

Returns the number of free bytes of a specified disk
drive.

DiskFree(Drive: word)

longint

A Drive of 0 indicates the default drive, 1 indicates drive
A, 2 indicates B, and so on. DiskFree returns -1 if the
drive number is invalid.

DiskSize, GetDir

uses Dos;
begin

Writeln(DiskFree(O) div 1024, , k-bytes ');
end.

DiskSize function Dos

Function

Declaration

Result type

Remarks

See also

392

Returns the total size in bytes of a specified disk drive.

DiskSize(Drive: word)

longint

A Drive of 0 indicates the default drive, 1 indicates drive
A, 2 indicates B, and so on. DiskSize returns -1 if the
drive number is invalid.

DiskFree, GetDir

Turbo Pascal Owner's Handbook

Example uses Dos;
begin

Writeln(DiskSize(O) div 1024, ' k-bytes ');
end.

Dispose procedure

Function

Declaration

Remarks

Restrictions

See also

Example

Disposes a dynamic variable.

Dispose (var p: pointer)

P is a pointer variable of any pointer type that was pre
viously assigned by the New procedure or was assigned
a meaningful value by an assignment statement. Dispose
destroys the variable referenced by p and returns its
memory region to the heap. After a call to Dispose, the
value of p becomes undefined, and it is an error to
subsequently reference p".

If P does not point to a memory region in the heap, a
runtime error occurs.

Release, FreeMem

type
Str18 = string[18];

var
p: "Strl8;

begin
New(p);
p" := 'Now you see it ... ';
Dispose(p);

end.
{ Now you don't ... }

DosExitCode function Dos

Function

Declaration

Result type

Remarks

Returns the exit code of a subprocess.

DosExitCode

word

The low byte is the code sent by the terminating process.
The high byte is 0 for normal termination, 1 if ter
minated by Ctrl-C, 2 if terminated due to a device error,
or 3 if terminated by the Keep procedure.

Chapter 27, Turbo Pascal Reference Lookup 393

DrawPolY'procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

394

Draws the outline of a polygon using the current line
style and color.

DrawPoly(NumPoints: word; var PolyPoints)

PolyPoints is an untyped parameter that contains the
. coordinates of each intersection in the polygon.
NumPoints specifies the number of coordinates in
PolyPoints. A coordinate consists of two words, an x and
ayvalue.

DrawPoly uses the current line style and color.

Note that in order to draw a closed figure with n
vertices, you must pass N + 1 coordinates to DrawPoly,
and where PolyPoints[n+l] = PolyPoints[1] (see the
example that follows). In order to draw a triangle, for
example, four coordinates must be passed to DrawPoly.

Must be in graphics mode.

FillPoly, GetLineSettings, SetColor, SetLineStyle,
GraphResult

uses Graph;
const

Triangle: array[l .. 4] of PointType =

var
Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

DrawPoly (SizeOf (Triangle)

((x:

(x:
(x:
(x:

'div SizeOf(PointType) ,Triangle); {4}
Readln;
CloseGraph;

end.

50; y:
100; y:
150; y:
50; y:

100) ,
100) ,
150) ,
100)) ;

Turbo Pascal Owner's Handbook

DSeg function

Function

Declaration

Result type

Remarks

See also

Returns the current value of the DS register.

DSeg

word

The result of type word is the segment address of the
data segment.

CSeg, Sseg

Ellipse procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Draws an elliptical arc from start angle to end angle,
using (X,Y) as the center point.

Ellipse (X, Y: integer; StAngle, EndAngle: word;
XRadius, YRadius: word)

Draws an elliptical arc using (X, Y) as a center point, and
XRadius and YRadius as the horizontal and vertical axes.
The ellipse travels from StAngle to EndAngle and is
drawn in the current color.

A start angle of 0 and an end angle of 360 will draw a
complete oval. The angles for Arc, Ellipse, and PieSlice
are counterclockwise with 0 degrees at 3 o'clock, 90
degrees at 12 a' clock, and so on. Information about the
last call to Ellipse can be retrieved with a call to
GetArcCoords.

Must be in graphics mode.

Circle, Arc, PieS lice, GetArcCoords, GetAspectRatio

uses Graph;
var

Gd, Grn: integer;
begin

Gd := Detect;
InitGraph(Gd, Grn, ");
if GraphResult <> grOk then

Halt(l);
Ellipse(lOO,lOO,O,360,30,50);
Ellipse(lOO,lOO,O,180,50,30);

Chapter 27, Turbo Pascal Reference Lookup 395

Readln;
CloseGraph;

end.

Eof function (text files)

Function

Declaration

Result type

Remarks

See also

Example

Returns the end-of-file status of a text file.

Eof [(var f: text)

boolean

I, if specified, is a text-file variable. If I is omitted, the
standard file variable Input is assumed. Eol(l) returns
True if the current file position is beyond the last
character of the file or if the file contains no components;
otherwise, Eol(f) returns False.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eoln

var
f : text;
ch: char;

begin
{ Get file to read from command line }
Assign(f, ParamStr(l));
Reset(f);
while not Eof(f) do
begin

Read(f,ch);
Write (ch);

end;
end.

(Dump text file)

Eof function (typed, untyped files)

Function

Declaration

Result type

Remarks

396

Returns the end-of-file status of a typed or untyped file.

Eof (f)

boolean

I is a file variable. Eol(l) returns True if the current file
position is beyond the last component of the file or if the

Turbo Pascal Owner's Handbook

file contains no components; otherwise, Eo/(/) returns
False.

With {$I-}, IOResuit will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eoln function

Function

Declaration

Result type

Remarks

See also

Returns the end-of-line status of a file.

Eoln [(var f: text) 1

boolean

f, if specified, is a text-file variable. If f is omitted, the
standard file variable Input is assumed. Eoln(f) returns
True if the current file position is at an end-of-line
marker or if Eof(f) is True; otherwise, EoIn(f) returns
False.

When checking Eoin on standard input that has not been
redirected, the following program will wait for a
carriage return to be entered before returning from the
call to Eoln:

begin
Writeln (Eoln) ;

end.

{ This call causes the program }
{ to wait for keyboard input }

With {$I-}, IOResuit will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Eof

Erase procedure

Function

Declaration

Remarks

Erases an external file.

Erase(f)

f is a file variable of any file type. The external file
associated with f is erased.

With {$I-}, IOResuit will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Chapter 27, Turbo Pascal Reference Lookup 397

Restrictions

See also

Example

Erase must never be used on an open file.

Rename

var
f: file;
ch: char;

begin
{ Get file to delete from command line
Assign{f, ParamStr{l));
{$I-}
Reset{f);
{$I+}

if IOResult <> 0 then
Writeln{'Cannot find', ParamStr{l))

else
begin

Close{f);
Write{'Erase " ParamStr{l), '? ');
Readln (ch) ;
if UpCase{ch) = 'Y' then
Erase{f);

end;
end.

Exec procedure Dos

Function

Declaration

Remarks

398

Executes a specified program with a specified command
line.

Exec {Path, CmdLine: string)

The program name is given by the Path parameter, and
the command line is given by CmdLine. To execute a
DOS internal command, run COMMAND.COM; for
instance,

Exec{'\COMMAND.COM',' IC DIR *.PAS');

The / C in front of the command is a requirement of
COMMAND.COM (but not of other applications).
Errors are reported in DosError; possible error codes are
2, 8, la, and 11. The exit code of any child process is
reported by the DosExitCode function.

Exec does not change the memory allocation state before
executing the program. Therefore, when compiling a

Turbo Pascal Owner's Handbook

See also

Example

program that uses Exec, be sure to specify a maximum
heap size; otherwise, there won't be enough memory
(DosError = 8).

Dos Exit Code

{$M $4000,0,0 }
uses Dos;

{ 16K stack, no heap required or reserved }

var
ProgramName, CmdLine: string;

begin
Write ('Program to Exec (include full path): ');
Readln(ProgramName);
Write('Command line to pass to " ProgramName, '. ');
Readln(CmdLine);
Writeln('About to Exec ... ');
Exec (ProgramName, CmdLine);
Writeln(' ... back from Exec');
if DosError <> ° then

Writeln('Dos error #', DosError)
else

Writeln('Exec successful.',

end.

'Child process exit code = "
'DosExitCode);

{ Error? }

Exit procedure

Function

Declaration

Remarks

See also

Example

Exits immediately from the current block.

Exit

When Exit is executed in a subroutine (procedure or
function), it causes the subroutine to return. When it is
executed in the statement part of a program, it causes
the program to terminate. A call to Exit is analagous to a
go to statement addressing a label just before the end of
a block.

Halt

uses Crt;
procedure WasteTime;
begin

repeat
if KeyPressed then Exit;
Write (' Xx') ;

Chapter 27, Turbo Pascal Reference Lookup 399

until False;
end;
begin

WasteTirne;
end.

Exp function

Function

Declaration

Result type

Remarks

See also

Returns the exponential of the argument.

Exp(x: real)

real

x is a real-type expression. The result is the exponential
of x; that is, the value e raised to the power of x, where e
is the base of the natural logarithms.

Ln

FilePos function

Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

Returns the current file position of a file.

FilePos (f)

longint

[is a file variable. If the current file position is at the
beginning of the file, FilePos([) returns o. If the current
file position is at the end of the file-that is, if Eo[([) is
True-FilePos([) is equal to FileSize([).

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on a text file. File must be open.

The result type in 3.0 was an integer.

FileSize, Seek

FileSize function

Function Returns the current size of a file.

400 Turbo Pascal Owner's Handbook

Declaration

Result type

Remarks

Restrictions

Differences

See also

Example

FileSize (f)

longint

! is a file variable. FileSize(!) returns the number of
components in!. If the file is empty, FileSize(!) returns O.

With {$I-}, IDResuit will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on a text file. File must be open.

The result type in 3.0 was an integer.

FilePos

var
f: file of byte;

begin
{ Get file name from command line
Assign(f, ParamStr(l));
Reset (f) ;
Writeln('File size in bytes:' FileSize(f));
Close(f);

end.

FillChar procedure

Function

Declaration

Remarks

See also

Fills a specified number of contiguous bytes with a
specified value.

FillChar(var x; count: word; ch: char)

x is a variable reference of any type. count is an expres
sion of type word. ch is an ordinal-type expression.
FillChar writes the value of ch into count contiguous
bytes of memory, starting at the first byte occupied by x.
No range-checking is performed, so be careful.

Whenever possible, use the SizeD! function to specify the
count parameter when using FiliChar on strings.
Remember to set the length byte after the fill.

Move

Chapter 27, Turbo Pascal Reference Lookup 401

Example var s: string[80];
begin

(Set a string to all spaces
FillChar(s, SizeOf(s), ' 'I;
s[O] := #80;

end.
{ Set length byte }

FillPoly procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

402

Draws and fills a polygon using the scan converter.

FiIIPoly(NumPoints: word; var PolyPoints)

PolyPoints is an untyped parameter that contains the
coordinates of each intersection in the polygon.
NumPoints specifies the number of coordinates in
PolyPoints. A coordinate consists of two words, an x and
a y value.

FillPoly calculates all the horizontal intersections, and
then fills the polygon using the current fill style and
color defined by SetFillStyle or SetFillPattern. The outline
of the polygon is drawn in the current line style and
color as set by SetLineStyle.

If an error occurs while filling the polygon, GraphResult
will return a value of -6 (grNoScanMem).

Must be in graphics mode.

DrawPoly, GetFillSettings, SetFillStyle, SetFillPattern,
GetLineSettings, SetLineStyle, GraphResult

uses Graph;
const

Triangle: array[1 .. 3] of Point Type = ((x: 50; y: 100),
(x: 100; y: 100),
(x: 150; y: 150));

var
Gd, Gm : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1);

FiIIPoly(SizeOf(Triangle) div SizeOf(PointType), Triangle);
{ 3 }

Turbo Pascal Owner's Handbook

Readln;
CloseGraph;

end.

FindFirst procedure Dos

Function

Declaration

Remarks

See also

Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

FindFirst(Path: string; Attr: word;
var S: SearchRec)

Path is the directory mask (for example, * . *). The Attr
parameter specifies the special files to include (in
addition to all normal files). Here are the file attributes
as they are declared in the Dos unit:

const
{ File attribute constants
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

The result of the directory search is returned in the
specified search record. SearchRec is declared in the Dos
unit:

type
{ Search record used by FindFirst and FindNext
SearchRec = record

Fill: array[1 .. 21] of byte;
Attr: byte;
Time: longint;
Size: longint;
Name: string[12];

end;

Errors are reported in Dos Error; possible error codes are
2 (Directory Not Found) and 18 (No More Files).

FindNext

Chapter 27, Turbo Pascal Reference Lookup 403

Example uses Dos;
var

DirInfo: SearchRec;

begin
FindFirst('*.PAS', Archive, DirInfo); {Same as DIR *.PAS }
while DosError = 0 do
begin

Writeln(DirInfo.Name);
FindNext(DirInfo);

end;
end.

FindNext procedure Dos

Function

Declaration

Remarks

See also

Example

Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

FindNext(var s: SearchRec)

S must be the same one Passed to FindFirst (SearchRec is
declared in Dos unit; see FindFirst). Errors are reported
in DosError; the only possible error code is 18, which
indicates no more files.

FindFirst

See FindFirst example

FloodFil1 procedure Graph

Function

Declaration

Remarks

404

Fills a bounded region with the current fill pattern.

FloodFill(x, y: integer; Border: word);

This procedure is called to fill an enclosed area on
bitmap devices. (x,y) is a seed within the enclosed area
to be filled. The current fill pattern, as set by SetFillStyle
or SetFillPattern, is used to flood the area bounded by
Border color. If the seed point is within an enclosed area,
then the inside will be filled. If the seed is outside the
enclosed area, then the exterior will be filled.

If an error occurs while flooding a region, GraphResult
will return a value of -7 (grNoFloodMem).

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

Note that FloodFill stops after two blank lines have been
output. This can occur with a sparse fill pattern and a
small polygon. In the following program, the rectangle
is not completely filled:

program StopFill;
uses Graph;
var

Driver, Mode: integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, 'c:\bgi');
if GraphResult <> grOk then

Halt (1) ;
SetFillStyle(LtSlashFill, GetMaxColor);
Rectangle (0, 0, 8, 20);
FloodFill(I, I, GetMaxColor);
Readln;
CloseGraph;

end.

In this case, using a denser fill pattern like SlashFill will
completely fill the figure.

Use FillPoly instead of FloodFill whenever possible so
that you can maintain code compatibility with future
versions. Must be in graphics mode.

SetFillStyle, SetFillPattern

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(I);
SetColor(GetMaxColor);
Circle (50, 50, 20) i
FloodFill(50,50,GetMaxColor);
Readlni
CloseGraph;

end.

Chapter 27, Turbo Pascal Reference Lookup 405

Flush procedure

Function

Declaration

Remarks

Flushes the buffer of a text file open for output.

Flush(var f: text)

f is a text-file variable.

When a text file has been opened for output using
Rewrite or Append, a call to Flush will empty the file's
buffer. This guarantees that all characters written to the
file at that time have actually been written to the
external file. Flush has no effect on files opened for
input.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Frac function

Function

Declaration

Result type

Remarks

See also

Example

Returns the fractional part of the argument.

Frac (x: real)

real

x is a real-type expression. The result is the fractional
part of x, that is, Frac(x) = x - Int(x).

Int

var r: real;
begin

r := Frac(123.456); {0.456}
end.

FreeMem procedure

Function

Declaration

Remarks

406

Disposes a dynamic variable of a given size.

FreeMem(var p: pointer; size: word)

P is a pointer variable of any pointer type that was
previously assigned by the GetMem procedure or was
assigned a meaningful value by an assignment

Turbo Pascal Owner's Handbook

Differences

See also

statement. Size is an expression of type word, specifying
the size in bytes of the dynamic variable to dispose; it
must be exactly the number of bytes previously allocated
to that variable by GetMem. FreeMem destroys the
variable referenced by p and returns its memory region
to the heap. If p does not point to a memory region in
the heap, a runtime error occurs. After a call to FreeMem,
the value of p becomes undefined, and it is an error to
subsequently reference p/\.

In 3.0, size was an integer.

Dispose, GetMem, Release

GetArcCoords procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Allows the user to inquire about the coordinates of the
last Arc command.

GetArcCoords(var ArcCoords: ArcCoordsType)

GetArcCoords returns a variable of type ArcCoordsType.
ArcCoordsType is predeclared as follows:

type
ArcCoordsType = record

X, Y
Xstart, Ystart, Xend, Yend: integer;

end;

GetArcCoords returns a variable containing the center
point (X,y), the starting position (Xstart,Ystart), and the
ending position (Xend,Yend) of the last Arc command.
These values are useful if you need to connect a line to
the end of an Arc.

Must be in graphics mode.

Arc, Ellipse, PieS lice, PieSliceXY

uses Graph;
var

Gd, Gm : integer;
ArcCoords : ArcCoordsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Chapter 27, Turbo Pascal Reference Lookup 407

Halt (1);

Arc(100,100,0,270,30);
GetArcCoords(ArcCoords);
with ArcCoords do

Line (Xstart, Ystart, Xend, Yend);
Readln;
CloseGraph;

end.

GetAspectRatio procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

408

Returns the effective resolution of the graphics screen
from which the aspect ratio (Xasp:Yasp) can be com
puted.

GetAspectRatio(var Xasp, Yasp: word)

Each driver and graphics mode has an aspect ratio
associated with it (maximum y resolution divided by
maximum x resolution). This ratio can be computed by
making a call to GetAspectRatio and then dividing the
Xasp parameter by the Yasp parameter. This ratio is used
to make circles, arcs, and pie slices round.

Must be in graphics mode.

Are, Circle, GetMaxX, GetMaxY, PieS lice

uses Graph;
var

Gd, Gm : integer;
Xasp, Yasp : word;
XSideLength, YSideLength integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

GetAspectRatio(Xasp, Yasp);
XSideLength := 20;

(Adjust Y length for aspect ratio
YSideLength := Round((Xasp/Yasp) * XSideLength);

Turbo Pascal Owner's Handbook

{ Draw a "square" rectangle on the screen }
Rectangle (0, 0, XSideLength, YSideLength);
Readln;
CloseGraph;

end.

GetBkColor function Graph

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the index into the palette of the current
background color.

GetBkColor

word

Background colors can range from 0 to 15, depending on
the current graphics driver and current graphics mode.

GetBkColor will return 0 if the Oth palette entry is
changed by a call to SetPalette or SetAIIPalette.

Must be in graphics mode.

GetColor, GetPalette, InitGraph, SetAIIPalette, SetBkColor,
SetColor, SetPalette

uses Crt, Graph;
var

Gd, Gm: integer;
Color: word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Randomize;
Getpalette (Pal) ;
if Pal.Size <> 1 then

begin
repeat

Color := Succ(GetBkColor);
if Color> Pal.Size-l then

Color := 0;

{ Cycle through colors }

SetBkColor(Color);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeyPressed;

Chapter 27, Turbo Pascal Reference Lookup 409

end
else

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GetColor function Graph

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

410

Returns the color value passed to the previous
successful call to SetColor.

GetColor

word

Drawing colors can range from 0 to 15, depending on
the current graphics driver and current graphics mode.

Must be in graphics mode.

GetBkColor, GetPalette, SetAllPalette, SetColor, SetPalette

uses Graph;
var

Gd, Gm: integer;
Color: word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Randomize;
GetPalette(Pal);
repeat

Color := Succ(GetColor);
if Color> Pal.Size-l then

Color := 0;
SetColor(Color);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeyPressed;
CloseGraph;

end.

Turbo Pascal Owner's Handbook

GetDate procedure Dos

Function

Declaration

Remarks

See also

Returns the current date set in the operating system.

GetDate(var Year, Month, Day, DayofWeek: word)

Ranges of the values returned are Year 1980 .. 2099, Month
1 .. 12, Day 1 .. 31, and DayOfWeek 0 .. 6 (where 0
corresponds to Sunday).

SetDate, Get Time, SetTime

GetDir procedure

Function

Declaration

Remarks

See also

Returns the current directory of a specified drive.

GetDir(d: byte; var s: string)

d is an integer-type expression, and s is a string-type
variable. The current directory of the drive specified by
d is returned in s. d = 0 indicates the current drive, 1
indicates drive A, 2 indicates drive B, and so on.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error. code.

ChDir, MkDir, RmDir

GetF Attr procedure Dos

Function

Declaration

Remarks

Returns the attributes of a file.

GetFAttr(var f; var Attr: word);

F must be a file variable (typed, untyped, or text file)
that has been assigned but not opened. The attributes
are examined by anding them with the file attribute
masks defined as constants in the Dos unit:

const
{ File attribute constants
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;

Chapter 27, Turbo Pascal Reference Lookup 411

Restrictions

See also

Example

Directory = $10;
Archive = $20;
AnyFile = $3F;

Errors are reported in DosError; possible error codes are
3 (Invalid Path) and 5 (File Access Denied).

f cannot be open.

SetF Attr, GetFTime, SetFTime

uses Dos;
var

f: file;
attr: word;

begin
(Get file name from command line
Assign(f, ParamStr(1));
GetFAttr(f, attr);
Writeln(ParamStr(1));
if DosError <> 0 then

Writeln('Dos error code = " DosError)
else
begin

Write('Attribute =' attr, 'to:'to);
{ Determine file attribute type

using flags in Dos unit)
if attr and ReadOnly <> 0 then

Writeln('read only file');
if attr and Hidden <> 0 then

Writeln('hidden file');
if attr and SysFile <> 0 then

Writeln('system file');
if attr and VolumeID <> 0 then

Writeln('volume ID');
if attr and Directory <> 0 then

Writeln('directory name');
if attr and Archive <> 0 then

Writeln('archive (normal file)');
end; (else)

end.

GetFillPattern procedure Graph

Function

Declaration

412

Returns the last fill pattern and color set by a previous
call to SetFillPattern.

GetFillPattern(var FillPattern: FillPatternType);

Turbo Pascal Owner's Handbook

Remarks

Restrictions

See also

FillPatternType is declared in the Graph unit:

type
FillPatternType = array[I .. 8] of byte;

If no user call has been made to SetFillPattern,
GetFillPattern will return an array filled with $FF.

Must be in graphics mode.

SetFillPattern, GetFillSettings

GetFillSettings procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Returns the last fill pattern and color set by a previous
call to SetFillPattern.

GetFillSettings(var Filllnfo: FillSettingsType)

GetFillSettings returns a variable of type FillSettingsType.
FillSettingsType is predeclared as follows:

type
FillSettingsType = record

Pattern: word;
Color: word;

end;

The Pattern field reports the current fill pattern selected.
The Color field reports the current fill color selected.
Both the fill pattern and color can be changed by calling
the SetFillStyle or SetFillPattern procedure. If Pattern is
equal to UserFill, use GetFillPattern to get the user
defined fill pattern that is selected.

Must be in graphics mode.

SetFillStyle, GetFillPattern, SetFillPattern

uses Graph;
var

Gd, Gm : integer;
Filllnfo: FillSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1);

GetFillSettings(Filllnfo); { Save fill style and color }

Chapter 27, Turbo Pascal Reference Lookup 413

Bar (0, 0, 50, 50);
SetFillStyle(XHatchFill, GetMaxColor);
Bar(50, 0, 100, 50);
with FillInfo do

{ New style }

SetFillStyle(Pattern, Color); {Restore old fill style}
Bar(lOO, 0, 150, 50);
Readln;
CloseGraph;

end.

GetFTime procedure Dos

Function

Declaration

Remarks

Restrictions

See also

Returns the date and time a file was last written.

GetFTime(var f; var Time: longint);

f must be a file variable (typed, untyped, or text file) that
has been assigned and opened. The time returned in the
Time parameter may be unpacked through a call to
UnpackTime. Errors are reported in DosError; the only
possible error code is 6 (Invalid File Handle).

f must be open.

SetFTime, PackTime, UnPackTime

GetGraphMode function Graph

Function

Declaration

Result type

Remarks

414

Returns the current graphics mode.

GetGraphMode

integer

GetGraphMode returns the current graphics mode set by
InitGraph or SetGraphMode. The Mode value is an integer
from 0 to 5, depending on the current driver.

The following mode constants are defined:

Turbo Pascal Owner's Handbook

Graphics Graphics Column
Driver Modes Value x Row Palette Pages

CGA CGACO 0 320x200 CO 1
CGACI 1 320x200 Cl 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHi 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGAC1 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMed 4 640x200 2 color 1
MCGAHi 5 640x480 2 color 1

EGA EGALo 0 640x200 16 color 4
EGAHi 1 640x350 16 color 2

EGA64 EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x350 4 color 1

EGA- EGAMonoHi 3 640x350 2 color 1*
MONO EGAMonoHi 3 640x350 2 color 2**

HERC HercMonoHi 0 720x348 2 color 2

ATT400 ATI400CO 0 320x200 CO 1
ATT400C1 1 320x200 C1 1
ATT400C2 2 320x200 C2 1
ATT400C3 3 320x200 C3 1
ATT400Med 4 640x200 2 color 1
ATT400Hi 5 640x400 2 color 1

VGA VGALo 0 640x200 16 color 2
VGAMed 1 640x350 16 color 2
VGAHi 2 640x480 16 color 1

PC3270 PC3270Hi 0 720x350 2 color 1

* 64K on EGAMono card
** 256K on EGAMono card

Restrictions Must be in graphics mode.

See also ClearDevice, DetectGraph, InitGraph, RestoreCrtMode,
SetGraphMode

Example uses Graph;
var

Gd, Gm: integer;

Chapter 27, Turbo Pascal Reference Lookup 415

Mode : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
OutText('<RETURN> to leave graphics:');
Readln;
RestoreCRTMode;
Writeln('Now in text mode');
Write('<RETURN> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, Text Height('H'), '<RETURN> to quit:');
Readln;
CloseGraph;

end.

GetImage procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

416

Saves a bit image of the specified region into a buffer.

Get Image (xl, yl, x2, y2: integer; var BitMap);

xl, yl, x2, and y2 define a rectangular region on the
screen. BitMap is an untyped parameter that must be
greater than or equal to 4 plus the amount of area
defined by the region. The first two words of BitMap are
reserved for the width and height of the region.

The remaining part of BitMap is used to save the bit
image itself. Use the ImageSize function to determine the
size requirements of BitMap.

Must be in graphics mode. The memory required to save
the region must be less than 64K.

ImageSize, PutImage

uses Graph;
var

Gd, Gm
p

Size

begin

integer;
pointer;
word;

Gd := Detect;

Turbo Pascal Owner's Handbook

InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);
GetMem(P, Size);
GetImage(10,20,30,40,PA);
Readln;
ClearDevice;

{ Allocate memory on heap)

Put Image (100, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

GetIntVec procedure Dos

Function

Declaration

Remarks

See also

Returns the address stored in a specified interrupt
vector.

GetIntVec(IntNo: byte; var Vector: pointer)

IntNo specifies the interrupt vector number (0 .. 255), and
the address is returned in Vector.

SetIntVec

GetLineSettings procedure Graph

Function

Declaration

Remarks

Returns the current line style, line pattern, and line
thickness as set by SetLineStyle.

GetLineSettings(var LineInfo: LineSettingsType)

The following type and constants are defined:

type
LineSettingsType = record

const
{ Line styles
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;

LineStyle: word;
Pattern: word;
Thickness: word;

end;

Chapter 27, Turbo Pascal Reference Lookup 417

Restrictions

See also

Example

DashedLn = 3;
UserBitLn = 4;

{ Line widths }
NormWidth = 1;
ThickWidth = 3;

Must be in graphics mode.

SetLineStyle

uses Graph;
var

Gd, Gm : integer;
OldStyle: LineSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Line (0, 0, 100, 0);
GetLineSettings(OldStyle);

{ User-defined line style }

SetLineStyle(DottedLn, 0, ThickWidth); { New style}
Line (0, la, 100, 10);
with OldStyle do { Restore old line style

SetLineStyle(LineStyle, Pattern, Thickness);
Line(O, 20, 100, 20);
Readln;
CloseGraph;

end.

GetMaxColor function Graph

Function

Declaration

Remarks

Restrictions

See also

418

Returns the highest color that can be passed to the
SetColor procedure.

GetMaxColor : word;

As an example, on a 256K EGA, GetMaxColor will always
return IS, which means that any call to SetColor with a
value from 0 .. 15 is valid. On a eGA in high-resolution
mode or on a Hercules monochrome ada pter,
GetMaxColor returns a value of 1 because these adapters
only support draw colors of 0 or 1.

Must be in graphics mode.

SetColor

Turbo Pascal Owner's Handbook

GetMaxX function Graph

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

Returns the right-most column (x resolution) of the
current graphics driver and mode.

GetMaxX

integer

Returns the maximum x value for the current graphics
driver and mode. On a eGA in 320x200 mode; for
example, GetMaxX will return 319.

GetMaxX and GetMaxY are invaluable for centering,
determining the boundries of a region on the screen, and
soon.

Must be in graphics mode.

GetMaxY, GetX, GetY, MoveTo

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Rectangle(O,O,GetMaxX,GetMaxY); {Draw a full-screen box}
Readln;
CloseGraph;

end.

GetMaxY function Graph

Function

Declaration

Result type

Remarks

Returns the bottom-most row (y resolution) of the
current graphics driver and mode.

GetMaxY

integer

Returns the maximum y value for the current graphics
driver and mode. On a eGA in 320x200 mode; for
example, GetMaxY will return 199.

Chapter 27, Turbo Pascal Reference Lookup 419

Restrictions

See also

Example

GetMaxX and GetMaxY are invaluable for centering,
determining the boundaries of a region on the screen,
and so on.

Must be in graphics mode.

GetMaxX, GetX, GetY, MoveTo

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Rectangle(O,O,GetMaxX,GetMaxY); {Draw a full-screen box}
Readln;
CloseGraph;

end.

GetMem procedure

Function

Declaration

Remarks

Restrictions

Differences

See also

420

Creates a new dynamic variable of the specified size,
and puts the address of the block in a pointer variable.

GetMem(var p: pointer; size: word)

P is a pointer variable of any pointer type. Size is an
expression of type word specifying the size in bytes of
the dynamic variable to allocate. The newly created
variable can be referenced as p/\.

If there isn't enough free space in the heap to allocate the
new variable, a runtime error occurs. (It is possible to
avoid a runtime error; see "The HeapError Function" in
Chapter 26.)

The largest block that can be allocated on the heap at
one time is 65521 bytes (64Kb-$F). If the heap is not
fragmented, for example at the beginning of a program,
successive calls to GetMem will return neighboring
blocks of memory.

In 3.0, size was an integer.

New, FreeMem

Turbo Pascal Owner's Handbook

GetModeRange procedure Graph

Function

Declaration

Remarks

See also

Returns the lowest and highest valid graphics mode for
a given driver.

GetModeRange(GraphDriver : integer;
var LoMode, HiMode: integer);

The output from the following program:

uses Graph;
var

Lowest, Highest : integer;

begin
GetModeRange(EGA64, Lowest, Highest);
Write('Lowest = " Lowest);
Write(' Highest = " Highest);

end.

will be Lowest = 0 and Highest = 1.

If the value of GraphDriver is invalid, the return param
eters are set to -1.

SetGraphMode, InitGraph, DetectGraph

GetPalette procedure Graph

Function

Declaration

Remarks

Returns the current palette and its size.

GetPalette(var Palette: PaletteType)

Returns the current palette and its size in a variable of
type PaletteType. PaletteType is predefined as follows:

const
MaxColors = 15;

type
PaletteType = record

Size: byte;
Colors: array[O .. MaxColors] of shortint;

end;

The size field reports the number of colors in the palette
for the current driver in the current mode. Colors
contains the actual colors O .. Size-1.

Chapter 27, Turbo Pascal Reference Lookup 421

Restrictions

See also

Example

Must be in graphics mode.

SetPalette, SetAllPalette

uses Graph;
var

Gd, Gm : integer;
Color : word;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

if GraphResult <> grOk then
Halt (1) ;

GetPalette(Palette);
if Palette. Size <> 1 then

for Color := ° to Pred(Palette.Size) do
begin

SetColor(Color);
Line(O, Color*5, 100, Color*5);

end
else

Line (0, 0, 100, 0);
Readln;
CloseGraph;

end.

GetPixel function Graph

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

422

Gets the pixel value at X, Y.

GetPixel(X,Y: integer)

word

Gets the pixel color at (X,Y).

Must be in graphics mode.

PutPixel, GetImage, PutImage

uses Graph;
var

Gd, Gm integer;
PixelColor: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, "~I;

Turbo Pascal Owner's Handbook

if GraphResult <> grOk then
Halt (1) ;

PixelColor := GetPixel(10,10);
if PixelColor = 0 then

PutPixel(10, 10, GetMaxColor);
Readln;
CloseGraph;

end.

GetTextSettings procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Returns the current text font, direction, size, and
justification as set by SetTextStyle and SetTextJustify.

GetTextSettings(var Textlnfo: TextSettingsType)

The following type and constants are defined:

type
TextSettingsType = record

const
DefaultFont = 0;
TriplexFont = 1;
SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;
HorizDir
VertDir

= 0;
= 1;

Font: word;
Direction: word;
CharSize: word;
Horiz: word;
Vert: word;

end;

Must be in graphics mode.

8x8 bit mapped font
{ "Stroked" fonts

Left to right
Bottom to top

InitGraph, SetTextJustify, SetTextStyle, TextHeight,
Text Width

uses Graph;
var

Gd, Gm : integer;
OldStyle: TextSettingsType;

begin
Gd := Detect;

Chapter 27, Turbo Pascal Reference Lookup 423

InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Ralt(l);
GetTextSettings(OldStyle);
OutTextXY(O, 0, 'Old text style');
SetTextJustify(LeftText, CenterText);
SetTextStyle(TriplexFont, VertDir, 4);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'New Style');
with OldStyle do
begin { Restore old text style

SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;
OutTextXY(O, TextHeight('H'), 'Old style again');
Readln;
CloseGraph;

end.

GetTime procedure Dos

Function

Declaration

Remarks

See also

Returns the current time set in the operating system.

GetTime(var Hour, Minute, Second, SecIOO: word)

Ranges of the values returned are Hour 0 .. 23, Minute
0 . .59, Second 0 . .59, and Sec100 (hundredths of seconds)
0 .. 99.

Set Time, Get Date, SetDate

GetViewSettings procedure Graph

Function

Declaration

Remarks

424

Returns the current viewport and clipping settings, as
set by SetViewPort.

GetViewSettings(var ViewPort: ViewPortType)

GetViewSettings returns a variable of type ViewPortType.
ViewPortType is predeclared as follows:

type
ViewPortType = record

xl, yl, x2, y2: integer;
Clip: boolean;

end;

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

The points (xl, yl) and (x2, y2) are the dimensions of the
active viewport and are given in absolute screen
coordinates. Clip is a Boolean variable that controls
whether clipping is active.

Must be in graphics mode.

Set ViewPort

uses Graph;
var

Gd, Gm : integer;
ViewPort: ViewPortType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
GetViewSettings(ViewPort);
with ViewPort do
begin

Rectangle (0, 0, x2-xl, y2-yl);
if Clip then

Out Text ('Clipping is active.')
else

OutText('No clipping today.');
end;
Readln;
CloseGraph;

end.

GetX function Graph

Function

Declaration

Result type

Remarks

Returns the X coordinate of the current position (CP).

GetX

integer

GetX is viewport-relative. In the following example:

1 SetViewPort(O,O,GetMaxX,GetMaxY,True);
2 MoveTo(5,5);
3 SetViewPort(lO,lO,lOO,lOO,True);
4 MoveTo(5,5);

• Line 1 moves CP to absolute (0,0), and GetX would
also return a value of O.

Chapter 27, Turbo Pascal Reference Lookup 425

Restrictions

See also

Example

• Line 2 moves CP to absolute (5,5), and GetX would
also return a value of 5.

• Line 3 moves CP to absolute (10,10), but GetX would
return a value of O.

• Line 4 moves CP to absolute (15,15), but GetX would
return a value of 5.

Must be in graphics mode.

GetViewSettings, GetY, InitGraph, MoveTo, Set ViewPort

uses Graph;
var

Gd, Gm: integer;
X, Y: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

OutText('Starting here. ');
X := GetX;
Y := GetY;
OutTextXY(20, 10, 'Now over here ... ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

GetY function Graph

Function

Declaration

Result type

Remarks

426

Returns the Y coordinate of the current position (CP).

GetY

integer

GetYis viewport-relative. In the following example:

1 SetViewPort(O,O,GetMaxX,GetMaxY,True);
2 MoveTo(5,5);
3 SetViewPort(lO,lO,lOO,lOO,True);
4 MoveTo(5,5);

• Line 1 moves CP to absolute (0,0), and GetY would
also return a value of O.

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

• Line 2 moves CP to absolute (5,5), and GetY would
also return a value of 5.

• Line 3 moves CP to absolute (10,10), but GetY would
return a value of o.

• Line 4 moves CP to absolute (15,15), but GetY would
return a value of 5.

Must be in graphics mode.

GetViewsettings, GetX, InitGraph, MoveTo, Set ViewPort

uses Graph;
var

Gd, Gm: integer;
X, Y: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
OutText('Starting here. ');
X := GetX;
Y := GetY;
OutTextXY(20, 10, 'Now over here ... ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

GotoXYprocedure Crt

Function

Declaration

Remarks

Positions the cursor.

GotoXY(X, Y: byte)

The cursor is moved to the position within the current
window specified by X and Y (X is the column, Y is the
row). The upper left corner is (1,1).

This procedure is window-relative:

Window(1,10,60,20);
GotoXY(l,l);

and will move the cursor to the upper left corner of the
active window (absolute coordinates (1,10».

Chapter 27, Turbo Pascal Reference Lookup 427

Restrictions

See also

If the coordinates are in any way invalid, the call to
GotoXY is ignored.

Window, WhereX, WhereY

GraphDefaults procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Resets the graphics settings.

GraphDefaults;

Homes the current pointer (CP) and resets the graphics
system to the default values for

• viewport

• palette
• draw and background colors
• line style and line pattern
• fill style, fill color, and fill pattern
• active font, text style, text justification, and user char

size

Must be in graphics mode.

InitGraph

GraphErrorMsg function Graph

Function

Declaration

Result type

Remarks

See also

Example

428

Returns an error message string for the specified
ErrorCode.

GraphErrorMsg(ErrorCode: integer)

string

This function returns a string containing an error
message that corresponds with the error codes in the
graphics system. This makes it easy· for a user program
to display a descriptive error message ("Device driver
not found" instead of "error code -3").

GraphResult

uses Graph;
var

GraphDriver, GraphMode: integer;
ErrorCode: integer;

Turbo Pascal Owner's Handbook

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Readln;
Halt(l);

end;
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GraphResult function Graph

Function

Declaration

Result type

Remarks

Returns an error code for the last graphics operation.

GraphResult

integer

Returns an error code for the last graphics operation.
The following error return codes are defined:

Chapter 27, Turbo Pascal Reference Lookup 429

Restrictions

See also

Example

430

Error Graphics Error
Code Constant

0 grOk
-1 grNoInitGraph

-2 grNotDetected

-3 grFileNotFound
-4 grInvalidDriver
-5 grNoLoadMem

-6 grNoScanMem
-7 grNoFloodMem
-8 grFontNotFound
-9 grNoFontMem

-10 grInvalidMode

-11 grError
-12 grIOerror
-13 grIn valid Font
-14 grInvalidFontNum
-15 grInvalidDeviceNum

Corresponding
Error Message String

No error
(BGI) graphics not installed
(use InitGraph)
Graphics hardware not
detected
Device driver file not found
Invalid device driver file
Not enough memory to load
driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load
font
Invalid graphics mode for
selected driver
Graphics error
Graphics I/O error
Invalid font file
Invalid font number
Invalid device number

The following routines set GraphResult:

DetectGraph SetAllPattern
ImageSize SetFillStyle
InitGraph SetGraphBufSize
Regis terB Gldriver SetGraphMode
Regis terBGlfon t SetLineStyle

SetPalette
SetTextJustify
SetTextStyle
SetViewPort

Note that GraphResult is reset to zero after it has been
called (similar to IOResult). Therefore, the user should
store the value of GraphResult into a temporary variable
and then test it.

A string function, GraphErrorMsg, is provided that
returns a string that corresponds with each error code.

GraphErrorMsg

uses Graph;
var

ErrorCode: integer;
GrDriver, GrMode: integer;

Turbo Pascal Owner's Handbook

begin
GrDriver := Detect;
InitGraph(GrDriver, GrMode, "~I;

ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error:');
Writeln(GraphErrorMsg(ErrorCode));
Writeln('Program aborted ... ');
Halt(l);

end;

{ Do some graphics ...
ClearDevice;
Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

{ Check for errors }

Halt procedure

Function

Declaration

Remarks

See also

Stops program execution and returns to the operating
system.

Halt [(exitcode: word) 1

exitcode is an optional expression of type word that
specifies the exit code of the program. Halt without a
parameter corresponds to Halt(O). The exit code can be
examined by a parent process using the DosExitCode
function in the Dos unit or through an ERROR LEVEL
test in a DOS batch file.

Note that Halt will initiate execution of any unit Exit
procedures (see Chapter 26).

Exit

Hi function

Function

Declaration

Result type

Returns the high-order byte of the argument.

Hi(x)

byte

Chapter 27, Turbo Pascal Reference Lookup 431

Remarks

See also

Example

x is an expression of type integer or word. Hi returns the
high-order byte of x as an unsigned value.

Lo, Swap

var w: word;
begin

w := Hi ($1234) ; {$12}
end;

High Video procedure Crt

Function

Declaration

Remarks

Differences

See also

Example

Selects high-intensity characters.

HighVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. HighVideo sets the high
intensity bit of TextAttr's foreground color, thus
mapping colors 0-7 onto colors 8-15.

In 3.0, HighVideo always selected yellow on black (white
on black in mono and BW80 video modes).

NormVideo, LowVideo, TextColor, TextBackground

uses Crt;
begin

TextAttr := LightGray;
HighVideo;

end.
{ Color is now white }

ImageSize function Graph

Function

Declaration

Result type

Remarks

432

Returns the number of bytes required to store a
rectangular region of the screen.

ImageSize(x1, y1, x2, y2: integer)

word

xl, yl, x2, and y2 define a rectangular region on the
screen. ImageSize determines the number of bytes
necessary for GetImage to save the specified region of the
screen. The image size includes space for two word
variables that store the width and height of the region.

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

If the memory required to save the region is greater than
or equal to 64K, a value of 0 is returned and GraphResult
will return -11 (gr Error).

Must be in graphics mode.

GetImage, PutImage

uses Graph;
var

Gd, Gm: integer;
P: pointer;
Size: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <>,grOk then

Halt (1) ;
Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);
GetMem(P, Size); { Allocate memory on heap}
GetImage(10,20,30,40,PA);
Readln;
ClearDevice;
PutImage(100, 100, pA

, NormalPut);
Readln;
CloseGraph;

end.

Inc procedure

Function

Declaration

Remarks

See also

Example

Increments a variable.

Inc (var x [; n: longint 1)

x is an ordinal-type variable, and n is an integer-type
expression. x is incremented by 1, or by n if n is
specified; that is, Inc(x) corresponds to x := x+l, and
Inc(x,n) corresponds to x := x+n.

Inc generates optimized code and is especially useful for
use in tight loops.

Dec, Pred

var
IntVar: integer;
LongintVar: longint;

Chapter 27, Turbo Pascal Reference Lookup 433

begin
Inc(IntVar);
Inc (LongintVar, 5);

end.

{ IntVar := IntVar + 1
{ LongintVar := LongintVar + 5

InitGraph procedure Graph

Function

Declaration

Remarks

434

Initializes the graphics system and puts the hardware
into graphics mode.

InitGraph(var GraphDriver: integer;
var GraphMode: integer; DriverPath: string)

Both GraphDriver and GraphMode are var parameters.

If GraphDriver is equal to Detect (0), a call is made to
DetectGraph, the appropriate graphics driver is
initialized, and a graphics mode is selected.

If GraphDriver is not equal to 0, the value of GraphDriver
is assumed to be a driver number; that driver is selected,
and the system is put into the mode specified by
GraphMode. Note that if you override autodetection in
this manner, you must supply a valid GraphMode
parameter for the driver requested.

DriverPath specifies the directory path where the
graphics drivers can be found. If DriverPath is null, the
driver files must be in the current directory.

Normally, InitGraph loads a graphics driver by allocating
memory for the driver (through GraphGetMem), then
loads the appropriate .BGI file from disk. As an
alternative to this dynamic loading scheme, you can link
a graphics driver file (or several of them) directly into
your executable program file. You do this by first
converting the.BGI file to an .OB] file (using the BINOB]
utility), then placing calls to RegisterBGldriver in your
source code (before the call to InitGraph) to register the
graphics driver(s). When you build your program, you
must link the.OB] files for the registered drivers. You
can also load a BGI driver onto the heap and then
register it using RegisterBGldriver.

Turbo Pascal Owner's Handbook

If memory for the graphics driver is allocated on the
heap using GraphGetMem, that memory is released when
a call is made to CloseGraph.

After calling InitGraph, GraphDriver will be set to the
current graphics driver, and GraphMode will be set to the
current graphics mode.

If an error occurred, both GraphDriver and GraphResult (a
function) will return one of the following values:

-2 Cannot detect a graphics card
-3 Cannot find driver file
-4 Invalid driver
-5 Insufficient memory to load driver
-10 Invalid graphics mode for selected driver
-15 Invalid device number

InitGraph resets all graphics settings to their defaults
(current pointer, palette, color, viewport, etc.).

Several useful constants are defined for each graphics
driver supported:

Error Graphics Error Corresponding
Code Constant Error Message String

0 grOk No error
-1 grNolnitGraph (BGI) graphics not installed

(use InitGraph)
-2 grNotDetected Graphics hardware not

detected
-3 grFileNotFound Device driver file not found
-4 grlnvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to load

driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 grFontN otFound Font file not found
-9 grNoFontMem Not enough memory to load

font
-10 grlnvalidMode Invalid graphics mode for

selected driver
-11 grError Graphics error
-12 grlOerror Graphics I/O error
-13 grlnvalidFont Invalid font file
-14 grlnvalidFontNum Invalid font number
-15 grlnvalidDeviceNum Invalid device number

Chapter 27, Turbo Pascal Reference Lookup 435

Restrictions

See also

Example

Must be in graphics mode.

CloseGraph, DetectGraph, RestoreCrtMode, SetGraphMode,
GraphResult, SetGraphBufSize, RegisterBGIdriver,
RegisterBGIfont, GraphDefaults

uses Graph;
var

grDriver: integer;
grMode integer;
ErrCode : integer;

begin
grDriver := Detect;
InitGraph(grDriver,grMode,");
ErrCode := GraphResult;
if ErrCode = grOk then

begin {Do graphics }
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end
else

Writeln('Graphics error:', GraphErrorMsg(ErrCode));
end.

Insert procedure

Function

Declaration

Remarks

See also

Example

Inserts a substring into a string.

Insert (source: string; var s: string; index: integer)

source is a string-type expression. s is a string-type
variable of any length. index is an integer-type
expression. Insert inserts source into s at the indexth
position. If the resulting string is longer than 255
characters, it is truncated after the 255th character.

Delete, Copy, ConCat, Pos

var
s: string;

begin
s := 'Honest Lincoln';
Insert (' Abe " s, 8); { , Honest Abe Lincoln ' }

end.

436 Turbo Pascal Owner's Handbook

InsLine procedure Crt

Function

Declaration

Remarks

See also

Inserts an empty line at the cursor position.

InsLine

All lines below the inserted line are moved down one
line, and the bottom line scrolls off the screen (using the
BIOS scroll routine).

All character positions are set to blanks with the cur
rently defined text attributes. Thus, if TextBackground is
not black, the new line becomes the background color.

This procedure is window-relative:

Window(1,10,60,20);
InsLine;

and will insert a line 60 columns wide at absolute
coordinates (1,10).

DelLine, Window

Int function

Function

Declaration

Result type

Remarks

See also

Example

Returns the integer part of the argument.

Int(x: real)

real

x is a real-type expression. The result is the integer part
of x, that is, x rounded toward zero.

Frac

var r: real;
begin

r:= Int(123.456); {123.0}
end.

Intr procedure Dos

Function Executes a specified software interrupt.

Chapter 27, Turbo Pascal Reference Lookup 437

Declaration

Remarks

Restrictions

Differences

See also

Intr(IntNo: byte; var Regs: Registers)

IntNo is the software interrupt number (0 .. 255). Registers
is a record defined in DOS:

type
Registers = record

case integer of

end;

0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,
Flags: word);

1: (AL, AH, BL, BH, CL, CH, DL, DH: byte);

Before executing the specified software interrupt, Intr
loads the 8086 CPU's AX, BX, CX, OX, BP, SI, 01, OS,
and ES registers from the Regs record. When the
interrupt completes, the contents of the AX, BX, CX, OX,
BP, SI, 01, OS, ES, and Flags registers are stored back
into the Regs record.

For details on writing interrupt procedures, refer to the
section "Interrupt Handling" in Chapter 26, "Inside
Turbo Pascal."

Software interrupts that depend on specific values in SP
or SS on entry, or modify SP and SS on exit, cannot be
executed using this procedure.

In 3.0, the Registers variable passed to Intr was a user
defined type. In 4.0, the Registers variable must be of
type Registers defined in the Dos unit.

MsDos

IOResult function

Function

Declaration

Result type

Remarks

438

Returns an integer value that is the status of the last I/O
operation performed.

IOResult

word

I/O checking must be off-{$I-}-in order to trap I/O
errors using IOResult. If an I/O error occurs and I/O
checking is off, all subsequent I/O operations are
ignored until a call is made to IOResult. A call to
IOResult clears its internal error flag.

Turbo Pascal Owner's Handbook

Differences

Example

The codes returned are summarized in Appendix I,
"Error Messages and Codes." A value of 0 reflects a
successful 110 operation.

In 3.0, return codes were mapped differently.

var f: file of byte;
begin

(Get file name command line
Assign(f, ParamStr(l));
($l-}
Reset(f);
{$It}

if lORe suIt = 0 then
Writeln('File size in bytes:' FileSize(f))

else
Writeln('File not found');

end.

Keep procedure Dos

Function

Declaration

Remarks

Restrictions

See also

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Keep (ExitCode: word)

The entire program stays in memory-including data
segment, stack segment, and heap-so be sure to specify
a maximum size for the heap using the $M compiler
directive. The ExitCode corresponds to the one passed to
the Halt standard procedure.

Use with care! Terminate Stay Resident (TSR) programs
are complex and no other support for them is provided.
Refer to the MS-DOS technical documentation for more
informa tion.

DosExitCode

KeyPressed function Crt

Function

Declaration

Returns True if a key has been pressed on the keyboard;
False otherwise.

KeyPressed

Chapter 27, Turbo Pascal Reference Lookup 439

Result type

Remarks

Differences

See also

Example

boolean

The character (or characters) is left in the keyboard
buffer. KeyPressed does not detect shift keys like Shift, Alt,
NumLock, and so on.

In 3.0, break-checking {$C-} had to be off. 4.0 has no such
restriction.

ReadKey

uses Crt;
begin

repeat
Write ('Xx');

until KeyPressed;
end.

{ Fill the screen until a key is typed }

Length function

Function

Declaration

Result type

Remarks

Example

Returns the dynamic length of a string.

Length(s: string)

integer

s is a string-type expression. The result is the length of s.

var f: text; s: string;
begin

Assign(f, 'gary.pas');
Reset(f);
Readln(f, s);
Writeln('''', s, '''')
Writeln('length = " length(s));

end.

Line procedure Graph

Function

Declaration

Remarks

440

Draws a line from the (xl, yl) to (x2, y2).

Line(xl, yl, x2, y2: integer)

Draws a line in the style and thickness defined by
SetLineStyle and uses the color set by SetColor.

Note that

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

MoveTo(lOO,lOO);
LineTo(200,200);

is equivalent to

Line(lOO,lOO,200,200);
MoveTo(200,200);

Use LineTo when the current pointer is at one endpoint
of the line. If you want the current pointer updated
automatically when the line is drawn, use LineRel to
draw a line a relative distance from the CPo Note that
Line doesn't update the current pointer.

Must be in graphics mode.

LineTo, LineRel, GetLineStyle, SetLineStyle

uses Crt, Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
repeat

Line(Random(200),Random(200),Random(200),Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

LineRel procedure Graph

Function

Declaration

Remarks

Draws a line to a point that is a relative distance from
the current pointer (CP).

LineRel(Dx, Dy: integer);

LineRel will draw a line from the current pointer to a
point that is a relative (Dx,Dy) distance from the current
pointer. The current line style and pattern, as set by
SetLineStyle, are used for drawing the line and uses the
color set by SetColor. Relative move and line commands
are useful for drawing a shape on the screen whose

Chapter 27, Turbo Pascal Reference Lookup 441

Restrictions

See also

Example

starting point can be changed to draw the same shape in
a different location on the screen.

The current pointer is set to the last point drawn by
LineRel.

Must be in graphics mode.

Line, LineTo, MoveRel, SetLineStyle, GetLineStyle

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

MoveTo(I,2);
LineRel (100, 100);
Readln;
CloseGraph;

end.

{ Draw to the point (101,102) }

LineTo procedure Graph

Function

Declaration

Remarks

442

Draws a line from the current pointer to (x,y).

LineTo(x, y: integer)

Draws a line in the style and thickness defined by
SetLineStyle and uses the color set by SetColor.

Note that

MoveTo(IOO,IOO);
LineTo(200,200);

is equivalent to

Line(IOO,IOO,200,200);

The first method is slower and uses more code. Use
LineTo only when the current pointer is at one endpoint
of the line. Use LineRel to draw a line a relative distance
from the CP. Note that the second method doesn't
change the value of the current pointer.

LineTo moves the current pointer to (x,y).

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

Must be in graphics mode.

Line, LineRel, MoveTo, MoveRel, SetLineStyle, GetLineStyle

uses Crt, Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l)i
Randomize;
repeat

LineTo(Random(200),Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

Ln function

Function

Declaration

Result type

Remarks

See Also

Returns the natural logarithm of the argument.

Ln(x: real)

real

x is a real-type expression. The result is the natural
logarithm of x.

Exp

Lo function

Function

Declaration

Result type

Remarks

See also

. Returns the low-order byte of the argument.

Lo(x)

byte

x is an expression of type integer or word. Lo returns the
low-order byte of x as an unsigned value.

Hi, Swap

Chapter 27, Turbo Pascal Reference Lookup 443

Example var w: word;
begin

w := Lo($1234); {$34}
end.

LowVideo procedure Crt

Function

Declaration

Remarks

Differences

See also

Example

Selects low intensity characters.

LowVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. LowVideo clears the
high-intensity bit of TextAttr's foreground color, thus
mapping colors 8-15 onto colors 0-7.

In 3.0, LowVideo always selected LightGray on black.

HighVideo, NormVideo, TextColor, TextBackground

uses Crt;
begin

TextAttr := White;
LowVideo;

end.
{ Color is now light gray }

Mark procedure .

Function

Declaration

Remarks

Restrictions

See also

444

Records the state of the heap in a pointer variable.

Mark(var p: pointer)

P is a pointer variable of any pointer type. The current
value of the heap pointer is recorded in p, and can later
be used as an argument to Release.

Mark and Release cannot be used interchangeably with
Dispose and FreeMem unless certain rules are observed.
For a complete discussion of this topic, refer to· the
section entitled "The Heap Manager" in Chapter 26.

Release, FreeMem, Dispose

Turbo Pascal Owner's Handbook

MaxAvail function

Function

Declaration

Result type

Remarks

Differences

See also

Example

Returns the size of the largest contiguous free block in
the heap, corresponding to the size of the largest
dynamic variable that can be allocated at that time.

MaxAvail

longint

This number is calculated by comparing the sizes of all
free blocks below the heap pointer to the size of free
memory above the heap pointer. To find the total
amount of free memory on the heap, call MemAvail. Your
program can specify minimum and maximum heap
requirements using the {$M} compiler directive (see
Appendix C).

In 3.0, the returned value was an integer that repre
sented the size of the largest free block in paragraphs.

MemAvail

type
FriendRec = record

var
p: pointer;

begin

Name: string(30);
Age : byte;

end;

if MaxAvail < SizeOf(FriendRec) then
Writeln('Not enough memory')

else
begin

{ Allocate memory on heap
GetMem(p, SizeOf(FriendRec));

end;
end.

MemAvail function

Function Returns the sum of all free blocks in the heap.

Chapter 27, Turbo Pascal Reference Lookup 445

Declaration

Result type

Remarks

Differences

See also

Example

MemAvail

longint

This number is calculated by adding the sizes of all free
blocks below the heap pointer to the size of free memory
above the heap pointer. Note that unless Dispose and
FreeMem were never called, a block of storage the size of
the returned value is unlikely to be available due to
fragmentation of the heap. To find the largest free block,
call MaxAvail. Your program can specify minimum and
maximum heap requirements using the {$M} compiler
directive (see Appendix C).

In 3.0, the returned value was an integer that
represented the number of free paragraphs.

MaxAvail

begin
Writeln(MemAvail, , bytes available');
Writeln('Largest block contains', MaxAvail, , bytes');

end.

MkDir procedure

Function

Declaration

Remarks

See also

Example

446

Creates a subdirectory.

MkDir(s: string)

s is a string-type expression. A new subdirectory with
the path specified by s is created. The last item in the
path cannot be an existing file name.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

RmDir, ChDir, GetDir

begin
{$I-}
{ Get directory name from command line
MkDir(ParamStr(l));
if IOResult <> 0 then

Writeln('Cannot create directory')
else

Writeln('New directory created');
end.

Turbo Pascal Owner's Handbook

Move procedure

Function

Declaration

Remarks

See also

Example

Copies a specified number of contiguous bytes from a
source range to a destination range.

Move(var source, desti count: word)

source and dest are variable references of any type. count
is an expression of type word. Move copies a block of
count bytes from the first byte occupied by source to the
first byte occupied by dest. No checking is performed, so
be careful with this procedure.

Note: When source and dest are in the same segment, that
is, when the segment parts of their addresses are equal,
Move automatically detects and compensates for any
overlap. Intrasegment overlaps never occur on statically
and dynamically allocated variables (unless they are
deliberately forced), and they are therefore not detected.

Whenever possible, use the SizeD! function to determine
the count.

FillChar

var
a: array[1 .. 4] of chari

b: longinti

begin
Move (a, b, SizeOf(a))i

end.
{ SizeOf = safety! }

MoveRel procedure Graph

Function

Declaration

Remarks

Moves the current pointer (CP) a relative distance from
its current location.

MoveRe 1 (Ox, Oy: integer)

MoveRel moves the current pointer (CP) to a point that is
a relative (Dx,Dy) distance from the current pointer.
Relative move and line commands are useful for
drawing a shape on the screen whose starting point can
be changed to draw the same shape in a different
location on the screen.

Chapter 27, Turbo Pascal Reference Lookup 447

Restrictions

See also

Example

Must be in graphics mode.

LineRel, LineTo, MoveTo

uses Graphi
var

Gd, Gm: integeri

begin
Gd := Detecti
InitGraph (Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) i

MoveTo(1,2)i
MoveRel(10,10); { Move to the point (11, 12) }
PutPixel(GetX, GetY, GetMaxColor)i
Readln;
CloseGraphi

end.

MoveTo procedure Graph

Function

Declaration

Remarks

See also

Example

448

Moves the current pointer (CP) to (x,y).

MoveTo(x, y: integer)

The CP is similar to a text mode cursor except that the
CP is not visible. The following routines move the CP:

ClearDevice MoveRel
ClearViewPort MoveTo
Graph Defa u lts OutText
InitGraph setGraphMode
LineRel Set ViewPort
LineTo

If a viewport is active, the CP will be viewport-relative
(the x and y values will be added to the viewport's xl
and yl values). The CP is never clipped at the current
viewport's boundaries.

GetMaxX, GetMaxY, GetX, GetY, MoveRel

uses Graphi
var

Gd, Gm: integeri

begin
Gd := Detect;

Turbo Pascal Owner's Handbook

InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(1);
MoveTo(O,O);
LineTo(GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

{ Upper left corner of viewport

MsDos procedure Dos

Function

Declaration

Remarks

Restrictions

Differences

See also

Executes a DOS function call.

MsDos(var Regs: Registers);

The effect of a call to MsDos is the same as a call to Intr
with an IntNo of $21. Registers is a record declared in the
Dos unit:

type
Registers = record

case integer of
0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,

Flags: word);
1: (AL,AH,BL,BH,CL,CH,DL,DH: byte);

end;

Software interrupts that depend on specific calls in SP or
SS on entry or modify SP and SS on exit cannot be
executed using this procedure.

In 3.0, no type-checking was performed on the Registers
parameter.

Intr

New procedure

Function

Declaration

Remarks

Creates a new dynamic variable and sets a pointer
variable to point to it.

New (var p: pointer)

P is a pointer variable of any pointer type. The size of the
allocated memory block corresponds to the size of the
type that p points to. The newly created variable can be

Chapter 27, Turbo Pascal Reference Lookup 449

See also

referenced as p". If there isn't enough free space in the
heap to allocate the new variable, a runtime error
occurs. (It is possible to avoid a runtime error in this
case; see liThe HeapError Function" in Chapter 26.)

GetMem, Dispose

NormVideo procedure Crt

Function

Declaration

Remarks

Differences

See also

Selects the original text attribute read from the. cursor
location at startup.

NormVideo

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. NormVideo restores
TextAttr to the value it had when the program was
started.

In 3.0, NormVideo and HighVideo were identical; see
High Video.

HighVideo, LowVideo, TextColor, TextBackground

N oSound· procedure Crt

Function

Declaration

Remarks

See also

Turns off the internal speaker.

NoSound

The following program fragment emits. a 440-hertz tone
for half a second:

Sound(440); Delay(500); NoSoundi

Sound

Odd function

Function

Declaration

Result type

450

Tests if the argument is an odd number.

Odd (x: longint)

boolean

Turbo Pascal Owner's Handbook

Remarks x is a longint-type expression. The result is True if x is an
odd number, and False if x is an even number.

Ofs function

Function

Declaration

Result type

Remarks

See also

Returns the offset of a specified object.

Ofs (x)

word

x is any variable, or a procedure or function identifier.
The result of type word is the offset part of the address
ofx.

Seg, Addr

Ord function

Function

Declaration

Result type

Remarks

See also

Returns the ordinal number of an ordinal-type value.

Ord(x)

longint

x is an ordinal-type expression. The result is of type
longint and its value is the ordinality of x;

Chr

OutText procedure Graph

Function

Declaration

Remarks

Sends a string to the output device at the current
pointer.

OutText(TextString: string)

TextString is output at the current pointer using the
current justification settings. TextString is always
truncated at the viewport border if it is too long. If one
of the stroked fonts is active, TextString is truncated at
the screen boundary if it is too long. If the default (bit
mapped) font is active and the string is too long to fit on
the screen, no text is displayed.

Chapter 27, Turbo Pascal Reference Lookup 451

452

OutText uses the font set by SetTextStyle. In order to
maintain code compatibility when using several fonts,
use the Text Width and TextHeight calls to determine the
dimensions of the string.

OutText uses the output options set by SetTextJustify
(justify, center, rotate 90 degrees, and so on).

The current pointer (CP) is only updated by OutText if
the direction is horizontal, and the horizontal
justification is left. Text output direction is set by
SetTextStyle (horizontal or vertical); text justification is
set by SetTextJustify (CP at the left of the string, centered
around CP, or CP at the right of the string-written
above CP, below CP, or centered around CP). In the
following example, block #1 outputs ABCDEF and
moves CP (text is both horizontally output and left
justified); block #2 outputs ABC with DEF written right
on top of it because text is right-justified; similarly, block
#3 outputs ABC with DEF written right on top of it
because text is written vertically.

program CPupdate;
uses Graph;
var

Driver, Mode: integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < ° then

Halt(l);

{ #l }
MoveTo (0, 0);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(LeftText, TopText);
Out Text (' ABC');

OutText('DEF');

{ #2)
MoveTo(lOO, 50);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(RightText, TopText);
OutText('ABC');

Out Text (' DEF') ;

{ CharSize = 1 }

{ CP is updated
}

CP is updated
)

(CharSize = 1)

{ CP is updated
}

CP is updated
)

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

{ #3 }

{ CharSize = 1 }
MoveTo(100, 100);
SetTextStyle(DefaultFont, VertDir, 1);
SetTextJustify(LeftText, TopText);
OutText (' ABC');
OutText('DEF');

CP is NOT updated }
CP is NOT updated }

Readln;
CloseGraph;

end.

The CP is never updated by OutTextXY.

The default font (8x8 bit-mapped) is not clipped at the
screen edge. Instead, if any part of the string would go
off the screen, no text is output. For example, the
following statements would have no effect:

SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn);
SetTextJustify(LeftText, TopText);
OutTextXY(-5, 0); { -5,0 not on screen
OutTextXY(GetMaxX - 1, 0, 'ABC'); { Part of 'A',

{ All of 'BC' off screen

The "stroked" fonts are clipped at the screen edge,
however.

Must be in graphics mode.

OutTextXY, SetTextStyle, SetText]ustify, GetTextSettings,
TextHeight, TextWidth, SetUserCharSize

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Out Text ('Easy to use');
Readln;
CloseGraph;

end.

OutTextXY procedure Graph

Function Sends a string to the output device.

Chapter 27, Turbo Pascal Reference Lookup 453

Declaration

Remarks

Restrictions

See also

Example

454

OutTextXY(X,Y: integer; TextString: string)

TextString is output at (X,Y). TextString is always
truncated at the viewport border if it is too long. If one
of the stroked fonts is active, TextString is truncated at
the screen boundary if it is too long. If the default (bit
mapped) font is active and the string is too long to fit on
the screen, no text is displayed.

Use OutText to output text at the current pointer; use
OutTextXY to output text elsewhere on the screen.

OutTextXY uses the font set by SetTextStyle. In order to
maintain code compatibility when using several fonts,
use the Text Width and TextHeight calls to determine the
dimensions of the string.

OutTextXY uses the output options set by SetTextJustify
(justify, center, rotate 90 degrees, and so forth).

Must be in graphics mode.

OutText, SetTextStyle, SetTextJustify, GetTextSetting,
TextHeight, Text Width, SetUserCharSize

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
MoveTo(O, 0);
OutText('Inefficient');
Readln;
OutTextXY(GetX, GetY, 'Also inefficient');
Readln;
ClearDevice;
OutTextXY(O, 0, 'Perfect!');
Readln;
CloseGraph;

end.

{ Replaces above }

Turbo Pascal Owner's Handbook

PackTime procedure Dos

Function

Declaration

Remarks

See also

Converts a DateTime record into a 4-byte, packed date
and-time longint used by SetFTime.

PackTime(var DT: DateTime; var Time: longint}

DateTime is a record declared in the Dos unit:

DateTime = record
Year, Month, Day, Hour,
Min, Sec: word

end;

The fields of the DateTime record are not range-checked.

UnpackTime, GetFTime, SetFTime, GetFTime, SetTime

ParamCount function

Function

Declaration

Result type

Remarks

See also

Example

Returns the number of parameters passed to the pro
gram on the command line.

ParamCount

word

Blanks and tabs serve as separators.

ParamStr

begin
if ParamCount < 1 then

Writeln('No parameters on command line'}
else

Writeln(ParamCount, , parameter(s}'};
end.

ParamStr function

Function

Declaration

Result type

Returns a specified command-line parameter.

ParamStr(index}

string

Chapter 27, Turbo Pascal Reference Lookup 455

Remarks

See also

Example

Pi function

Function

Declaration

Result type

Remarks

Differences

index is an expression of type word. ParamStr returns the
indexth parameter from the command line, or an empty
string if index is zero or greater than ParamCount.

ParamCount

var i: word;
begin

for i := 1 to PararnCount do
Writeln(PararnStr(i));

end.

Returns the value of Pi (3.1415926535897932385).

Pi

real

Precision varies, depending on whether the compiler is
in 8087 (80287, 80387) or software-only mode.

In 3.0, Pi was a constant.

PieSlice procedure Graph

Function

Declaration

Remarks

Restrictions

456

Draws and fills a pie slice, using (X, Y) as the center
point and drawing from start angle to end angle.

PieSlice(x, y: integer; StAngle, EndAngle, Radius: word)

The pie slice is outlined using the current color, and
filled using the pattern and color defined by SetFillStyle
or SetFillPattern.

Each graphics driver contains an aspect ratio that is used
by Circle, Are, and PieSlice. A start angle of 0 and an end
angle of 360 will draw and fill a complete circle. The
angles for Are, Ellipse, and PieSlice are counterclockwise
with 0 degrees at 3 0' clock, 90 degrees at 12 o'clock, and
soon.

If an error occurs while filling the pie slice, GraphResult
will return a value of -6 (grNoScanMem).

Must be in graphics mode.

Turbo Pascal Owner's Handbook

See also

Example

Arc, Circle, Ellipse, GetArcCoords, GetAspectRatio,
SetFillStyle, SetFillPattern, SetGraphBufSize

uses Graph;
const

Radius = 30;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
PieSlice(100, 100, 0, 270, Radius);
Readln;
CloseGraph;

end.

Pos function.

Function

Declaration

Result type

Remarks

Example

Searches for a substring in a string.

Pos(substr, s: string)

byte

substr and s are string-type expressions. Pos searches for
substr within s, and returns an integer value that is the
index of the first character of substr within s. If substr is
not found, Pos returns zero.

var s: string;
begin

s:=' 123.5';
{ Convert spaces to zeroes
while Post' " s) > 0 do

s[Pos(' " s)] := '0';
end.

Pred function

Function

Declaration

Result type

Returns the predecessor of the argument.

Pred(x)

Same type as parameter.

Chapter 27, Turbo Pascal Reference Lookup 457

Remarks

See also

x is an ordinal-type expression. The result, of the same
type as x, is the predecessor of x.

Succ, Dec, Inc

Ptr function

Function

Declaration

Result type

Remarks

.See also

Example

Converts a segment base and an offset address to a
pointer-type value.

Ptr(seg, ofs: word)

pointer

seg and ofs are expressions of type word. The result is a
pointer that points to the address given by seg and ofs.
Like nil, the result of Ptr is assignment compatible with
all pointer types.

The function result may be dereferenced:

if Ptr($40, $49)A = 7 then
Writeln('Video mode = mono');

Addr

var p: Abyte;
begin

p := Ptr($40, $49);
Writeln('Current video mode is " pAl;

end.

Putlmage procedure Graph

Function

Declaration

Remarks

458

Puts a bit image onto the screen.

Putlmage(x, y: integer; var BitMap; BitBlt: word)

(x,y) is the upper left comer of a rectangular region on
the screen. BitMap is an untyped parameter that contains
the height and width of the region, and the bit image
that will be put onto the screen. BitBlt specifies which
binary operator will be used to put the bit image onto
the screen.

Turbo Pascal Owner's Handbook

The following constants are defined:

const
NorrnalPut = 0; { MOV }
XORPut = 1; { XOR }
OrPut = 2; { OR }

AndPut = 3; { AND }
NotPut = 4; { NOT }

Each constant corresponds to a binary operation. For
example, PutImage(x,y,BitMap,NormaIPut) puts the image
stored in BitMap at (x,y) using the· assembly language
MOV instruction for each byte in the image.

Similarly, PutImage(x,y,BitMap,XORPut) puts the image
stored in BitMap at (x,y) using the assembly language
XOR instruction for each byte in the image. This is an
often-used animation technique for "dragging" an
image around the screen.

PutImage(x,y,Bitmap,NotPut) inverts the bits in BitMap
and then puts the image stored in BitMap at (x, y) using
the assembly language MOV for each byte in the image.
Thus, the image appears in inverse video of the original
BitMap.

Note that PutImage is never clipped to the viewport
boundary. Moreover-with one exception-it is not
actually clipped at the screen edge either. Instead, if any
part of the image would go off the screen, no image is
output. In the following example, the first image would
be output, but the middle three Putlmage statements
would have no effect:

program NoClip;
uses graph;
var

Driver, Mode: integer;
p: pointer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < a then

Halt(l);
SetViewPort(O, 0, GetMaxX, GetMaxY, clipon);
GetMern(p, IrnageSize (0, 0, 99, 49));
PieSlice (50, 25, 0, 360, 45);
GetImage (0, 0, 99, 49, pA); { Width = 100, height = 50 }

Chapter 27, Turbo Pascal Reference Lookup 459

Restrictions

See also

Example

460

ClearDevice;
PutImage(GetMaxX - 99, 0,

pA, NormalPut);
PutImage(GetMaxX - 98, 0,

pA, NormalPut);
PutImage(-l, 0,

pA, NormalPut);
PutImage (0, -1,

pA, NormalPut);
Put Image (0, GetMaxY - 30,

pA, NormalPut);
Readln;
CloseGraph;

end.

{ Will barely fit }

x + height > GetMaxX

-1,0 not on screen

0,-1 not on screen

{ Will output 31 "lines"

In the last PutImage statement, the height is clipped at·
the lower screen edge, and a partial image is displayed~
This is the only time any clipping is performed on
PutImage output.

Must be in graphics mode.

GetImage, ImageSize

uses Graph;
var

Gd, Gm: integer;
P: pointer;
Size: word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10,20,30,40);
GetMem(P, Size); { Allocate memory on heap}
GetImage(10,20,30,40,PA);
Readln;
ClearDevice;
Put Image (100, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

Turbo Pascal Owner's Handbook

PutPixel procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Plots a pixel at x,y.

PutPixel(x, y: integer; Pixel: word)

Plots a point in the color defined by Pixel at (x,y).

Must be in graphics mode.

GetImage, GetPixel, PutImage

uses Crt, Graph;
var

Gd, Gm: integer;
Color : word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Color := GetMaxColor;
Randomize;
repeat

PutPixel (Random(lOO) ,Random(lOO) ,Color); {Plot "stars" }
Delay(lO);

until KeyPressed;
Readln;
CloseGraph;

end.

Random function

Function

Declaration

Result type

Remarks

Returns a random number.

Random [(range: word) 1

real or word, depending on the parameter

If range is not specified, the result is a Real random
number within the range equals x < 1. If range is
specified, it must be an expression of type integer, and
the result is a word random number within the range
equals x < range. If range equals 0, a value of 0 will be
returned.

Chapter 27, Turbo Pascal Reference Lookup 461

See also

Example

The Random number generator should be initialized by
making a call to Randomize.

Randomize

uses Crt;
begin

Randomize;
repeat

(Write text in random colors
TextAttr := Random(256);
Write (' !') ;

until KeyPressed;
end.

Randomize procedure

Function

Declaration

Remarks

See also

Initializes the built-in random generator with a random
value.

Randomize

The random value is obtained from the system clock.

Note: The random-number generator's seed is stored in
a predeclared longint variable called RandSeed. By
assigning a specific value to RandSeed, a specific
sequence of random numbers can be generated over and
over. This is particularly useful in applications that use
data encryption.

Random

Read procedure (text files)

Function

Declaration

Remarks

462

Reads one or more values from a text file into one or
more variables.

Read ([var f: text; 1 vI [, v2, ... ,vn 1)

f, if specified, is a text-file variable. If f is omitted, the
standard file variable Input is assumed. Each v is a
variable of type char, integer, real, or string.

With a type char variable, Read reads one character from
the file and assigns that character to the variable. If Eof(f)

Turbo Pascal Owner's Handbook

was True before Read was executed, the value Chr(26) (a
Ctrl-Z character) is assigned to the variable. If Eoln(f) was
True, the value Chr(13) (a carriage-return character) is
assigned to the variable. The next Read will start with the
next character in the file.

With a type integer variable, Read expects a sequence of
characters that form a signed number, according to the
syntax shown in the section "Numbers" in Chapter 13,
"Tokens and Constants." Any blanks, tabs, or end-of
line markers preceding the numeric string are skipped.
Reading ceases at the first blank, tab, or end-of-line
marker following the numeric string or if Eof(f) becomes
True. If the numeric string does not conform to the
expected format, an 1/0 error occurs; otherwise, the
value is assigned to the variable. If Eof(f) was True
before Read was executed or if Eof(f) becomes True while
skipping initial blanks, tabs, and end-of-line markers,
the value 0 is assigned to the variable. The next Read will
start with the blank, tab, or end-of-line marker that
terminated the numeric string.

With a type real variable, Read expects a sequence of
characters that form a signed whole number, according
to the syntax shown in the section "Numbers" in
Chapter 13, "Tokens and Constants" (except that
hexadecimal notation is not allowed). Any blanks, tabs,
or end-of-line markers preceding the numeric string are
skipped. Reading ceases at the first blank, tab, or end
of-line marker following the numeric string or if Eof(f)
becomes True. If the numeric string does not conform to
the expected format, an 1/0 error occurs; otherwise, the
value is assigned to the variable. If Eof(f) was True
before Read was executed, or if Eof(f) becomes True
while skipping initial blanks, tabs, and end-of-line
markers, the value 0 is assigned to the variable. The next
Read will start with the blank, tab, or end-of-line marker
that terminated the numeric string.

With a type string variable, Read reads all characters up
to, but not including, the next end-of-line marker or
until Eof(f) becomes True. The resulting character string
is assigned to the variable. If the resulting string is
longer than the maximum length of the string variable, it
is truncated. The next Read will start with the end-of-line
marker that terminated the string.

Chapter 27, Turbo Pascal Reference Lookup 463

Restrictions

Differences

See also

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Read with a type string variable does not skip to the next
line after reading. For this reason, you cannot use
successive Read calls to read a sequence of strings, since
you will never get past the first line; after the first Read,
each subsequent Read will see the end-of-line marker
and return a zero-length string. Instead, use multiple
Readln calls to read successive string values.

See Appendix A.

Readln, ReadKey

Read procedure (typed files)

Function

Declaration

Remarks

Restrictions

See also

Reads a file component into a variable.

Read(f , vI [, v2, ... ,vn 1)

I is a file variable of any type except text, and each v is a
variable of the same type as the component type of I. For
each variable read, the current file position is advanced
to the next component. It's an error to attempt to read
from a file when the current file position is at the end of
the file, that is, when Eol(l) is True.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open.

Write

ReadKey function Crt

Function

Declaration

Result type

Remarks

464

Reads a character from the keyboard.

ReadKey

char

The character read is not echoed to the screen. If
KeyPressed was True before the call to ReadKey, the

Turbo Pascal Owner's Handbook

See also

character is returned immediately. Otherwise, ReadKey
waits for a key to be typed.

The special keys on the PC keyboard generate extended
scan codes. (The extended scan codes are summarized in
Appendix E.) Special keys are the function keys, the
cursor control· keys, A/t keys, and so on. When a special
key is pressed, ReadKey first returns a null character (#0),
and then returns the extended scan code. Null characters
cannot be generated in any other way, so you are
guaranteed the next character will be an extended scan
code.

The following program fragment reads a character or an
extended scan code into a variable called Ch and sets a
Boolean variable called FuncKey to True if the character
is a special key:

Ch := ReadKey;
if Ch <> #0 then FuncKey := False else
begin

FuncKey := True;
Ch := ReadKey;

end;

The CheckBreak variable controls whether Ctr/-Break
should abort the program or be returned like any other
key. When CheckBreak is False, ReadKey returns a Ctr/-C
(#3) for Ctr/-Break.

KeyPressed

Readln procedure

Function

Declaration

Remarks

Executes the Read procedure then skips to the next line
of the file.

Readln ([var f: text; 1 vi [, v2, ... , vn 1)

Readln is an extension to Read, as it is defined on text
files. After executing the Read, Readln skips to the
beginning of the next line of the file.

Readln(f) with no parameters causes the current file
position to advance to the beginning of the next line (if
there is one; otherwise, it goes to the end of the file).

Chapter 27, Turbo Pascal Reference Lookup 465

Restrictions

See also

Readln with no parameter list altogether corresponds to
Readln(Input).

With ($I-J, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Works only on text files, including standard input. File
must be open for input.

Read

Rectangle procedure Graph·

Function

Declaration

Remarks

Restrictions

See also

Example

466

Draws a rectangle using the current line style and color.

Rectangle (xl, yl, x2, y2: integer)

(xl, yl) define the upper left corner of the rectangle, and
(x2, y2) define the lower right corner (0 <= xl < x2
<= GetMaxX, and 0 <= yl < y2 <= GetMaxY).

The rectangle will be drawn in the current line style and
color, as set by setLinestyle and setColor.

Must be in graphics mode.

Bar, Bar3D, setLinestyle, Set Color

uses Crt, Graph;
var

GraphDriver, GraphMode: integer;
xl, yl, x2, y2: integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver,GraphMode,");
if GraphResult<> grOk then

Halt(l);
Randomize;
repeat

xl := Random(GetMaxX);
yl := Random(GetMaxY);
x2 := Random(GetMaxX-xl) + xl;
y2 := Random(GetMaxY-yl) + yl;
Rectangle (xl, yl, x2, y2);

until KeyPressed;
CloseGraph;

end.

Turbo Pascal Owner's Handbook

RegisterBGIdriver function Graph

Function

Declaration

Remarks

Registers a user-loaded or linked-in BGI driver with the
graphics system.

RegisterBGldriver(driver: pointer) : integer;

If an error occurs, the return value is less than 0;
otherwise, the internal driver number is returned. This
routine enables a user to load a driver file and "register"
the driver by passing its memory loea tion to
RegisterBGldriver. When that driver is used by InitGraph,
the registered driver will be used (instead of being
loaded from disk by the Graph unit). A user-registered
driver can be loaded from disk onto the heap, or
converted to an .OBJ file (using BINOBJ.EXE) and linked
into the .EXE.

grlnvalidDriver is a possible error return, where the error
code equals -4 and the driver header is not recognized.

The following program loads the eGA driver onto the
heap, registers it with the graphics system, and calls
InitGraph:

program LoadDriv;
uses Graph;
var

Driver, Mode: integer;
DriverF: file;
DriverP: pointer;

begin
{ Open driver file, read into memory, register it }
Assign (DriverF, 'CGA.BGI');
Reset (DriverF, 1);
GetMem(DriverP, FileSize(DriverF));
BlockRead(DriverF, DriverP A

, FileSlze(DriverF));
if RegisterBGldriver(DriverP) < 0 then
begin

Writeln('Error registering driver: "
GraphErrorMsg(GraphResult));

Halt (1) ;

end;

{ Init graphics
Driver := CGA;
Mode := CGAHi;

Chapter 27, Turbo Pascal Reference Lookup 467

Restrictions

See also

InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt(!);
OutText('Driver loaded by user program');
Readln;
CloseGraph;

end.

The program begins by loading the CGA driver file from
disk and registering it with the Graph unit. Then a call is
made to InitGraph to initialize the graphics system. You
may wish to incorporate one or more driver files directly
into your .EXE file. In this way, the graphics drivers that
your program needs will be built-in and only the .EXE
will be needed in order to run. The process for
incorporating a driver file into your .EXE is straight
forward:

1. Run BINOB} on the driver file(s).

2. Link the resulting .OB} file(s) into your program.

3. Register the linked-in driver file(s) before calling
InitGraph.

For a detailed explanation and example of the
preceding, refer to the comments at the top of the
GRLINK.P AS example program on Disk 3. Documen
tation on the BINOB} utility is contained in a file named
BINOB}.DOC on Disk 2.

It is also possible to register font files; refer to the
description of RegisterBGlfont.

Note that the driver must be registered before the call to
InitGraph. If a call is made to RegisterBGldriver once
graphics have been activated, a value of -11 (grError)
will be returned.

InitGraph

RegisterBGlfont function Graph

Function

Declaration

468

Registers a user-loaded or linked-in BCI font with the
graphics system.

RegisterBGlfont(font: pointer) integer;

Turbo Pascal Owner's Handbook

Remarks The return value is less than 0 if an error occurs;
otherwise, the internal font number is returned. This
routine enables a user to load a font file and "register"
the font by passing its memory location to
RegisterBGlfont. When that font is selected with a call to
SetTextStyle, the registered font will be used (instead of
being loaded from disk by the Graph unit). A user
registered font can be loaded from disk onto the heap, or
converted to an .OBJ file (using BINOBJ.EXE) and linked
into the .EXE.

Here are some possible error returns:

Error Error
Code Identifier Comments

-11 grError There is no room in the font
table to register another font.
(The font table holds up to 10
fonts, and only 4 are pro-
vided, so this error should
not occur.)

-13 grInvalidFont The font header is not
recognized.

-14 grInvalidFontNum The font number in the font
header is not recognized.

The following program loads the triplex font onto the
heap, registers it with the graphics system, and then
alternates between using triplex and another stroked
font that Graph loads from disk (SansSerifFont):

program LoadFont;
uses Graph;
var

Driver, Mode: integer;
FontF: file;
FontP: pointer;

begin
{ Open font file, read into memory, register it)
Assign (FontF, 'TRIP.CHR');
Reset (FontF, 1);
GetMem(FontP, FileSize(FontF));
BlockRead(FontF, Fontp A

, FileSize(FontF));
if RegisterBGlfont(FontP) < 0 then

Chapter 27, Turbo Pascal Reference Lookup 469

470

begin
Writeln('Error registering font: "

GraphErrorMsg(GraphResult));
Halt(l);

end;

{ Init graphics
Driver := Detect;
InitGraph(Driver, Mode, , .. \');
if GraphResult < 0 then

Halt (1) ;
Readln;

{ Select registered font
Set Text Style (TriplexFont, HorizDir, 4);
OutText('Triplex loaded by user program');
MoveTo(O, TextHeight('a'));
Readln;

(Select font that must be loaded from disk
Set Text Style (SansSerifFont, HorizDir, 4);
OutText('Your disk should be spinning ... ');
MoveTo(O, GetY + TextHeight('a'));
Readln;

{ Re-select registered font (already in memory)
SetTextStyle(TriplexFont, HorizDir, 4);
OutText('Back to Triplex');
Readln;
CloseGraph;

end.

The program begins by loading the triplex font file from
disk and registering it with the Graph unit. Then a call to
InitGraph is made to initialize the graphics system.
Watch the disk drive indicator and press Enter. Because
the triplex font is already loaded into memory and
registered, Graph does not have to load it from disk (and
therefore your disk drive should not spin). Next, the
program will activate the sans serif font by loading it
from disk (it is unregistered). Press Enter again and
watch the drive spin. Finally, the triplex font is selected
again. Since it is in memory and already registered, the
drive will not spin when you press Enter.

There are several reasons to load and register font files.
First, Graph only keeps one stroked font in memory at a
time. If you have a program that needs to quickly
alternate between stroked fonts, you may want to load
and register the fonts yourself at the beginning of your

Turbo Pascal Owner's Handbook

See also

program. Then Graph will not load and unload the fonts
each time a call to SetTextStyle is made.

Second, you may wish to incorporate the font files
directly into your .EXE file. This way, the font files that
your program needs will be built-in, and only the .EXE
and driver files will be needed in order to run. The
process for incorporating a font file into your .EXE is
straightforward:

1. Run BINOBJ on the font file(s).

2. Link the resulting .OBJ file(s) into your program.

3. Register the linked-in font file(s) before calling
InitGraph.

For a detailed explanation and example of the
preceding, refer to the comments at the top of the
GRLINK.P AS example program on Disk 3. Documen
tation on the BINOBJ utility is contained in a file named
BINOBJ.DOC on Disk 2.

Note that the default (8x8 bit-mapped) font is built into
GRAPH.TPU, and thus is always in memory. Once a
stroked font has been loaded, your program can
alternate between the default font and the stroked font
without having to reload either one of them.

It is also possible to register driver files; refer to the
description of RegisterBGldriver.

SetTextStyle

Release procedure

Function

Declaration

Remarks

Restrictions

Returns the heap to a given state.

Release(var p: pointer)

P is a pointer variable of any pointer type that was
previously assigned by the Mark procedure. Release
disposes all dynamic variables that were allocated by
New or GetMem since p was assigned by Mark.

Mark and Release cannot be used interchangeably with
Dispose and FreeMem unless certain rules are observed.

Chapter 27, Turbo Pascal Reference Lookup 471

See also

For a complete discussion of this topic, refer to the
section entitled "The Heap Manager" in Chapter 26.

Mark, Dispose, FreeMem

Rename procedure

Function

Declaration

Remarks

Restrictions

See also

Renames an external file.

Rename(f; newname: string)

f is a file variable of any file type. newname is a string
type expression. The external file associated with f is
renamed to newname. Further operations on f will
operate on the external file with the new name.

With {$I-}, IOResult will return 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Rename must never be used on an open file.

Erase

Reset procedure

Function

Declaration

Remarks

472

Opens an existing file.

Reset(f [: file; recsize: word 1

f is a file variable of any file type, which must have been
associated with an external file using Assign. recsize is an
optional expression of type word, which can only be
specified if f is an untyped file.

Reset opens the existing external file with the name
assigned to f. It's an error if no existing external file of
the given name exists. If f was already open, it is first
closed and then re-opened. The current file position is
set to the beginning of the file.

If f was assigned an empty name, such as Assign(f,"),
then after the call to Reset, f will refer to the standard
input file (standard handle number 0).

If f is a text file, fbecomes read-only. After a call to Reset,
Eof(f) is True if the file is empty; otherwise, Eof(t> is False.

Turbo Pascal Owner's Handbook

Differences

See also

Example

If f is an untyped file, recsize specifies the record size to
be used in data transfers. If recsize is omitted, a default
record size of 128 bytes is assumed.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

In 3.0, an empty file name was invalid.

Rewrite, Append, Assign

function FileExists(FileName: string): boolean;
{ Boolean function that returns True if the file exists;

otherwise, it returns False. Closes the file if it exists.
var

f: file;

begin
{$I-}
Assign(f, FileName);
Reset (f) ;
Close(f) ;
{$It}

FileExists := (IOResult = 0) and (FileName <> ");
end; {FileExists}

begin
if FileExists(PararnStr(l)) then { Get file name from command

line }
Writeln('File exists')

else
Writeln('File not found');

end.

RestoreCrtMode procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Restores the screen mode to its original state before
graphics was initialized.

RestoreCrtMode

Restores the original video mode detected by InitGraph.
Can be used in conjunction with SetGraphMode to switch
back and forth between text and graphics modes.

Must be in graphics mode.

DetectGraph, InitGraph, SetGraphMode.

Chapter 27, Turbo Pascal Reference Lookup 473

Example uses Graph;
var

Gd, Gm: integer;
Mode : integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
OutText('<RETURN> to leave graphics:');
Readln;
RestoreCRTMode;
Writeln('Now in text mode');
Write('<RETURN> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode);
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<RETURN> to quit:');
Readln;
CloseGraph;

end.

Rewrite procedure

Function

Declaration

Remarks

474

Creates and opens a new file.

Rewrite(f [: file; recsize: word 1

1 is a file variable of any file type, which must have been
associated with an external file using Assign. recsize is an

. optional expression of type word, which can only be
specified if 1 is an untyped file.

Rewrite creates a new external file with the name
assigned to I. If an external file with the same name
already exists, it is deleted and a new empty file is
created in its place. If 1 was already open, it is first closed
and then re-created. The current file position is set to the
beginning of the empty file.

If 1 was assigned an empty name, such as Assign(I,"),
then after the call to Rewrite, 1 will refer to the standard
output file (standard handle number 1).

If 1 is a text file, 1 becomes write-only. After a call to
Rewrite, Eol(l) is always True.

Turbo Pascal Owner's Handbook

Differences

See. also

Example

If f is an untyped file, recsize specifies the record size to
. be used in data transfers. If recsize is omitted, a default
record size of 128 bytes is assumed.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

In 3.0, an empty file name was invalid.

Reset, Append, Assign

var f: text;
begin

Assign(f, 'NEWFILE.$$$');
Rewrite (f) ;
Writeln(f,'Just created file with this text in it ... ');
Close(f);

end.

RmDir procedure

Function

Declaration

Remarks

See also

Example

Removes an empty subdirectory.

RrnDir (s: string)

s is a string-type expression. The subdirectory with the
path specified by s is removed. If the path does not exist,
is non-empty, or is the currently logged directory, an
110 error will occur.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

MkDir, ChDir, GetDir

begin
{$I-}
{ Get directory name from command line
RmDir(ParamStr(l));
if IOResult <> 0 then

Writeln('Cannot remove directory')
else

Writeln('directory removed');
end.

Chapter 27, Turbo Pascal Reference Lookup 475

Round function

Function

Declaration

Result type

Remarks

Differences

See also

Rounds a real-type value to an integer-type value.

Round (x: real)

longint

X is a real-type expression. Round returns a longint value
that is the value of x rounded to the nearest whole
number. If x is exactly halfway between two whole
numbers, the result is the number with the greatest
absolute magnitude. A runtime error occurs if the
rounded value of x is not within the longint range.

In 3.0, Round returned an integer value.

Trunc,Int

Seek procedure

Function

Declaration

Remarks

Restrictions

Differences

See also

476

Moves the current position of a file to a specified
component.

Seek(f; n: longint)

f is any file variable type except text, and n is an
expression of type longint. The current file position of f
is moved to component number n. The number of the
first component of a file is O. In order to expand a file, it
is possible to seek one component beyond the last
component; that is, the statement Seek(f,FileSize(f)) moves
the current file position to the end of the file.

With {$I-L IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Cannot be used on text files. File must be open.

In 3.0, n was an integer; LongSeek took a real number
value for n.

FilePos

Turbo Pascal Owner's Handbook

SeekEof function

Function

Declaration

Result type

Remarks

Restrictions

See also

Returns the end-of-file status of a file.

SeekEof [(var f: text) 1

boolean

SeekEof corresponds to Eof except that it skips all blanks,
tabs, and end-of-line markers before returning the end
of-file status. This is useful when reading numeric
values from a text file.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Can only be used on text files. File must be open.

Eof, SeekEoln

SeekEoln function

Function

Declaration

Result type

Remarks

Restrictions

See also

Returns the end-of-line status of a file.

SeekEoln [(var f: text) 1

boolean

SeekEoln corresponds to Eoln except that it skips all
blanks and tabs before returning the end-of-line status.
This is useful when reading numeric values from a text
file.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Can only be used on text files. File must be open.

Eoln, SeekEof

Seg function

Function

Declaration

Result type

Returns the segment of a specified object.

Seg(x)

word

Chapter 27, Turbo Pascal Reference Lookup 477

Remarks

See also

x is any variable, or a procedure or function identifier.
The result, of type word, is the segment part of the
address of x.

Dis, Addr

SetActivePage procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

478

Set the active page for graphics output.

SetActivePage(Page: word)

Makes Page the active graphics page. All graphics
output will now be directed to Page.

Multiple pages are only supported by the EGA (256K),
VGA, and Hercules graphics cards. With multiple
graphics pages, a program can direct graphics output to
an off-screen page, then quickly display the off-screen
image by changing the visual page with the
SetVisualPage procedure. This technique is especially
useful for animation.

Must be in graphics mode.

SetVisualPage

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
if (Gd=HercMono) or (Gd=EGA) or

(Gd=EGA64) or (Gd=VGA) then
begin

SetVisualPage(O)i
SetActivePage(l)i
Rectangle (10, 20, 30, 40);
SetVisualPage(l)i

end
else

OutText('No paging supported.')i
Readln;
CloseGraph;

Turbo Pascal Owner's Handbook

end.

SetAIIPalette procedure Graph

Function

Declaration

Remarks

Changes all palette colors as specified.

SetAllPalette(var Palette)

Palette is an untyped parameter. The first byte is the
length of the palette. The next n bytes will replace the
current palette colors. Each color may range from -1 to
15. A value of -1 will not change the previous entry's
value.

Note that valid colors depend on the current graphics
driver and current graphics mode.

If invalid input is passed to SetAliPalette, GraphResult
will return a value of -11 (grError), and no changes to
the palette settings will occur.

Changes made to the palette are seen immediately on
the screen. In the example listed here, several lines are
drawn on the screen, then the palette is changed. Each
time a palette color is changed, all occurrences of that
color on the screen will be changed to the new color
value.

The following types and constants are defined:

const
Black 0;
Blue 1;
Green 2;
Cyan 3;
Red 4;
Magenta 5;
Brown 6;
LightGray 7;
DarkGray 8;
LightBlue 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;
MaxColors = 15;

Chapter 27, Turbo Pascal Reference Lookup 479

Restrictions

See also

Example

type
PaletteType = record

Size: byte;
Colors: array[O ... MaxColors] of shortint;

end;

Must be in graphics mode.

GetBkColor, GetColor, GetPalette, SetBkColor, SetColor,
SetPalette, GraphResult

uses Graph;
var

Gd, Gm : integer;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Balt(1);
Line(O, 0, GetMaxX, GetMaxY);
with Palette do
begin

Size := 4;
Colors [0] := 5;

Colors [1] := 3;

Colors [2] := 1;

Colors [3] := 2;

SetAllPalette(Palette);
end;
Readln;
CloseGraph;

end.

SetBkColor procedure Graph

Function

Declaration

Remarks

480

Sets the current background color using the palette.

SetBkColor(Color: word)

Background colors may range from 0 to 15, depending
on the current graphics driver and current graphics
mode. On a eGA, SetBkColor sets the flood overscan
color.

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

SetBkColor(N) makes the Nth color in the palette the new
background color. The only exception is setBkColor(O),
which always sets the background color to black.

Must be in graphics mode.

GetBkColor, GetColor, GetPalette, SetAllPalette, SetColor,
SetPalette

uses Crt, Graph;
var

GraphDriver, GraphMode: integer;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver,GraphMode, ");
Randomize;
if GraphResult <> grOk then

Halt (1) ;

GetPalette(Palette);
repeat

if Palette.Size <> 1 then
SetBkColor(Random(Palette.Size));

LineTo(Random(GetMaxX),Random(GetMaxY));
until KeyPressed;
CloseGraph;

end.

SetColor procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Sets the current drawing color using the palette.

SetColor(Color: word)

SetColor(5) makes the fifth color in the palette the current
drawing color. Drawing colors may range from 0 to 15,
depending on the current graphics driver and current
graphics mode.

GetMaxColor returns the highest valid color for the
current driver and mode.

Must be in graphics mode.

GetBkColor, GetColor, GetPalette, SetAllPalette, SetBkColor,
SetPalette, GraphResult, GetMaxColor

Chapter 27, Turbo Pascal Reference Lookup 481

Example uses Crt, Graph;
var

GraphDriver, GraphMode: integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
repeat

SetColor(Random(GetMaxColor)+l);
LineTo(Random(GetMaxX),Random(GetMaxY));

until KeyPressed;
end.

SetDate procedure Dos

Function

Declaration

Remarks

See also

Sets the current date in the operating system.

SetDate(Year, Month, Day, DayofWeek: word)

Valid parameter ranges are Year 1980 .. 2099, Month 1 .. 12,
and Day 1..31. If the date is invalid, the request is
ignored.

GetDate, GetTime, Set Time

SetF Attr procedure Dos

Function

Declaration

Remarks

482

Sets the attributes of a file.

SetFAttr(var f; Attr: word)

f must be a file variable (typed; untyped, or text file) that
has been assigned but not opened. The attribute value is
formed by adding the appropriate attribute masks
defined as constants in the Dos unit.

const
{ File attribute constants
ReadOnly = $01;
Hidden = $02;
SysFile = $04;
VolumeID = $08;
Directory = $10;

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

Archive = $20;
AnyFile = $3F;

Errors are reported in DosError; possible error codes are
3 (Invalid Path) and 5 (File Access Denied).

f cannot be open.

GetFAttr, GetFTime, SetFTime

uses Dos;
var

f: file;

begin
Assign(f, 'C:\AUTOEXEC.BAT');
SetFAttr(f, Hidden);
Readln;
SetFAttr(f, Archive);

end.

{Uh-oh}

{ Whew!}

SetFillPattern procedure Graph

Function

Declaration

Remarks

Selects a user-defined fill pattern.

SetFillPattern(Pattern: FillPatternType; Color: word)

Sets the pattern and color for all filling done by FillPoly,
FloodFill, Bar, Bar3D, and PieSlice to the bit pattern
specified in Pattern and the color specified by Color. If
invalid input is passed to SetFillPattern, GraphResult will
return a value of -11 (grError), and the current fill
settings will be unchanged. FillPatternType is predefined
as follows:

type
FillPatternType = array[1 .. 8] of byte;

The fill pattern is based on the underlying byte values
contained in the Pattern array. The pattern array is 8
bytes long with each byte corresponding to 8 pixels in
the pattern. Whenever a bit in a pattern byte is valued at
1, a pixel will be plotted. For example, the following
pattern represents a checkerboard (50 % gray scale):

Chapter 27, Turbo Pascal Reference Lookup 483

Restrictions

See also

Example

Binary Hex

10101010 $AA (1st byte)
01010101 $55 (2nd byte)
10101010 = $AA (3rd byte)
01010101 = $55 (4th byte)
10101010 $AA (5th byte)
01010101 = $55 (6th byte)
10101010 $AA (7th byte)
01010101 $55 (8th byte)

User-defined fill patterns enable you to create patterns
different from the predefined fill patterns that can be
selected with the SetFillStyle procedure. Whenever you
select a new fill pattern with SetFillPattern or SetFillStyle,
all fill operations will use that fill pattern.

Must be in graphics mode.

GraphResult

uses Graph;
const

Gray50: FillPatternType = ($AA,$55,$AA,$55,
$AA,$55,$AA,$55) ;

var
Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

SetFillPattern(Gray50, White);
Bar(O, 0, 100, 100); { Draw a bar in a 50% gray scale}
Readln;
CloseGraph;

end.

SetFillStyle procedure Graph

Function Sets the fill pattern and color.

Declaration SetFillStyle(Pattern: word; Color: word)

484 Turbo Pascal Owner's Handbook

Remarks

Restrictions

See also

Example

Sets the pattern and color for all filling done by FillPoly,
Bar, Bar3D, and Pieslice. A variety of fill patterns are
available. The default pattern is solid, and the default
color is the maximum color in the palette. If invalid
input is passed to setFillstyle, GraphResult will return a
value of -11 (grError), and the current fill settings will be
unchanged. The following constants are defined:

const
{ Fill patterns for Get/SetFillStyle: }
EmptyFil1 = 0; {Fills area in background color
SolidFill = 1; {Fills area in solid fill color }
LineFill = 2;
LtSlashFill = 3;
SlashFill = 4;
BkSlashFill = 5;
LtBkSlashFill = 6;
HatchFill = 7;
XHatchFill = 8;
InterleaveFill = 9;
WideDotFill = 10;
CloseDotFill = 11;

Must be in graphics mode.

{ --- fill }
{ 11/ fill }

III fill with thick lines}
\\\ fill with thick lines}

{ \ \ \ fill }
{ Light hatch fill }

Heavy cross hatch fill }
Interleaving line fill }

{ Widely spaced dot fill }
{ Closely spaced dot fill }

Bar, Bar3D, FillPoly, GetFillsettings, PieS lice, GetMaxColor,
GraphResult

SetFiIIStyle(SolidFill,O);
Bar(x1, y1, x2, y2);
SetFiIIStyle(XHatchFill,l);
Bar(x1, y1, x2, y2);

SetFTime procedure Dos

Function

Declaration

Remarks

Restrictions

Sets the date and time a file was last written.

SetFTime(var f; Time: longint)

F must be a file variable (typed, untyped, or text file)
that has been assigned and opened. The Time parameter
can be created through a call to PackTime. Errors are
reported in DosError; the only possible error code is 6
(Invalid File Handle).

f must be open.

Chapter 27, Turbo Pascal Reference Lookup 485

See also GetFTime, PackTime, UnpackTime

SetGraphBufSize procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Allows you to change the size of the buffer used for scan
and flood fills.

SetGraphBufSize(BufSize: word);

The internal buffer size is set to But Size, and a buffer is
allocated on the heap when a call is made to InitGraph.

The default buffer size is 4K, which is large enough to
fill a polygon with about 650 vertices. Under rare
circumstances, enlarging the buffer may be necessary in
order to avoid a buffer overflow.

Note that once a call to InitGraph has been made, calls to
SetGraphButSize are ignored.

FloodFill, FillPoly

SetGraphMode procedure Graph

Function

Declaration

Remarks

486

Sets the system to graphics mode and clears the screen.

SetGraphMode(Mode: integer)

Mode must be a valid mode for the current device driver.
SetGraphMode is used to select a graphics mode different
than the default one set by InitGraph.

setGraphMode can also be used in conjunction with
RestoreCrtMode to switch back and forth between text
and graphics modes.

SetGraphMode resets all graphics settings to their
defaults (current pointer, palette, color, viewport, and so
forth).

GetModeRange returns the lowest and highest valid
modes for the current driver.

If an attempt is made to select an invalid mode for the
current device driver, GraphResult will return a value of
-10 (grlnvalidMode).

Turbo Pascal Owner's Handbook

The following constants are defined:

Graphics Graphics Column
Driver Modes Value x Row Palette Pages

CGA CGACO 0 320x200 CO 1
CGAC1 1 320x200 C1 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHi 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGAC1 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMed 4 640x200 2 color 1
MCGAHi 5 640x480 2 color 1

EGA EGALo 0 640x200 16 color 4
EGAHi 1 640x3S0 16 color 2

EGA64 EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x3S0 4 color 1

EGA- EGAMonoHi 3 640x3S0 2 color 1*
MONO EGAMonoHi 3 640x3S0 2 color 2**

HERC HercMonoHi 0 720x348 2 color 2

ATI400 ATI400CO 0 320x200 CO 1
ATT400C1 1 320x200 C1 1
ATI400C2 2 320x200 C2 1
ATT400C3 3 320x200 C3 1
ATI400Med 4 640x200 2 color 1
ATI400Hi 5 640x400 2 color 1

VGA VGALo 0 640x200 16 color 2
VGAMed 1 640x3S0 16 color 2
VGAHi 2 640x480 16 color 1

PC3270 PC3270Hi 0 720x3S0 2 color 1

* 64K on EGAMono card
** 256K on EGAMono card

Restrictions A successful call to InitGraph must have been made
before calling this routine.

See also ClearDevice, DetectGraph, GetGraphMode, InitGraph,
RestoreCrtMode, GraphResult, GetModeRange

Chapter 27, Turbo Pascal Reference Lookup 487

Example uses Graph;
var

GraphDriver: integer;
GraphMode integer;
LowMode
HighMode

begin

integer;
integer;

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt (1);
GetModeRange(GraphDriver, LowMode, HighMode);
SetGraphMode(LowMode); (Select low-resolution mode
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

SetlntVec procedure Dos

Function

Declaration

Remarks

See also

Sets a specified interrupt vector to a specified address.

SetIntVec(IntNo: byte; Vector: pointer)

IntNo specifies the interrupt vector number (0 .. 255), and
Vector specifies the address. Vector is often constructed
with the @ operator to produce the address of an
interrupt procedure. Assuming IntlBSave is a variable of
type pointer, and IntlBHandler is an interrupt procedure
identifier, the following statement sequence installs a
new interrupt $lB handler and later restores the original
handler:

GetIntVec($1B,Int1BSave);
SetIntVec($1B,@Int1BHandler);

SetIntVec($1B,Int1BSave);

GetIntVec

SetLineStyle procedure Graph

Function Sets the current line width and style.

488 Turbo Pascal Owner's Handbook

Declaration

Remarks

Restrictions

See also

Example

SetLineStyle(LineStyle: word; Pattern: word; Thickness: word)

Affects all lines drawn by Line, LineTo, Rectangle,
DrawPoly, Arc, Circle, etc. Lines can be drawn solid,
dotted, centerline, or dashed. If invalid input is passed
to SetLineStyle, GraphResult will return a value of -11
(gr Error), and the current line settings will be
unchanged. The following constants are declared:

const
SolidLn = 0;
DottedLn = 1;
CenterLn = 2;
DashedLn = 3;
UserBitLn = 4;
NormWidth = 1;
ThickWidth = 3;

{ User-defined line style }

LineStyle is a value from SolidLn to UserBitLn(O . .4),
Pattern is ignored unless LineStyle equals UserBitLn, and
Thickness is Norm Width or Thick Width. When LineStyle
equals UserBitLn, the line is output using the 16-bit
pattern defined by the Pattern parameter. For example, if
Pattern = $AAAA, then the 16-bit pattern looks like this:

1010101010101010

1010101010101010
1010101010101010
1010101010101010

Must be in graphics mode.

{ NormWidth }

{ ThickWidth)

GetLineSettings, Line, LineRel, LineTo, GraphResult

uses Graph;
var

Gd, Gm: integer;
xl, y1, x2, y2: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

xl .- 10;
y1 .- 10;
x2 .- 200;
y2 .- 150;
SetLineStyle(DottedLn, 0, NormWidth);
Rectangle (xl, y1, x2, y2);

Chapter 27, Turbo Pascal Reference Lookup 489

SetLineStyle(UserBitLn, $C3, ThickWidth);
Rectangle(Pred(xl), Pred(yl), Succ(x2), Succ(y2));
Readln;
CloseGraph;

end.

SetPalette procedure Graph

Function

Declaration

Remarks

490

Changes one palette color as specified by ColorNum and
Color.

SetPalette(ColorNum: word; Color: shortint)

Changes the ColorNum entry in the palette to Color.
SetPalette(O,LightCyan) makes the first color in the palette
light cyan. ColorNum may range from 0 to 15, depending
on the current graphics driver and current graphics
mode. If invalid input is passed to SetPalette, GraphResult
will return a value of -11 (grError), and the palette will
be unchanged.

Changes made to the palette are seen immediately on
. the screen. In the example here, several lines are drawn
on the screen, then the palette is changed randomly.
Each time a palette color is changed, all occurrences of
that color on the screen will be changed to the new color
value.

The following constants are defined:

const
Black
Blue
Green
Cyan
Red

0;
1;
2;
3;
4;

Magenta 5;
Brown 6;
LightGray 7;
DarkGray 8;
LightBlue 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow
White

= 14;
= 15;

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

Must be in graphics mode.

GetBkCoior, GetCoior, GetPaiette, SetAllPaiette, SetBkCoior,
SetCoior, GraphResult

uses Crt, Graph;
var

GraphDriver, GraphMode: integer;
Color: word;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt(l);
GetPalette(Palette);
if Palette.Size <> 1 then

begin
for Color := ° to Pred(Palette.Size) do
begin

SetColor(Color);
Line(O, Color*5, 100, Color*5);

end;
Randomize;
repeat

SetPalette(Random(Palette.Size),Random(Palette.Size));
until KeyPressed;

end
else

Line (0, 0, 100, 0);

Readln;
CloseGraph;

end.

SetTextBuf .procedure

Function

Declaration

Remarks

Assigns an 1/0 buffer to a text file.

SetTextBuf(var f: text; var buf [; size: word 1)

f is a'text-file variable, but is any variable, and Size is an
optional expression of type word.

Each text-file variable .has an internal 128-byte buffer
that, by default, is used to buffer Read and Write
operations. This buffer is adequate for most appli
cations. However, heavily I/O-bound programs, such as

Chapter 27, Turbo Pascal Reference Lookup 491

Restrictions

Differences

Example

492

applications that copy or convert text files, will benefit
from a larger buffer, because it reduces disk head
movement and file system overhead.

SetTextBuf changes the text file f to use the buffer
specified by buf instead of f's internal buffer. Size
specifies the size of the buffer in bytes. If Size is omitted,
SizeOf(buf) is assumed; that is, by default, the entire
memory region occupied by buf is used as a buffer. The
new buffer remains in effect until f is next passed to
Assign.

SetTextBuf should never be applied to an open file,
although it can be called immediately after Reset,
Rewrite, and Append. Calling SetTextBuf on an open file
once I/O operations has taken place can cause loss of
data because of the change of buffer.

Turbo Pascal doesn't ensure that the buffer exists for the
entire duration of I/O operations on the file. In
particular, a common error is to install a local variable as
a buffer, and then use the file outside the procedure that
declared the buffer.

Alternative to 3.0's syntax: var f:text [2048].

var
f : text;
ch : char;
buf: array[1 .. 10240] of char;

begin
{ Get file to read from command line
Assign(f, ParamStr(1));
{ Bigger buffer for faster reads
SetTextBuf(f, buf);
Reset(f);
{ Dump text file onto screen }
while not Eof(f) do
begin

Read(f, ch);
Write (ch);

end;
end.

{ 10K buffer }

Turbo Pascal Owner's Handbook

SetTextJustify procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Sets text justification values used by OutText and
OutTextXY.

SetTextJustify(Horiz, Vert: word)

Text output after a SetTextJustify will be justified around
the current pointer in the manner specified. Given the
following:

SetTextJustify(CenterText, CenterText);
OutTextXY (100, 100, , ABC') ;

The point(100,100) will appear in the middle of the letter
B. The default justification settings can be restored by
SetTextJustify(LeftText, TopText). If invalid input is passed
to SetTextJustify, GraphResult will return a value of -11
(grError), and the current text justification settings will
be unchanged.

The following constants are defined:

const
{ Horizontal justification }
LeftText = 0;
CenterText = 1;
RightText = 2;

{ Vertical justification
BottomText = 0;
CenterText = 1;
TopText = 2;

Must be in graphics mode.

{ Not declared twice }

SetLineStyle, GetTextSettings, TextHeight, Text Width,
OutText, OutTextXY, SetUserCharSize, GraphResult

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
{ Center text onscreen }

Chapter 27, Turbo Pascal Reference Lookup 493

SetTextJustify(CenterText, CenterText);
OutTextXY (Succ (GetMaxX)

div 2, Succ(GetMaxY)
div 2, 'Easily Centered');

Readln;
CloseGraph;

end.

SetTextStyle procedure Graph

Function

Declaration

Remarks

494

Sets the current text font, style, and character magnifi
cation factor.

SetTextStyle(Font: word; Direction: word;
CharSize: word)

Affects all text output by OutTexl and OutTextXY. One
8x8 bit-mapped font and several "stroked" fonts are
available. Font directions supported are normal (left to
right) and vertical (90 degrees to normal text, starts at
the bottom and goes up). The size of each character can
be magnified using the CharSize factor. A CharSize value
of one will display the 8x8 bit-mapped font in an 8x8
pixel rectangle on the screen, a CharSize value equal to 2
will display the 8x8 bit-mapped font in a 16x16 pixel
rectangle and so on (up to a limit of 10 times the normal
size). Always use TextHeight and TextWidth to determine
the actual dimensions of the text.

The normal size values for text are 1 for the default font
and 4 for a stroked font. These are the values that should
be passed as the CharSize parameter to SetTextStyle.
SetUserCharSzie can be used to customize the dimen
sions of stroked font text.

Normally, stroked fonts are loaded from disk onto the
heap when a call is made to SetTextStyle. However, you
can load the fonts yourself or link them directly to your
.EXE file. In either case, use RegisterBGlfont to register
the font with the Graph unit.

When "stroked" fonts are loaded from disk, errors can
occur when trying to load them. If an error occurs,
GraphResult will return one of the following values:

Turbo Pascal Owner's Handbook

Restrictions

See also

Example

-8 Font file not found
-9 Not enough memory to load the font selected
-11 Graphics error
-12 Graphics I/O error
-13 Invalid font file
-14 Invalid font number

The following type and constants are declared:

const
{ Set/GetTextStyle constants
DefaultFont = 0;
TriplexFont = 1;

8x8 bit mapped font
{ "Stroked" fonts

SmallFont = 2;
SansSerifFont = 3;
GothicFont = 4;

HorizDir = 0;
VertDir = 1;

Must be in graphics mode.

Left to right
Bottom to top

SetTextJustify, GetTextSettings, OutText, OutTextXY,
TextHeight, Text Width, Registerbgifont, GraphResult,
SetUserCharSize

uses Graph;
var

Gd, Gm : integer;
Y, Size: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Y := 0;
for Size := 1 to 4 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Size = , + Chr(Size+48));
Inc(Y, TextHeight('H') + 1);

end;
Readln;
CloseGraph;

end.

Chapter 27, Turbo Pascal Reference Lookup 495

SetTime procedure Dos

Function

Declaration

Remarks

See also

Sets the current time in the operating system.

SetTime(Hour, Minute, Second, Sec100: word)

Valid parameter ranges are Hour 0 .. 23, Minute 0 .. 59,
Second 0 . .59, and Sec100 (hundredths of seconds) 0-99. If
the time is not valid, the request is ignored.

Get Time, GetDate, SetDate

SetUserCharSize procedure Graph

Function

Declaration

Remarks

496

Allows the user to vary the character width and height
for stroked fonts.

SetUserCharSize(MultX, DivX, MultY, DivY: byte);

MultX:DivX is the ratio multiplied by the normal width
for the active font; MultY:DivY is the ratio multiplied by
the normal height for the active font. In order to make
text twice as wide, for example, use a MultX value of 2,
and set DivX equal to 1 (2 div 1 = 2). The following
program shows how to change the height and width of
text:

program CharSize;
uses Graph;
var

Driver, Mode, Err: integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
Err := GraphResult;
if Err < 0 then
begin

Writeln('Graphics error: " GraphErrorMsg(Err));
Halt (1) ;

end;

{ Showoff }
SetTextStyle(TriplexFont, Horizdir, 4);
OutText('Norm');
SetUserCharSize(l, 3, I, 2);
SetTextStyle(TriplexFont, Horizdir, UserCharSize);

Turbo Pascal Owner's Handbook

Restrictions

See also

OutText('Short ');
SetUserCharSize(3, 1, 1, 1);
SetTextStyle(TriplexFont, Horizdir, UserCharSize);
OutText ('Wide');
Readln;
CloseGraph;

end.

Note that SetUserCharSize is called, followed immedi
ately by a call to SetTextStyle.

Must be in graphics mode.

SetTextStyle, OutText, OutTextXY, TextHeight, Text Width

SetViewPort procedure Graph

Function

Declaration

Remarks

Sets the current output viewport or window for graphics
output.

SetViewPort(x1, y1, x2, y2: integer; Clip: boolean);

(xl, y1) define the upper left corner of the viewport, and
(x2, y2) define the lower right corner (0 <= xl < x2 and °
<= yl < y2). The upper left corner of a viewport is (0,0).

The Boolean variable Clip determines whether drawings
are clipped at the current viewport boundaries.
SetViewPort(O, 0, GetMaxX, GetMaxY, True) always sets
the viewport to the entire graphics screen. If invalid
input is parsed to Set ViewPort, GraphResult will return
-11 (grError), and the current view settings will be
unchanged. The following constants are defined:

const
ClipOn = True;
ClipOff = False;

All graphics commands (for example, GetX, OutText,
Rectangle, MoveTo, and so on) are viewport-relative. In
the example, note that MoveTo moves the current pointer
to (5,5) inside the viewport (the absolute coordinates
would be (15,25».

Chapter 27, Turbo Pascal Reference Lookup 497

Restrictions

See also

Example

498

(0,0) (GetMaxX,O)

D
(O,GetMaxY) (GetMaxX,GetMaxY)

If the Boolean variable Clip is set to True when a call to
Set ViewPort is made, all drawings will be clipped to the
current viewport. Note that the "current pointer" is
never clipped. The following will not draw the complete
line requested because the line will be clipped to the
current viewport:

SetViewPort(10, 10, 20, 20, ClipOn)i
Line (0, 5, 15, 5);

The line would start at absolute coordinates (10,15) and
terminate at absolute coordinates (25,15) if no clipping
was performed. But since clipping was performed, the
actual line that would be drawn would start at absolute
coordinates (10,15) and terminate at coordinates (20,15).

InitGraph, GraphDefaults, and SetGraphMode all reset the
viewport to the entire graphics screen. The current
viewport settings are available by calling the procedure
GetViewSettings, which accepts a parameter of the
following global type:

type
ViewPortType = record

xl, y1, x2, y2: integer;
Clip: boolean;

end;

SetViewPort moves the current pointer to (0,0).

Must be in graphics mode.

ClearViewPort, GetViewSettings, GraphResult

uses Graph;
var

Gd, Gm: integer;

Turbo Pascal Owner's Handbook

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
if (Gd = HercMono)

or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePage(I);
Rectangle (10, 20, 30, 40);
SetVisualPage(I);

end
else

OutText('No paging supported.');
Readln;
CloseGraph;

end.

SetVisualPage procedure Graph

Function

Declaration

Remarks

Restrictions

See also

Example

Sets the visual graphics page number.

SetVisualPage(Page: word)

Makes Page the visual graphics page.

Multiple pages are only supported by the EGA (256K),
VGA, and Hercules graphics cards. With multiple
graphics pages, a program can direct graphics output to
an off-screen page, then quickly display the off-screen
image by changing the visual page with the
SetVisualPage procedure. This technique is especially
useful for animation.

Must be in graphics mode.

SetActivePage

uses Graph;
var

Gd, Gm: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
if (Gd = HercMono)

Chapter 27, Turbo Pascal Reference Lookup 499

or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePage(l);
Rectangle (10, 20, 30, 40);
SetVisualPage(l);

end
else

Out Text ('No paging supported.');
Readln;
CloseGraph;

end.

Sin function

Function

Declaration

Result type

Remarks

Example

Returns the sine of the argument.

Sin(x: real)

real

x is a real-type expression. The result is the sine of x. x is
assumed to represent an angle in radians.

var
r: real;

begin
r := Sin(Pi);

end.

SizeOf function

Function

Declaration

Result type

Remarks

500

Returns the number of bytes occupied by the argument.

SizeOf (x)

word

x is either a variable reference or a type identifier. SizeO!
returns the number of bytes of memory occupied by x.

SizeO! should always be used when passing values to
FillChar, Move, GetMem, and so on:

FillChar(s, SizeOf(s), 0);
GetMem(p, SizeOf(RecordType));

Turbo Pascal Owner's Handbook

Example type
CustRec = record

var

Name string[30];
Phone string[14];

end;

p: "CustRec;

begin
GetMem(p, SizeOf(CustRec));

end.

Sound procedure Crt

Function

Declaration

Remarks

See also

Example

Starts the internal speaker.

Sound(Hz: word)

Hz specifies the frequency of the emitted sound in hertz.
The speaker continues until explicitly turned off by a
call to NoSound.

NoSound

uses Crt;
begin

Sound(220) ;
Delay(200);
NoSound;

end.

{ Beep }
{ Pause }

{ Relief! }

SPtr function

Function

Declaration

Result type

Remarks

See also

Returns the current value of the SP register.

SPtr

word

The result, of type word, is the offset of the stack pointer
within the stack segment.

Sseg

Chapter 27, Turbo Pascal Reference Lookup 501

Sqr function

Function

Declaration

Result type

Remarks

Returns the square of the argument.

Sqr(x)

Same type as parameter.

x is an integer-type or real-type expression. The result,
of the same type as x, is the square of x, or x * x.

Sqrt function

Function

Declaration

Result type

Remarks

Returns the square root of the argument.

Sqrt(x: real)

real

x is a real-type expression. The result is the square root
ofx.

SSeg function

Function

Declaration

Result type

Remarks

See also

Returns the current value of the SS register.

SSeg

word

The result, of type word, is the segment address of the
stack segment.

SPtr, CSeg, DSeg

Str procedure

Function

Declaration

Remarks

502

Converts a numeric value to its string representation.

Str(x [: width [: decimals]]; var s: string)

x is an integer-type or real-type expression. width and
decimals are integer-type expressions. s is a string-type
variable. Str converts x to its string representation,

Turbo Pascal Owner's Handbook

See also

Example

according to the width and decimals formatting
parameters. The effect is exactly the same as a call to the
Write standard procedure with the same parameters,
except that the resulting string is stored in s instead of
being written to a text file.

Val, Write

function IntToStr(i: longint): string;
{ Convert any integer type to a string
var

s: string [11] ;

begin
Str (i, s);
IntToStr := s;

end;

begin
Writeln(IntToStr(-5322));

end.

Succ function

Function

Declaration

Result type

Remarks

See also

Returns the successor of the argument.

Succ (x)

Same type as parameter.

x is an ordinal-type expression. The result, of the same
type as x, is the successor of x.

Pred, Inc

Swap function

Function

Declaration

Result type

Remarks

See also

Example

Swaps the high- and low-order bytes of the argument.

Swap (x)

Same type as parameter.

x is an expression of type integer or word.

Hi, Lo

var
x: word;

Chapter 27, Turbo Pascal Reference Lookup 503

begin
x := Swap($1234); ($3412}

end.

TextBackground procedure Crt

Function

Declaration

Remarks

See also

Selects the background color.

TextBackground(Co1or: byte);

Color is an integer expression in the range 0 .. 7, corres
ponding to one of the first eight color constants:

const
(Foreground and background color constants
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. TextBackground sets bits
4-6 of TextAttr to Color.

The background of all characters subsequently written
will be in the specified color.

TextColor, HighVideo, NormVideo, LowVideo

TextColor procedure Crt

Function

Declaration

Remarks

504

Selects the foreground character color.

TextColor(Color: byte)

Color is an integer expression in the range 0 .. 15, corres
ponding to one of the color constants defined in Crt:

const
{ Foreground and background color constants
Black = 0;
Blue = 1;

Turbo Pascal Owner's Handbook

Differences

See also

Example

Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

There is a byte variable in Crt-TextAttr-that is used to
hold the current video attribute. TextColor sets bits 0-3 to
Color. If Color is greater than 15, the blink bit (bit 7) is
also set; otherwise, it is cleared.

You can make characters blink by adding 128 to the color
value. The Blink constant is defined for that purpose; in
fact, for compatibility with Turbo Pascal 3.0, any Color
value above 15 causes the characters to blink. The
foregound of all characters subsequently written will be
in the specified color.

In 3.0, Blink was equal to 16.

TextBackground, HighVideo, NormVideo, LowVideo

TextColor(Green);
TextColor(LightRedtBlink) ;

TextColor(14);

Selects green characters
{ Selects blinking

light-red characters
Selects yellow characters

TextHeight function Graph

Function

Declaration

Result type

Remarks

Returns the height of a string in pixels.

TextHeight(TextString: string)

word

Takes the current font size and multiplication factor, and
determines the height of TextString in pixels. This is
useful for adjusting the spacing between lines,

Chapter 27, Turbo Pascal Reference Lookup 505

Restrictions

See also

Example

computing viewport heights, sizing a title to make it fit
on a graph or in a box, and more.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by SetTextStyle), the string
Turbo is 8 pixels high.

It is important to use TextHeight to compute the height of
strings, instead of doing the computation manually. In
that way, no source code modifications have to.be made
when different fonts are selected.

Must be in graphics mode.

OutText, OutTextXY, SetTextStyle, Text Width,
SetUserCharSize

uses Graph;
var

Gd, Gm : integer;
Y, Size: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
Y := 0;
for Size := 1 to 5 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Turbo Graphics');
Inc(Y, TextHeight('Turbo Graphics'));

end;
Readln;
CloseGraph;

end.

TextMode procedure Crt

Function

. Declaration

Remarks

506

Selects a specific text mode.

TextMode(Mode: word)

The following constants are defined:

const
{ CRT modes
BW40 = 0; { 40x25 B/W on color adapter }

Turbo Pascal Owner's Handbook

BW80 2; { 80x25 B!W on color adapter }
Mono 7; 80x25 B!W on monochrome adapter }
C040 1; { 40x25 color on color adapter }

C080 3; { 80x25 color on color adapter }
Font8x8 = 256; { For EGA!VGA 43 and 50 line }
C40 = C040; { For 3.0 compatibility }

C80 = C080; { For 3.0 compatibility }

Other values cause TextMode to assume C80.

When TextMode is called, the current window is reset to
the entire screen, DirectVideo is set to True, CheckSnow is
set to True if a color mode was selected, the current text
attribute is reset to normal corresponding to a call to
NormVideo, and the current video is stored in LastMode.
In addition, LastMode is initialized at program startup to
the then active video mode.

Specifying TextMode(LastMode) causes the last active text
mode to be re-selected. This is useful when you want to
return to text mode after using a graphics package, such
as Graph or Graph3.

The following call to TextMode:

TextMode(c80 + Font8x8)

will reset the display into 43 lines and 80 columns on an
EGA, or 50 lines and 80 columns on a VGA with a color
monitor. TextMode(Lo(LastMode) always turns off 43- or
50-line mode and resets the display (although it leaves
the video mode unchanged); while

TextMode(Lo(LastMode) + Font8x8)

will keep the video mode the same, but reset the display
into 43 or 50 lines.

If your system is in 43- or 50-line mode when you load a
Turbo Pascal program, the mode will be preserved by
the Crt startup code, and. the window variable that
keeps track of the maximum number of lines on· the
screen (WindMax) will be initialized correctly.

Here's how to write a "well-behaved" program that will
restore the video mode to its original state:

program Video;
uses Crt;

Chapter 27, Turbo Pascal Reference Lookup 507

Differences

See also

var
OrigMode: integer;

begin
OrigMode := LastMode;

TextMode(OrigMode);
end.

{ Remember original mode }

Note that TextMode does not support graphics modes,
and therefore TextMode(OrigMode) will only restore
those modes supported by TextMode.

In 3.0, a call to TextMode with no parameters is now
done by calling TextMode(Last).

RestoreCrt

TextWidth function Graph

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

508

Returns the width of a string in pixels.

TextWidth(TextString: string)

word·

Takes the string length, current font size, and
multiplication factor, and determines the width of
TextString in pixels. This is useful for computing view
port widths, sizing a title to make it fit on a graph or in a
box, and so on.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by SetTextStyle), the string
Turbo is 40 pixels wide.

It is important to use Text Width to compute the width of
strings, instead of doing the computation manually. In
that way, no source code modifications have to be made
when different fonts are selected.

Must be in graphics mode.

OutText, OutTextXY, SetTextStyle, TextHeight,
SetUserCharSize

uses Graph;
var

Gd, Grn: integer;

Turbo Pascal Owner's Handbook

Row integer;
Title string;
Size integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(I);
Row := 0;
Title := 'Turbo Graphics';
Size := 1;
while TextWidth(Title) < GetMaxX do
begin

OutTextXY(O, Row, Title);
Inc (Row, TextHeight('M'));
Inc (Size) ;
SetTextStyle(DefaultFont, HorizDir, Size);

end;
Readln;
CloseGraph;

end.

Trunc function

Function

Declaration

Result type

Remarks

Restrictions

Differences

See also

Truncates a real-type value to an integer-type value.

Trunc(x: real)

longint

X is a real-type expression. Trunc returns a longint value
that is the value of x rounded toward zero.

A runtime error occurs if the truncated value of x is not
within the longint range.

In 3.0, the result type was an integer.

Round,Int

Truncate procedure

Function Truncates the file size at the current file position.

Declaration Truncate (f)

Chapter 27, Turbo Pascal Reference Lookup 509

Remarks

Restrictions

See also

f is a file variable of any type. All records past fare
deleted and the current file position also becomes end
of-file (Eof(f) is True).

If I/O checking is off, the IOResult function will return a
nonzero value if an error occurs.

f must be open. Truncate does not work on text files.

Seek, Reset

UnpackTime procedure Dos

Function

Declaration

Remarks

See also

Converts a 4-byte, packed date-and-time longint
returned by GetFTime, FindFirst, or FindNext into an
unpacked DateTime record.

UnpackTirne(Tirne: longint; var DT: DateTirne)

DateTime is a record declared in the Dos unit:

DateTirne = record
Year, Month, Day, Hour,
Min, Sec: word

end;

The fields of the Time record are not range-checked.

PackTime, GetFTime, SetFTime, GetTime, SetTime

UpCase function

Function

Declaration

Result type

Remarks

Converts a character to uppercase.

UpCase(ch: char)

char

ch is an expression of type char. The result of type char is
ch converted to uppercase. Character values not in the
range a .. z are unaffected.

Val procedure

Function Converts the string value to its numeric representation.

510 Turbo Pascal Owner's Handbook

Declaration

Remarks

Restrictions

Val(s: string; var v: NumType; var code: integer);

s is a string-type expression. v is an integer-type or real
type variable. NumType is any numeric type. code is a
variable of type integer. s must be a sequence of
characters that form a signed whole number according
to the syntax shown in the section "Numbers" in
Chapter 13. Val converts s to its numeric representation
and stores the result in v. If the string is somehow
invalid, the index of the offending character is stored in
code; otherwise, code is set to zero.

The standard procedure Val, which converts a string's
contents to a numeric variable, performs range-checking
differently depending on the state of {$R} and the type
of the parameter V:

Val(s: string; var V; var Code: integer);

With range-checking on, {$R +}, an out-of-range value
always generates a runtime error. With range-checking
off, {$R-}, the values for an out-of-range value vary
depending upon the data type of V. If V is a real or
longint type, the value of V is undefined and Code
returns a nonzero value. For any other numeric type,
Code returns a value of zero, and V will contain the
results of an overflow calculation (assuming the string
value is within the long integer range).

Therefore, you should pass Val a longint variable and
perform range-checking before making an assignment of
the returned value:

{$R-}
Val('65536', LonglntVar, Code)
if (Code <> 0) or

(LonglntVar < 0) or (LonglntVar > 65535) then

else
WordVar := LonglntVar;

{ Error }

In this example, LonglntVar would be set to 65536, and
Code would equal o. Because 65536 is out of range for a
word variable, an error would be reported.

In addition, Val has been modified to ignore leading
spaces.

Leading spaces must be deleted.

Chapter 27, Turbo Pascal Reference Lookup 511

See also

Example

Str

var i, code: integer;
begin

{ Get text from command line
Val(ParamStr(l), i, code);
{ Error during conversion to integer?
if code <> 0 then

Writeln('Error at position: " code)
else

Writeln('Value = " i);
end.

WhereX function Crt

Function

Declaration

Result type

See also

Returns the X-coordinate of the current cursor position,
relative to the current window.

WhereX

byte

WhereY, GotoXY, Window

Where Y function Crt

Function

Declaration

Result type

See also

Returns the Y-coordinate of the current cursor position,
relative to the current window.

WhereY

byte

WhereX, GotoXY, Window

Window procedure Crt

Function

Declaration

Remarks

512

Defines a text window on the screen.

Window (Xl, Y1, X2, Y2: byte)

Xl and Yl are the coordinates of the upper left corner of
the window, and X2 and Y2 are the coordinates of the
lower right corner. The upper left corner of the screen
corresponds to (1,1). The minimum size of a text

Turbo Pascal Owner's Handbook

Example

window is one column by one line. If the coordinates are
in any way invalid, the call to Window is ignored.

The default window is (1,1,80,25) in 80-column modes,
and (1,1,40,25) in 40-column modes, corresponding to
the entire screen.

All screen coordinates (except the window coordinates
themselves) are relative to the current window. For
instance, GotoXY(1,1) will always position the cursor in
the upper left corner of the current window.

Many Crt procedures and functions are window
relative, including ClrEoI, ClrSer, DelLine, GotoXY,
Insline, WhereX, WhereY, Read, Readln, Write, Writeln.

WindMin and WindMax store the current window
definition (refer to Chapter 24).

uses Crt;
var

x, y: byte;

begin
TextBackground(Black);
ClrScr;
repeat

x := Succ(Random(80));
y := Succ(Random(25));

{ Clear screen }

{ Draw random windows

Window (x, y, x + Random(IO), y + Random(8));
TextBackground(Random(16)); { In random colors
ClrScr;

until KeyPressed;
end.

Write procedure (text files)

Function

Declaration

Remarks

Writes one or more values to a text file.

Write ([var f: text; 1 vI [, v2, ... ,vn 1)

I, if specified, is a text-file variable. If I is omitted, the
standard file variable Output is assumed. Each p is a
write parameter. Each write parameter includes an
output expression whose value is to be written to the
file. A write parameter can also contain the specifi
cations of a field width and a number of decimal places.

Chapter 27, Turbo Pascal Reference Lookup 513

514

Each output expression must be of a type char, integer,
real, stringi packed string, or boolean.

A write parameter has the form

OutExpr [: MinWidth [: DecPlaces 1

where OutExpr is an output expression. Min Width and
DecPlaces are type integer expressions.

Min Width specifies the minimum field width, which
must be greater than O. Exactly Min Width characters are
written (using leading blanks if necessary) except when
OutExpr has a value that must be represented in more
than Min Width characters. In· that case, enough
characters are written to represent the value of OutExpr.
Likewise, if Min Width is omitted, then the necessary
number of characters are written to represent the value
of OutExpr.

DecPlaces specifies the number of decimal places in a
fixed-point representation of a type real value. It can be
specified only ifOutExpr is of type real, and if Min Width
is also specified. When Min Width is specified, it must be
greater than or equal to O.

Write with a type char value: If Min Width is omitted,
the character value of OutExpr is written to the file.
Otherwise, Min Width -1 blanks followed by the
character value of OutExpr is written.

Write with a type integer value: If Min Width is omitted,
the decimal representation of OutExpr is written to the
file with no preceding blanks. If Min Width is specified
and its value is larger than the length of the decimal
string, enough blanks are written before the decimal
string to make the field width Min Width.

Write with a type real value: If OutExpr has a type real
value, its decimal representation is written to the file.
The format of the representation depends on the
presence or absence of DecPlaces.

If DecPlaces is omitted (or if it is present, but has a
negative value), a floating-point decimal string is
written. If Min Width is also omitted, a default Min Width
of 17 is assumed; otherwise, if Min Width is less than 8, it
is assumed to be 8. The format of the floating-point
string is

Turbo Pascal Owner's Handbook

I - 1 <digit> . <decimals> E [+ I - 1 <exponent>

The components of the output string are shown in Table
27.1:

[I -]

<digit>

Table 27.1: Components of the Output String

" " or "-", according to the sign of OutExpr

Single digit, "0" only if OutExpr is 0

<decimals> Digit string of MinWidth-7 (but at most 10)
digits

E

[+ I -]

<exponent>

Uppercase [E] character

According to sign of exponent

Two-digit decimal exponent

If DecPlaces is present, a fixed-point decimal string is
written. If DecPlaces is larger than 11, it is assumed to be
11. The format of the fixed-point string follows:

[<blanks> 1 [- 1 <digits> [. <decimals> 1

The components of the fixed-point string are shown in
Table 27.2:

Table 27.2: Components of the Fixed-Point String

[<blanks>]
[-]

<digits>

[. <decimals>]

Blanks to satisfy Min Width

If OutExpr is negative

At least one digit, but no leading zeros

Decimals if DecPlaces > 0

Write with a string-type value: If Min Width is omitted,
the string value of OutExpr is written to the file with no
leading blanks. If Min Width is specified, and its value is
larger than the length of OutExpr, enough blanks are
written before the decimal string to make the field width
Min Width.

Write with a packed string type value: If OutExpr is of
packed string type, the effect is the same as writing a
string whose length is the number of elements in the
packed string type.

Chapter 27, Turbo Pascal Reference Lookup 515

Restrictions

Differences

See also

Write with a Boolean value: If OutExpr is of type
boolean, the effect is the same as writing the strings True
or False, depending on the value of OutExpr.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

File must be open for output.

See Appendix A

Writeln

Write procedure (typed files)

Function

Declaration

Remarks

See also

Writes a variable into a file component.

Write(f, vI [, v2, ... ,vn 1)

f is a file variable, and each v is a variable of the same
type as the component type of f. For each variable
written, the current file position is advanced to the next
component. If the current file position is at the end of the
file-that is, if Eof(f) is True-the file is expanded.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Writeln

Writeln procedure

Function

Declaration

Remarks

Restrictions

516

Executes the Write procedure, then outputs an end-of
line marker to the file.

l~riteln([var f: text; 1 vI [, v2, ... ,vn 1)

Writeln procedure is an extension to the Write procedure,
as it is defined for text files. After executing the Write,
Writeln writes an end-of-line marker (carriage
return/line-feed) to the file.

Writeln(f) with no parameters writes an end-of-line
marker to the file. (Writeln with no parameter list
altogether corresponds to Writeln(Output).)

File must be open for output.

Turbo Pascal Owner's Handbook

Differences

See also

See Appendix A.

Write

Chapter 27, Turbo Pascal Reference Lookup 517

518 Turbo Pascal Owner's Handbook

p A R T

3

519

520 Turbo Pascal Owner's Handbook

A p p E N D

Differences Between Version 3.0
and 4.0

x

A

This appendix lists the differences between version 3.0 of Turbo Pascal and
version 4.0. Despite the many changes to the compiler and the introduction
of many powerful features, version 4.0 is highly compatible with previous
releases. As you will see by reading through this section, most of the
differences are small, resulting from the introduction of some of the new
features.

Where appropriate, we've made suggestions how to make any conversion
necessary. Also consult Chapter 8 for more information on converting from
version 3.0 to version 4.0.

Program Declarations

In version 3.0, the program name (the identifier given in the program
statement) could be the same as another identifier in the program. In
version 4.0, the program name must be unique-there cannot be a label,
constant, data type, variable, procedure, or function, unit with the same
name. That's because you can now refer to any identifier declared in your
program as progname.identifier. This lets you resolve ambiguities in case you
use a unit that also declares something named identifier. In that situation,
you can refer to the unit's item as unitname.identifier (see Chapter 4).

In version 3.0, all Pascal items (constants, data types, variables, procedures,
functions) had to be compiled at the same time and were located either in
your source file or in an include file. In version 4.0, you can collect a group
of constants, data types, variables, procedures and functions, compile them.

Appendix A, Differences Between Version 3.0 and 4.0 521

separately into a unit, and then use them in a series of programs. (See
Chapter 4 for more details on units.)

In version 3.0, you could not have a program with more than 64K of code,
and the compiler produced a .COM file. To get around this, you had to use
chaining and/or overlays. In version 4.0, your code size is limited only by
the operating system (and your computer), since each unit itself can have
up to 64K of code. Because of this, neither chaining nor overlays are
supported in version 4.0. If you have been using chaining, you can either
use the Exec procedure (found in the Dos unit), or you can convert your
.CHN files to units. If you've been using overlays, you should break your
program into several sections and make each section a unit.

Compiler Directives

In version 3.0, you could embed a set of compiler directives in your code to
set (or clear) certain options. In version 4.0, that set has been modified. Here
is a list of the current compiler directives; see Appendix C for more details:

'Directive Description Default

$B+/- Boolean evaluation (+=complete,-=short) $B-
$D+/- Debug information (+=on,-=off) $D+
$F+/- Force far calls (+= all far,-=as needed $F-
$1+/- I/O error checking (+=on, -=off) $1+
$1 file Include file
$L+/- Link buffer location (+=memory,-=disk) $L+
$L file Link object file
$M s,l,h Memory allocation

$N+/-
(stack,minheap,maxheap) 16K,0 ,655360

$N-Numeric co~rocessor (+=8087,-=software)
$R+/- Ran~e-chec ing(+=on,-=off) $R+
$5+/- Stac overflow checking (+=on,-=off) $5+
$T+/- .TPM file generation (+=on,-=off) $T-
$U file Unit file name
$V+/- Var-string checking (+=on,-=off) $V+

In version 3.0, the include option ({$1 filename}) could be placed anywhere,
and could simply contain executable statements. In version 4.0, the include
option cannot be placed within a begin/end pair; if filename contains
executable statements, they must be within a complete procedure or

522 Turbo Pascal Owner's Handbook

function or the file must contain the entire main body of the program,
including begin/end.

In version 3.0, the include option ({$1 filename}) did not require a space
between $1 and filename. In version 4.0, you must have a space after the $1.

In version 3.0, you could not nest include files; that is, if your program had
the directive {$1 mystuff.pas}, then MYSTUFF.PAS could not have any $1
(include) directives. In version 4.0, you can nest include files and units up
to eight levels deep.

Predeclared Identifiers

In version 3.0, all predefined constants, data types, variables, procedures,
and functions were always available. In version 4.0, many of those
predefined items are now located in one of the standard units (Dos, Crt,
Printer, Graph, Turb03, Graph3). In order to use those items, your program
must have a uses statement listing the units to be used. For example,

uses Crt, Dos;

Here's a list of the 4.0 units with their items that were predeclared in
version 3.0:

4.0

Dos

Crt

Printer

Turb03

Graph3

3.0

MsDos, 1ntr, Exec (Execute in 3.0)

KeyPressed, TextMode, Window, GotoXY, WhereX,
WhereY, ClrScr, CrlEol, 1nsLine, DelLine, TextColor,
TextBackground, LowVideo, NormVideo, Delay, Sound,
NoSound, and all the text mode and text color constants

Lst

Kbd, CBreak, LongFileSize,
LongFilePos, LongSeek

All the basic, advanced, and turtlegraphics routines

In version 3.0, the following predefined items were available: CrtExit,
Crt/nit, Aux, Can, Trm, Usr, Con1nPtr, ConOutPtr, ConStPtr, LstOutPtr,
Usr1nPtr, UsrOutPtr, ErrorPtr. In version 4.0, you can now write powerful
I/O drivers (see Chapter 26).

Appendix AI Differences Between Version 3.0 and 4.0 523

In version 3.0, CBreak was an undocumented Boolean variable that let you
enable or disable checking for program interruption via etr/-Break. In version
4.0, it is documented and has been renamed CheckBreak; CBreak is still
available in the Turbo3 unit.

In version 3.0, the Execute procedure was passed a file variable. In version
4.0, it has been renamed Exec (found in the Dos unit), and you pass it a
program name and a command line (parameters).

In version 3.0, the predefined file variables Aux, Con, Kbd, Lst, Trm, and Usr
were all available. In version 4.0, none of them are predefined; however, Lst
is available by using the unit Printer, and Kbd is available in the unit Turbo3.
By using the Dos unit, you can write your own device drivers; see Chapter
26 for more details. .

In version 3.0, the functions MemAvail and MaxAvail were of type integer
and returned the number of paragraphs (16-byte chunks) free. In version
4.0, those functions are of type longint and return the number of bytes free.
Note that the original versions are available in the unit Turbo3.

In version 3.0, the FileSize, FilePos, and FileSeek functions returned a value of
type integer. In version 4.0, they return a value of type longint and can
return values up to 2,147,483,647.

In version 3.0, Mem W returned an integer value. In version 4.0, it returns a
value of type word.

In version 3.0, the LongFile functions (LongFileSize, LongFilePos, LongSeek)
returned a value of type real. In version 4.0, these functions are available
only through the Turbo3 unit, and they return a value of type real.

In version 3.0, the procedures MsDos and Intr both had an untyped
parameter; you had to declare the appropriate register data structure and
pass it in. In version 4.0, MsDos and Intr both require a parameter of type
Registers, which is also defined in the Dos unit.

In version 3.0, the procedure Intr took a constant of type integer as its first
parameter. In version 4.0, it accepts any expression (constant, variable, and
so on), but the value must be of type byte.

In version 3.0, the function IOResult returned error codes specific to Turbo
Pascal. In version 4.0, IOResult returns standard MS-DOS error codes.
(Turbo3 contains an IOResult function that maps 4.0 error codes to 3.0
values wherever possible.)

In version 3.0, if you had several successive I/O errors and then called
IOResuit, it would return the error code corresponding to the first I/O error.
In version 4.0, it returns the code corresponding to the last (most recent)
I/O error.

524 Turbo Pascal Owner's Handbook

In version 3.0, the procedure Seek took a parameter of type integer for the
record number. In version 4.0, that parameter is now of type longint.

In version 3.0, you could call TextMode without any parameters; this would
restore the text mode to the last active mode before graphics. In version 4.0,
TextMode must always have a parameter; however, there is now the
predefined text mode constant Last, which sets the text mode to the last
active mode before graphics:

TextMode(LastMode);

Programming Changes

In version 3.0, the Addr function returned the address of any variable. Even
though Addr is supported in 4.0, you should now use the @ operator
instead, so that Ptr := Addr(Item) becomes Ptr := @Item.

In version 3.0, assignment was allowed between types that were identical
but defined separately:

var
A: Ainteger;
B: Ainteger;

begin

A := B;

In version 4.0, stricter type-checking is enforced, and the preceding code
would produce a compiler error. For variables to be assignment
compatible, they must either be declared together, like so:

var
A,B: Ainteger;

or they must be of the same defined data type:

type
IntPtr = Ainteger;

var
A: Intptr;
B: Intptr;

In version 3.0, you could use a string variable of length 1 as a case selector
in a case statement. In version 4.0, you no longer can, though you can use
the individual characters.

In version 3.0, the type char was compatible with a string of length 1:

Appendix A, Differences Between Version 3.0 and 4.0 525

var
Ch: char;
S: string[10];

begin
S :=' a';
Ch := S;

You could also use the function Copy in a similar fashion:

S := 'abc';
Ch := Copy(S,2,1);

In version 4.0, neither is allowed. You can, however, still assign Ch to S, and
you can always assign S[lJ to Ch.

In version 3.0, you could call the procedure Close on a file that was already
closed with no results. In version 4.0, it produces an I/O error, which you
can handle by disabling I/O error checking (via the {$I-} option) and testing
the value returned by IOResult.

In version 3.0, you could use CSeg and DSeg in absolute statements:

var
Parameters: string[127] absolute CSeg: $80;

In version 4.0, neither CSeg nor DSeg is allowed in absolute statements.

In version 3.0, there were no restrictions on where the control variable used
in a for loop was declared. In version 4.0, the control variable must either
be a global variable or, if the for loop is in a procedure or function, local to
that procedure or function. The following code now results in a compiler
error:

procedure Outer;
var

I: integer;

procedure Inner;
begin

for I := 1 to 10 do
Writeln(I)

end; {of proc Inner }

begin {main body of Outer
Inner

end; {of proc Outer }

{ I is declared in Outer }

In version 3.0, you could not assign -32768 directly to an integer variable;
instead, you had to use the hex constant $8000. In version 4.0, you can now
assign -32768 directly; the hex constant $8000 (which now equals +32768) is
of type word and cannot be assigned to variables of type integer. You can
also assign $FFFF8000 to an integer variable.

526 Turbo Pascal Owner's Handbook

In version 3.0, you could declare labels in the label section without using
the labels in your program. In version 4.0, if you declare a label and then
don't use it, you'll get a compiler error. In that case, you need to either use
the label in your code or remove it from the label declarations.

In version 3.0, you could (optionally) set the buffer size on a text file when
you declared it:

var
F: text[4096]i { Buffer size of 4096 bytes }

In version 4.0, you now declare the text buffer as a data structure and
assign it to the text file using the SetTextBuf procedure:

var
F : texti
Buf: array[0 .. 4095] of chari

begin
Assign(F,'MyFile.TXT')i
SetTextBuf(F,Buf)i
Reset (F) i

In version 3.0, you could use Read(Kbd,Ch) to do a direct, unechoed read
from the keyboard. In version 4.0, the function ReadKey performs the same
task and allows you to easily detect special keys (function keys, keypad
keys, and so on):

Ch := ReadKeYi
if Ch = *0 then
begin

Ch := ReadKeYi

end
else ... i

{ Special key }

{ Read again }
Handle special key }

Handle regular key }

(Kbd is still supported in the Turbo3 unit; however, we strongly recommend
that you switch to using ReadKey.)

In version 3.0, certain versions of the compiler supported the BCD (binary
coded decimal) data type. In version 4.0, you have no such data type.
Consider using the longint (a 4-byte integer) type instead; if you have an
8087 math coprocessor, you can set the {$N+} compiler option and use the
camp data type (an 8-byte integer). A sample program contained on the
distribution disks demonstrates how to convert your BCD data for use with
4.0 data types (see the README file on the disk).

In version 3.0, if you had the following code:

var
I: integeri

Appendix A, Differences Between Version 3.0 and 4.0 527

begin
I := 30;
Write('Enter I: '); Readln(I);

and pressed Enter when asked to enter I, the program would continue and
would leave I with a value of 30. In version 4.0, your program won't
continue until you enter an integer value.

In version 3.0, typed constants resided in the code segment (CS). In version
4.0, they reside in the data segment.

Other Additions and Improvements

In version 3.0, you had to use the Move function to copy data from one data
structure to another if the structures were not assignment-compatible:

type
Buffer = array[0 .. 5] of byte;

var
BufPtr: "Buffer;
X : real;

begin
New(BufPtr);

Move(BufPtr",X,SizeOf(X));

The exception was for ordinal data types (char, byte, integer, boolean,
enumerated types), in which case you use retyping (typecasting):

IntVar := byte('a');
MonthVar := Month(3);

In version 4.0, typecasting has been extended to all types, with the
requirement that the source and destination be exactly the same size:

type
Buffer = array[0 .. 5] of byte;

var
BufPtr: "Buffer;
X: real;

begin
New(BufPtr);

X := real(BufPtr");

In version 3.0, you were limited to the integer types byte (0 .. 255, 1 byte) and
integer (-32768 .. 32767, 2 bytes). In version 4.0, you also have the types
shortint (-128 .. 127, 1 byte), word (0 .. 65535, 2 bytes), and longint
(-2147483648 .. 2147483647,4 bytes).

528 Turbo Pascal Owner's Handbook

In version 3.0, you were limited to the floating-point type real. In version
4.0, if you have an 8087 math coprocessor in your machine, you can set the
{$N+} option and use three additional floating-point data types: single (4
bytes), double (8 bytes), and extended (10 bytes). You can also use the 8-
byte integer type, compo

In version 3.0, you had to give an explicit length to any string variable you
declared; you also had to define your own type if you wanted to pass
strings as parameters:

type
BigStr = string[255];

var
Name: string[20];
S : BigStr;

procedure Whatever(T : BigStr);

In version 4.0, you can now declare a variable to be of type string, which is
equivalent to string[255]; you can declare formal parameters to be of type
string:

var
S: string;

procedure Whatever(T: string);

In version 3.0, all terms in a Boolean expression were evaluated, even if one
term already ensured that the expression was True or False. Because of
that, you couldn't write

if (B = 0) or (AlB = X) then ...

since the second term would be evaluated even if B = 0, which would
produce a runtime error. In version 4.0, such expressions can be short
circuited. If B = 0, then the entire expression is True, and the expression (AlB
= X) isn't evaluated. If desired, you can force version 4.0 to evaluate all
terms by using the {$B+} option.

In version 3.0, you used ErrorPtr to set up your own error handler. In
version 4.0, ErrorPtr no longer exists; instead, you can handle both
abnormal and normal termination of your program through ExitProc (see
Chapter 26 for more details).

In version 3.0, you had to use assembly language coding to create an
interrupt handler. In version 4.0, you can write interrupt handlers in Pascal
by declaring procedures to be of type interrupt.

Appendix A, Differences Between Version 3.0 and 4.0 529

In version 3.0, you had the predefined identifiers Mem and Mem W for direct
memory access. In version 4.0, you also have MemL, which maps an array
of type longint onto memory.

In version 3.0, you could embed machine code within procedures and
functions (or the main body of your program) using the inline statement.
In version 4.0, you can also declare entire short procedures and functions to
be of type inHne; the machine code is then directly inserted (much like
macro expansion) everywhere the procedure or function is called.

In version 3.0, external assembly language routines had to be in .BIN
format and were declared in your program as offsets to the first routine in
the file. In version 4.0, those routines can be in .OB] format (produced by an
assembler) and are simply declared external, with a {$L files} directive
listing the .OB] files to be linked in.

In version 3.0, all procedure and function calls were near calls, which
meant all code had to be in the same segment. In version 4.0, the compiler
automatically generates near or far calls as needed, and you can. force all
calls to be far using the {$F+} option.

In version 3.0, there were no provisions to aid debugging of executable
files. In version 4.0, you can set {$D+} and {$T +} directives to support
symbolic debugging (Periscope, and so forth). See Chapter 9 for more
information.

530 Turbo Pascal Owner's Handbook

A p p E N D

Comparing Turbo Pascal 4.0 with
ANSI Pascal

x

B

This appendix compares Turbo Pascal to ANSI Pascal as defined by
ANSI/IEEE770X3.97-1983 in the book American National Standard Pascal
Computer Programming Language (ISBN 0-471-88944-X, published by The
Institute of Electrical and Electronics Engineers in New York).

Exceptions to ANSI Pascal Requirements

Turbo Pascal complies with the requirements of ANSI/IEEE770X3.97-1983
with the following exceptions:

• In ANSI Pascal, an identifier can be of any length and all characters are
significant. In Turbo Pascal, an identifier can be of any length, but only
the first 63 characters are significant.

• In ANSI Pascal, the @ symbol is an alternative for the 1\ symbol. In Turbo
Pascal, the @ symbol is an operator, which is never treated identically
with the 1\ symbol.

• In ANSI Pascal, a comment can begin with { and end with *), or begin
with (* and end with }. In Turbo Pascal, comments must begin and end
with the same set of symbols.

• In ANSI Pascal, each possible value of the tag type in a variant part must
appear once. In Turbo Pascal, this requirement is not enforced.

• In ANSI Pascal, the component type of a file type cannot be a structured
type having a component of a file type. In Turbo Pascal, this requirement
is not enforced.

Appendix 8, Comparing Turbo Pascal 4.0 with ANSI Pascal 531

• In ANSI Pascal, a file variable has an associated buffer variable, which is
referenced by writing the " symbol after the file variable. In Turbo
Pascal, a file variable does not have an associated buffer variable, and
writing the" symbol after a file variable is an error.

• In ANSI Pascal, the statement part of a function must contain at least one
assignment to the function identifier. In Turbo Pascal, this requirement is
not enforced.

• In ANSI Pascal, a field that is the selector of a variant part cannot be an
actual variable parameter. In Turbo Pascal, this requirement is not
enforced.

• In ANSI Pascal, procedures and functions allow procedural and
functional parameters; these parameters are not allowed in Turbo Pascal.

• In ANSI Pascal, the standard procedures Reset and Rewrite do not require
pre-initialization of file variables. In Turbo Pascal, file variables must be
assigned the name of an external file using the Assign procedure before
they are passed to Reset or Rewrite.

• ANSI Pascal defines the standard procedures Get and Put, which are
used to read from and write to files. These procedures are not defined in
Turbo Pascal.

• In ANSI Pascal, the syntax New(p,cl, ... ,cn) creates a dynamic variable
with a specific active variant. In Turbo Pascal, this syntax is not allowed.

• In ANSI Pascal, the syntax Dispase(q,kl, ... ,km) removes a dynamic
variable with a specific active variant. In Turbo Pascal, this syntax is not
allowed.

• ANSI Pascal defines the standard procedures Pack and Unpack, which are
used to "pack" and "unpack" packed variables. These procedures are not
defined in Turbo Pascal.

• In ANSI Pascal, the term i mod j always computes a positive value, and it
is an error if j is zero or negative. In Turbo Pascal, i mod j is computed as
i - (i div j) * j, and it is not an error if j is negative.

• In ANSI Pascal, a goto statement within a block can refer to a label in an
enclosing block. In Turbo Pascal, this is an error.

• In ANSI Pascal, it is an error if the value of the selector in a case
statement is not equal to any of the case constants. In Turbo Pascal, this is
not an error; instead, the case statement is ignored unless it contains an
else clause.

• In ANSI Pascal, statements that threaten the control variable of a for
statement are not allowed. In Turbo Pascal, this requirement is not
enforced.

• In ANSI Pascal, a Read from a text file with a char-type variable assigns a
blank to the variable if Ealn was True before the Read. In Turbo Pascal, a

532 Turbo Pascal Owner's Handbook

carriage return character (ASCII 13) is assigned to the variable in this
situation.

• In ANSI Pascal, a Read from a text file with an integer-type or real-type
variable ceases as soon as the next character in the file is not part of a
signed integer or a signed number. In Turbo Pascal, reading ceases when
the next character in the file is a blank or a control character (including
the end-of-line marker).

• In ANSI Pascal, a Write to a text file with a packed string-type value
causes the string to be truncated if the specified field width is less than
the length of the string. In Turbo Pascal, the string is always written in
full, even if it is longer than the specified field width.

Note: Turbo Pascal is unable to detect whether a program violates any of
the exceptions listed here.

Extensions to ANSI Pascal

The following Turbo Pascal features are extensions to Pascal as specified by
ANSI/IEEE770X3.97-1983.

• The following are reserved words in Turbo Pascal:

absolute
external
implementation
inline

interface
interrupt
shl
shr

string
unit
uses
xor

• An identifier can contain underscore characters () after the first
character.

• Integer constants can be written in hexadecimal notation; such constants
are prefixed by a $.

• Identifiers can serve as labels.

• String constants are compatible with the Turbo Pascal string types, and
can contain control characters and other non printable characters.

• Label, constant, type, variable, procedure, and function declarations can
occur any number of times in any order in a block.

• Turbo Pascal implements the additional integer types shortint, longint,
byte, and word, and the additional real types single, double, extended,
and compo

• Turbo Pascal implements string types, which differ from the packed
string types defined by ANSI Pascal in that they include a dynamic
length attribute that can vary during execution.

Appendix 8, Comparing Turbo Pascal 4.0 with ANSI Pascal 533

• The type compatibility rules are extended to make char types and packed
string types compatible with string types.

• Variables can be declared at absolute memory addresses using an
absolute clause.

• A variable reference can contain a call to a pointer-type function, the
result of which is then dereferenced to denote a dynamic variable.

• String-type variables can be indexed as arrays to access individual
characters in a string.

• The type of a variable reference can be changed to another type through
a variable typecast.

• Turbo Pascal implements typed constants, which can be used to declare
initialized variables of all types except file types.

• Turbo Pascal implements three new logical operators: xor, shl, and shr.

• The not, and, or, and xor operators can be used with integer-type
operands to perform bitwise logical operations.

• The + operator can be used to concatenate strings.

• The relational operators can be used to compare strings.

• Turbo Pascal implements the @ operator, which is used to obtain the
address of a variable or a procedure or function.

• The type of an expression can be changed to another type through a
value typecast.

• The case statement allows constant ranges in case label lists, and
provides an optional else part.

• Procedures and functions can be declared with external, inline, and
interrupt directives to support assembly language subroutines, inline
machine code, and interrupt procedures.

• A variable parameter can be untyped (typeless), in which case any
variable reference can serve as the actual parameter.

• Turbo Pascal implements units to facilitate modular programming and
separate compilation.

• Turbo Pascal implements the following file-handling procedures and
functions, which are not available in ANSI Pascal:

Append
BlockRead
BlockWrite
ChDir

Close
Erase
FilePos
FileSize

Flush
GetDir
MkDir
Rename

RmDir
Seek
SeekEof
SeekEoln

• String-type values can be input and output with the Read, Readln, Write,
and Writeln standard procedures.

534 Turbo Pascal Owner's Handbook

• Turbo Pascal implements the following standard procedures and
functions, which are not found in ANSI Pascal:

Addr FreeMem MaxAvail Randomize
CSeg GetMem MemAvail Release
Concat Halt Move SPtr
Copy Hi Ofs SSeg
DSeg Inc ParamCount Seg
Dec Insert ParamStr SizeOf
Delete Int Pi Str
Exit Length Pos Swap
FillChar Lo Ptr UpCase
Frac Mark Random Val

• Turbo Pascal implements further standard constants, types, variables,
procedures, and functions through standard units.

Note: Turbo Pascal is unable to detect whether a program uses any of the
extensions listed here.

Implementation-Dependent Features

The effect of using an implementation-dependent feature of Pascal, as
defined by ANSI/IEEE770X3.97-1983, is unspecified. Programs should not
depend on any specific path being taken in cases where an
implementation-dependent feature is being used. Implementation
dependent features include

• the order of evaluation of index expressions in a variable reference

• the order of evaluation of expressions in a set constructor

• the order of evaluation of operands of a binary operator

• the order of evaluation of actual parameters in a function call

• the order of evaluation of the left and right sides of an assignment

• the order of evaluation of actual parameters in a procedure statement

• the effect of reading a text file to which the procedure Page was applied
during its creation

• the binding of variables denoted by the program parameters to entities
external to the program

Appendix B, Comparing Turbo Pascal 4.0 with ANSI Pascal 535

Treatment of Errors

This section lists those errors from Appendix D of the ANSI Pascal
Standard that are not automatically detected by Turbo Pascal. The numbers
referred to here are the numbers used in the ANSI Pascal Standard. Errors
6, 19-22, and 25-31 are not detected because they are not applicable to
Turbo Pascal.

2. If t is a tag field in a variant part and f is a field within the active
variant of that variant part, it is an error to alter the value of t while
a reference to f exists. This error is not detected.

3. If P is a pointer variable, it is an error to reference p" if P is nil. This
error is not detected.

4. If P is a pointer variable, it is an error to reference p" if P is
undefined. This error is not detected.

5. If P is a pointer variable, it is an error to alter the value of p while a
reference to p" exists. This error is not detected.

42. The function call Eoln(f) is an error if Eof(f) is True. In Turbo Pascal
this is not an error, and Eoln(f) is True when Eof(f) is True.

43. It is an error to reference a variable in an expression if the value of
that variable is undefined. This error is not detected.

46. A term of the form i mod j is an error if j is zero or negative. In
Turbo Pascal, it is not an error if j is negative.

48. It is an error if a function does not assign a result value to the
function identifier. This error is not detected.

51. It is an error if the value of the selector in a case statement is not
equal to any of the case constants. In Turbo Pascal, this is not an
error; instead, the case statement is ignored unless it contains an
else clause.

536 Turbo Pascal Owner's Handbook

A p p E N D x

c
Compiler Directives

Some of the Turbo Pascal compiler's features are controlled through
compiler directives. A compiler directive is introduced as a comment with a
special syntax. Turbo Pascal allows compiler directives wherever
comments are allowed.

You can put compiler directives in your source code, in the command line
for the command-line compiler (use the format /$<directive> instead of
{directive}), in the command-line configuration file, or in the integrated
environment (through the Options/Compiler menu items).

A compiler directive starts with a $ as the first character after the opening
comment delimiter. The $ is immediately followed by a name (one or more
letters) that designates the particular directive. There are three types of
directives:

• Switch directives. These directives turn particular compiler features on
or off by specifying + or - immediately after the directive name.

• Parameter directives. These directives specify parameters that affect the
compilation, such as file names and memory sizes.

• Conditional directives. These directives control conditional compilation
of parts of the source text, based on user-definable conditional symbols.

All directives, except switch directives, must have at least one blank
between the directive name and the parameters. Here are some examples of
compiler directives:

{$B+}
{$R- Turn off range-checking}
{$I TYPES. INC}
{$U C:\UNITS\MEM}

Appendix C, Compiler Directives 537

{$M 65520,8192,655360}
{$DEFINE Debug}
{$IFDEF Debug}
{$ENDIF}

Switch Directives

Switch directives are either global or local. Global directives affect the entire
compilation, whereas local directives affect only the part of the compilation
that extends from the directive until the next occurrence of the same
directive.

Global directives must appear before the declaration part of the program or
the unit being compiled, that is, before the first uses, label, const, type,
procedure, function, or begin keyword. Local directives, on the other
hand, can appear anywhere in the program or unit.

Multiple switch directives can be grouped in a single compiler directive
comment by separating them with commas; for example:

{$Bt,R-,S-}

There can be no spaces between the directives in this case.

Boolean Evaluation

Syntax: {$B+} or {$B-}

Default: {$ B - }

Type: Local

. Menu equivalent: Options/Compiler/Boolean evaluation

This directive switches between the two different models of code
generation for the and and or Boolean operators.

In the {$B+} state, the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean
expression, built from the and and or operators, is guaranteed to be
evaluated, even when the result of the entire expression is already known.

In the {$B-} state, the compiler generates code for short-curcuit Boolean
expression evaluation, which means that evaluation stops as soon as the
result of the entire expression becomes evident. For further details, refer to
the section "Boolean Operators" in Chapter 18.

538 Turbo Pascal Owner's Handbook

Debug Information

Syntax: {$D+} or {$D-}

Default: {$D+}

Type: Global

Menu equivalent: Options / Compiler /Debug information

This switch enables or disables the generation of debug information. Debug
information consists of a line number table for each procedure, which maps
object code addresses into source text line numbers.

When a runtime error occurs in a program or unit that was compiled with
the option Debug information on, Turbo Pascal uses that information to
locate the statement in the source text that caused the error.

For units, the debug information is recorded in the .TPU file, along with the
unit's object code and symbols. For programs, when compiling to memory,
it is kept in memory for later use. When compiling to disk, it is recorded in
the .TPM file, provided .TPM file generation is enabled through a {$T +}
directive. Debug information increases the size of .TPU and .TPM files, and
takes up additional room.when compiling to memory, but it does not affect
the size or speed of the executable program.

The TPMAP.EXE utility converts debug information in a .TPM file to a
line-number table in the resulting .MAP file. A number of symbolic
debuggers can use the line-number information to display source code
lines.

Force Far Calls

Syntax: {$F+} or {$F-}

Default: {$ F - }

Type: Local

Menu equivalent: Options/Compiler/Force far calls

This switch controls which call model to use for subsequently compiled
procedures and functions. Procedures and functions compiled in the {$F+}
state always use the far call model. In the {$F-} state, Turbo Pascal
automatically selects the appropriate model: far if the procedure or
function is declared in the interface section of a unit; near otherwise.

The {$F} (force far calls) compiler directive has no effect on a nested
procedure. The nested procedure is always of near model.

Appendix C, Compiler Directives 539

The near and far call models are described in full in Chapter 26, "Inside
Turbo Pascal."

Input/Output Checking

Syntax: {$1+} or {$1-}

Default: {$ I + }

Type: Local

Menu equivalent: Options/Compiler/I/O checking

This switch enables or disables the automatic code generation that checks
the result of a call to an I/O procedure. I/O procedures are described in
Chapter 22, "Input and Output." If an I/O procedure returns a nonzero
I/O result when this switch is on, the program terminates, displaying a
runtime error message. When this switch is off, you must check for I/O
errors by using the IOResult function.

Link Buffer

Syntax: {$L+} or {$L-}

Default: {$L+}

Type: Global

Menu equivalent: Options/ Compiler /Link buffer

This directive enables or disables buffering in memory when linking .TPU
files at the end of compiling a program to disk.

Turbo Pascal's built-in linker is a two-pass linker. In the first pass through
the .TPU files, the linker marks every procedure that gets called by other
procedures. In the second pass, it generates the .EXE file by extracting the
marked procedures from the .TPU files. In the {$L+} state, the .TPU files are
kept in memory between two passes; in the {$L-} state, they are reread
during the second pass. {$L+} is faster than {$L-} but requires more
memory, so for very large programs you'll have to turn link buffering off.

Numeric Processing

Syntax: {$N+} or {$N-}

Default: {$N-}

540 Turbo Pascal Owner's Handbook

Type: Global

Menu equivalent: Options/Compiler/Numeric processing

This directive switches between the two different models of floating-point
code generation supported by Turbo Pascal. In the {$N-} state, code is
generated to perform all real-type calculations in software by calling
runtime library routines. In the {$N+} state, code is generated to perform all
real-type calculations using the 8087 numeric coprocessor.

For further details on floating-point code generation, refer to Chapter 25,
"Using the 8087."

Range-Checking

Syntax: {$R+} or {$R-}

Default: {$R-}

Type: Local

Menu equivalent: Options/Compiler/Range checking

This switch enables or disables the generation of range-checking code. In
the {$R+} state, all array and string-indexing expressions are checked to be
within the defined bounds, and all assignments to scalar and subrange
variables are checked to be within range. If a range-check fails, the program
terminates, displaying a runtime error message. Enabling range-checking
slows down your program and makes it larger. Use this option when
debugging, then tum it off once the program is bug-free.

Stack Overflow Checking

-Syntax: {$3+} or {$3-}

Default: {$ 3 + }

Type: Local

Menu equivalent: Options/Compiler/Stack checking

This switch enables or disables the generation of stack-overflow-checking
code. In the {$S+} state, the compiler generates code at the beginning of
each procedure or function, which checks whether there is sufficient stack
space for the local variables. When there is not enough stack space, a call to
a procedure or function compiled with {$S+} causes the program to
terminate, displaying a runtime error message. In the {$S-} state, such a call
is most likely to cause a system crash.

Appendix C, Compiler Directives 541

TPM File Generation

Syntax: {$T+} or {$T-}

Default: {$ T - }

Type: Global

Menu equivalent: Options/Compiler/Turbo pascal map file

This switch enables or disables the generation of a .TPM file when
compiling a program to disk.

A program's .TPM file is used by the Compile/Find error menu command
to locate the statement in the source text that caused a runtime error in the
program's .EXE file. This requires, however, that the program (and the
units it uses) be compiled in the {$D+} state, otherwise the .TPM file will
not contain all the necessary debug information. If some units weren't
compiled with {$D+}, the compiler will report the unit name, but not
position the source text.

The TPMAP.EXE utility converts .TPM files to .MAP files, which can be
processed by most symbolic debuggers.

Note: The $T directive has no effect when compiling a unit or when
compiling a program to memory.

Var-String Checking

Syntax: {$V+} or {$V-}

Default: {$v+}

Type: Local

Menu equivalent: Options / Compiler /Var-string checking

This directive controls type-checking on strings passed as variable
parameters. In the {$V+} state, strict type-checking is performed, requiring
the formal and actual parameters to be of identical string types. In the {$V-}
state, any string type variable is allowed as an actual parameter, even if the
declared maximum length is not the same as that of the formal parameter.

542 Turbo Pascal Owner's Handbook

Parameter Directives

Include File

Syntax: {$ I filename}

Type: Local

Menu equivalent: Options/Directories/Include directories This directive
instructs the compiler to include the named file in the compilation. In effect,
the file is inserted in the compiled text right after the {$I filename} directive.
The default extension for filename is .P AS. If filename does not specify a
directory, then, in addition to searching for the file in the current directory,
Turbo Pascal searches in the directories specified in the
Options/Directories/Include directories menu, or in the directories
specified ia the / I option on the TPC command line.

Turbo Pascal allows, at most, five input files to be open at any given time.
This means that include files can be nested up to eight levels deep.

There is one restriction to the use of include files: An include file cannot be
specified in the middle of a statement part. In fact, all statements between
the begin and end of a statement part must reside in the same source file.

Link Object File

Syntax: {$L filename}

Type: Local

Menu equivalent: Options/Directories/ Object directories

This directive instructs the compiler to link the named file with the
program or unit being compiled. The $L is used to link with code written in
assembly language for subprograms declared to be external. The named
file must be an Intel relocatable object file (.OBJ file). The default extension
for filename is .OBJ. If filename does not specify a directory, then, in addition
to searching for the file in the current directory, Turbo Pascal searches in
the directories specified in the Options/Directories/Object directories
menu, or in the directories specified in the /0 option on the TPC command
line.

For further details about linking with assembly language, refer to Chapter
26, "Inside Turbo Pascal."

Appendix C, Compiler Directives 543

Memory Allocation Sizes

Syntax: {$M stacksize,heapmin,heapmax}

Default: {$M 16384,0, 655360}

Type: Global

Menu equivalent: Options/Compiler/Memory sizes

This directive specifies a program's memory allocation parameters. stacksize
must be an integer number in the range 1024 to 65520, which specifies the
size of the stack segment. heapmin must be in the range ° to 655360, and
heapmax must be in the range heapmin to 655360. heapmin and heapmax
specify the minimum and maximum sizes of the heap, respectively.

The stack segment and the heap are further discussed in Chapter 16,
''Variables,'' and Chapter 26, "Inside Turbo Pascal."

Note: The $M directive has no effect when used in a unit.

Unit File Name

Syntax: {$U filename}

Type: Local

Menu equivalent: Options/Directories/Unit directories

This directive allows you to specify the file name of a unit's source file and
.TPU file in cases where the unit name and its file name differ. The {$U
filename} directive has no effect unless it appears just before a unit name in a
uses clause.

For further details on the effect of a {$U filename} in a uses clause, refer to
Chapter 21, "Programs and Units."

Conditional Compilation

Turbo-Pascal's conditional compilation directives allow you to produce
different code from the same source text, based on conditional symbols.

There are two basic conditional compilation constructs, which closely
resemble Pascal's if statement. The first construct

{$IFxxx} ... {$ENDIF}

544 Turbo Pascal Owner's Handbook

causes the source text between {$IFxxx} and {$ENDIF} to be compiled only
if the condition specified in {$IFxxx} is True; if the condition is False, the
source text between the two directives is ignored.

The second conditional compilation construct

{$IFxxx} ... {$ELSE} ... {$ENDIF}

causes either the source text between {$IFxxx} and {$ELSE} or the source
text between {$ELSE} and {$ENDIF} to be compiled, based on the condition
specified by the {$IFxxx}.

Here are some examples of conditional compilation constructs:

{$IFDEF Debug}
Writeln{'X = ',X);

{$ENDIF}

{$IFDEF CPU87}
{$N+}
type

real = double;
{$ELSE}

{$N-}
type

single = real;
double = real;
extended = real;
camp = real;

{$ENDIF}

Conditional compilation constructs can be nested to a level of 16. For every
{$IFxxx}, the corresponding {$ENDIF} must be found within the same
source file-which means there must be an equal number of {$IFxxx}'s and
{$ENDIF}'s in every source file.

Conditional Symbols

Conditional compilation is based on the evaluation of conditional symbols.
Conditional symbols are defined and undefined (forgotten) using the
directives

{$DEFINE name}
{$UNDEF name}

You can also use the /D switch in the command-line compiler or the menu
selection 0/ C/ Conditional defines from within the integrated
environment.

Appendix C, Compiler Directives 545

Conditional symbols are best compared to Boolean variables: They are
either True (defined) or False (undefined). The {$DEFINE} directive sets a
given symbol to True, and the {$UNDEF} directive sets it to False.

Conditional symbols follow the exact same rules as Pascal identifiers: They
must start with a letter, followed by any combination of letters, digits, and
underscores. They can be of any length, but only the first 63 characters are
significant.

Note: Conditional symbols and Pascal identifiers have no correlation
whatsoever. Conditional symbols cannot be referenced in the actual
program, and the program's identifiers cannot be referenced in conditional
directives. For example, the construct

const
Debug = True;

begin
{$IFDEF Debug}

Writeln('Debug is on');
{$ENDIF}

end;

will not compile the Writeln statement. Likewise, the construct

{$DEFINE Debug}
begin

if Debug then
Writeln('Debug is on');

end;

will result in an unknown identifier error in the if statement.

Turbo Pascal defines the following standard conditional symbols:

VER40 Always defined, indicating that this is version 4.0 of Turbo
Pascal. Future versions will instead define their corresponding
version symbol, for instance, VER41 for version 4.1.

MSDOS Always defined, indicating that the operating system is MS
DOS or PC-DOS. Versions of Turbo Pascal for other operating
systems will instead define a symbolic name for that particular
operating system.

CPU86 Always defined, indicating that· the CPU belongs to the 80x86
family of processors. Versions of Turbo Pascal for other CPU s
will instead define a symbolic name for that particular CPU.

CPU87 Defined if an 8087 numeric coprocessor is present at compile
time. If the construct

{$IFDEF CPUB7} {$N+} {$ELSE} {$N-} {$ENDIF}

546 Turbo Pascal Owner's Handbook

appears at. the beginning of a compilation, Turbo Pascal will
automatically select the appropriate model of floating-point
code generation for that particular computer.

Other conditional symbols can be defined before a compilation using the
0/ C/ Conditional defines menu, or the /D command-line option if you are
using TPC.

The DEFINE Directive

Syntax: {$DEFINE name}

Defines a conditional symbol of the given name. The symbol is known for
the remainder of the compilation or until it appears in an {$UNDEF name}
directive. The {$DEFINE name} directive has no effect if name is already
defined.

The UNDEF Directive

Syntax: {$UNDEF name}

Undefines a previously defined conditional symbol. The symbol is
forgotten for the remainder of the compilation or until it reappears in a
{$DEFINE name} directive. The {$UNDEF name} directive has no effect if
name is already undefined.

The IFDEF Directive

Syntax: {$ IFDEF name}

Compiles the source text that follows it if name is defined.

The IFNDEF Directive

Syntax: {$ IFNDEF symbol}

Compiles the source text that follows it if name is not defined.

Appendix C, Compiler Directives 547

The IFOPT Directive

Syntax: {$IFOPT switch}

Compiles the source text that follows it if switch is currently in the specified
state. switch consists of the name of a switch option, followed by a + or a -.
For example, the construct

{$IFOPT Nt}
type real = extended;

{$ENDIF}

will compile the type declaration if the $N option is currently active.

The ELSE Directive

Syntax: {$ELSE}

Switches between compiling and ignoring the source text delimited by the
last {$IFxxx} and the next {$ENDIF}.

The ENDIF Directive

Syntax: {$ENDIF}

Ends the conditional compilation initiated by the last {$IFxxx} directive.

548 Turbo Pascal Owner's Handbook

A p p E N D x

D

The Turbo Pascal Utilities

This appendix describes in detail the three stand-alone utility programs
that come with Turbo Pascal: MAKE, TOUCH, and GREP.

The Stand-Alone MAKE Utility

This section contains complete documentation for creating makefiles and
using MAKE.

Creating Makefiles

A makefile contains the definitions and relationships needed to help MAKE
keep your program(s) up-to-date. You can create as many makefiles as you
want and name them whatever you want. If you don't specify a makefile
when you run MAKE (using the -[option), then MAKE looks for a file with
the default name MAKEFILE.

You create a makefile with any ASCII text editor, such as Turbo Pascal's
built-in interactive editor. All rules, definitions, and directives end with a
carriage return; if a line is too long, you can continue it to the next line by
placing a backslash (\) as the last character on the line.

Whitespace-spaces and tabs-is used to separate adjacent identifiers (such
as dependencies) and to indent commands within a rule.

Creating a makefile is almost like writing a program-with definitions,
commands, and directives. Here's a list of the constructs allowed in a
makefile:

Appendix 0, The Turbo Pascal Utilities 549

• comments
• explicit rules
• implicit rules
• macro definitions
• directives: file inclusion, conditional execution, error detection, macro

undefinition

Let's look at each of these in more detail.

Comments

Comments begin with a number sign (#); the rest of the line following the #
is ignored by MAKE. Comments can be placed anywhere and never have to
start in a particular column.

A backslash (\) will not continue a comment onto the next line; instead, you
must use a # on each line. In fact, you cannot use a backslash as a
continuation character in a line that has a comment. That's because if the
backs lash precedes the #, it is no longer the last character on the line; if it
follows the #, it is part of the comment itself.

Here are some examples of comments in a makefile:

makefile for GETSTARS.EXE
does complete project maintenance
implicit rule
.asm.obj

masm $*.asm,$*.obj;
unconditional rule
getstars.exe:

tpc getstars 1m
dependencies
slib2.obj: slib2.asm
slibl.obj: slibl.asm

masm slibl.asm,slibl.obj;
end of makefile

Explicit Rules

Explicit rules take the form

target [target ...]: [source source ...]
[command]
[command]

550

#.OBJ files depend on >ASM files
command to create them

always create GETSTARS.EXE
command to create it

uses the implicit rule above
recast as an explicit rule

Turbo Pascal Owner's Handbook

where target is the file to be updated, source is a file upon which target
depends, and command is any valid MS-DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more source files,
and an optional list of commands to be performed. Target and source file
names listed in explicit rules can contain normal MS-DOS drive and
directory specifications, but they cannot contain wildcards.

Syntax here is important. target must be at the start of a line (in column 1),
and each command must be indented (preceded by at least one space
character or tab). As mentioned before, the backslash (\) can be used as a
continuation character if the list of source files or a given command is too
long for one line. Finally, both the source files and the commands are
optional; it is possible to have an explicit rule consisting only of target
[target .. .] followed by a colon.

The idea behind an explicit rule is that the command or commands listed
will create or update target, usually using the source files. When MAKE
encounters an explicit rule, it first checks to see if any of the source files are
target files elsewhere in the makefile. If so, those rules are evaluated first.

Once all the source files have been created or updated based on other
explicit (or implicit) rules, MAKE checks to see if target exists. If not, each
command is invoked in the order given. If target does exist, its time and date
of last modification are compared against the time and date for each source.
If any source has been modified more recently than target, the list of
commands is executed.

A given file name can occur on the left side of an explicit rule only once in a
given execution of MAKE.

Each command line in an explicit rule begins with whitespace. MAKE
considers all lines following an explicit rule to be part of the command list
for that rule, up to the next line that begins in column 1 (without any
preceding whitespace) or up to the end of the file. Blank lines are ignored.

An explicit rule, with no command lines following it, is treated a little
differently than an explicit rule with command lines .

• If an explicit rule exists for a target with commands, the only files that the
target depends on are the ones listed in the explicit rule .

• If an explicit rule has no commands, the targets depend on the files given
in the explicit rule, and they also depend on any file that matches an
implicit rule for the target(s).

Appendix 0, The Turbo Pascal Utilities 551

Here is a makefile with examples of explicit rules:

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

myapp.exe: myapp.pas myglobal.tpu myutils.tpu
tpc myapp /Tc:\tp4\bin

myglobal.tpu: myglobal.pas
tpc myglobal /Tc:\tp4\bin

myutils.tpu: myutils.pas myglobal.tpu myutil.obj
tpc myutils /Tc:\tp4\bin

• The first explicit rule states that MYUTIL.OB] depends upon
MYUTIL.ASM, and that MYUTIL.OB] is created by executing the given
MASM command. (The IT plus path name in all these examples will be
explained later.)

• The second rule states that MYAPP.EXE depends upon MYAPP.PAS,
MYGLOBAL.TPU, and MYUTILS.TPU, and is created by the given TPC
command .

• The third rule states that MYGLOBAL.TPU depends upon
MYGLOBAL.P AS, and is created by the given TPC command.

• The last rule states that MYUTILS.TPU depends upon MYUTILS.P AS,
MYGLOBAL.TPU, and MYUTIL.OB], and is created by the given TPC
command.

• If you reorder the rules so that the one for MYAPP.EXE comes first,
followed by the others, MAKE will recompile (or reassemble) only the
files that it has to in order to correctly update everything. This is because
MAKE with no target on the command line will try to execute the first
explicit rule it finds in the makefile.

• In practice, you would usually omit the last two explicit rules and simply
append a / M directive to the command under the explicit rule for
MYAPP .EXE. You will need to add, however, all the source dependencies
from MYGLOBAL.TPU and MYUTILS.TPU to the source for
MYAPP.EXE.

Implicit Rules

MAKE also allows you to define implicit rules, which are generalizations of
explicit rules. What does that mean? Here's an example to illustrate the
relationship between the two types. Consider this explicit rule from the
previous sample program:

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

552 Turbo Pascal Owner's Handbook

This rule is a common one, because it follows a general principle: An .OB}
file is dependent on the .ASM file with the same file name and is created by
executing MASM. In fact, you might have a makefile where you have
several (or even several dozen) explicit rules following this same format.

By redefining the explicit rule as an implicit rule, you can eliminate all the
explicit rules of the same form. As an implicit rule, it would look like this:

.asrn.obj:
rnasrn $*.asrn,$*.obji

This rule means, "any file ending with .OB} depends on the file with the
same name that ends in .ASM, and the .OB} file is created using the com
mand rnasm $* .asm, $* .obj, where $* represents the file's name with no
extension./I (The symbol $* is a special macro and is discussed in the next
section.)

The syntax for an implicit rule follows:

. source_extension. target_extension:
{command}
{command}

Note the commands are optional and must be indented. The
source_extension (which must begin in column 1) is the extension of the
source file, that is, it applies to any file having the format

fnarne.source extension

Likewise, the target_extension refers to the the file

fnarne.target_extension

where fname is the same for both files. In other words, this implicit rule
replaces all explicit rules having the format

fnarne.target_extension:fnarne.source_extension
[command]
[command]

for any fname.

Implicit rules are used if no explicit rule for a given target can be found or
if an explicit rule with no commands exists for the target.

The extension of the file name in question is used to determine which
implicit rule to use. The implicit rule is applied if a file is found with the
same name as the target, but with the mentioned source extension. For
example, suppose you had a makefile (named MAKEFILE) whose contents
were

Appendix 0, The Turbo Pascal Utilities 553

· asm. obj:
masm $*.asm,$*.obj;

If you had an assembly language routine named RATIO.ASM that you
wanted to compile to RATIO.OB], you could use the command

make ratio.obj

MAKE would take RATIO.OB] to be the target. Since there is no explicit
rule for creating RATIO.OB], MAKE applies the implicit rule and generates
the command

masm ratio.asm,ratio.obj;

which, of course, does the step necessary to create RATIO.OB].

Implicit rules are also used if an explicit rule is given with no commands.
Suppose, as mentioned before, you had the following implicit rule at the
start of your makefile:

.pas.tpu:
tpc $<

You could then rewrite the last two explicit rules as follows:

myglobal.tpu: myglobal.pas
myutils.tpu: myutils.pas myglobal.tpu myutil.obj

Since you don't have explicit information on how to create these .TPU files,
MAKE applies the implicit rule defined earlier.

Several implicit rules can be written with the same target extension, but
only one such rule can apply at a time. If more than one implicit rule exists
for a given target extension, each rule is checked in the order the rules
appear in the makefile, until all applicable rules are checked.

MAKE uses the first implicit rule that it discovers for a file with the source
extension. Even if the commands of that rule fail, no more implicit rules are
checked.

All lines following an implicit rule are considered to be part of the
command list for the rule, up to the next line that begins without
whitespace or to the end of the file. Blank lines are ignored. The syntax for
a command line is provided later in this appendix.

Unlike explicit rules, MAKE does not know -the full file name with an
implicit rule. For that reason, special macros are provided with MAKE that
allow you to include the name of the file being built by the rule. (For
details, see the discussion of macro definitions later in this appendix.)

Here are some examples of implicit rules:

554 Turbo Pascal Owner's Handbook

.pas.exe:
tpc $<

.pas.tpu:
tpc $<

.asm.obj:
masm $* /mx;

In the first example, the target files are .EXE files and their source files are
.P AS files. This example has one command line in the command list
(command-line syntax is covered later). Likewise, the second implicit rule
creates·.TPU files from .PAS files.

The last example directs MAKE to assemble a given file from its .ASM
source file, using MASM with the /mx option.

Command Lists

We've talked about both explicit and implicit rules, and how they can have
lists of commands. Let's talk about those commands and your options in
setting them up.

Commands in a command list must be indented-that is,preceded by at
least one space character or tab-and take the form

[prefix ... 1 command_body

Each command line in a command list consists of an (optional) list of
prefixes, followed by a single command body.

The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at (@) sign or a hyphen (-)
followed immediately by a number.

@ Keeps MAKE from displaying the command before executing it.
The display is hidden even if the -5 option was not given on the
MAKE command line. This prefix applies only to the command
on which it appears.

-num Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE will abort processing only if the exit
status exceeds the number given. In this example, MAKE will
abort only if the exit status exceeds 4:

-4 myprog sample.x

If no -num prefix is given, MAKE checks the exit status for the
command. If the status is nonzero, MAKE will stop and delete
the current target file.

Appendix 0, The Turbo Pascal Utilities 555

With a hyphen but no number, MAKE will not check the exit
status at all. Regardless of what the exit status was, MAKE will
continue.

The command body is treated exactly as if it were entered as a line to
COMMAND. COM, with the exception that redirection and pipes are not
supported. MAKE executes the following built-in commands by invoking a
copy of COMMAND. COM to perform them:

break cd chdir cIs copy
md mkdir path prompt ren
rename set time type ver
verify vol

MAKE searches for any other command name using the MS-DOS search
algorithm:

• The current directory is searched first, followed by each directory in the
path.

• In each directory, first a file with the extension .COM is checked, then an
.EXE file, and finally a .BAT.

• If a .BAT file is found, a copy of COMMAND. COM is invoked to execute
the batch file.

Obviously, if an extension is supplied in the command line, MAKE searches
only for that extension.

This command will cause COMMAND. COM to execute the change
directory command:

cd c:\include

This command will be searched for using the full search algorithm:

tpc myprog.pas /$Bt,Rt,It

This command will be searched for using only the .COM extension:

myprog.com geo.xyz

This command will be executed using the explicit file name provided:

c:\myprogs\fil.exe -r

Macros

Often certain commands, file names, or options are used again and again in
your makefile. In an example earlier in this appendix, all the TPC
commands used the switch jTc:\tp4\bin, which means that the files
TPC.CFG and TURBO.TPL are in the subdirectory C: \ TP4 \BIN. Suppose

556 Turbo Pascal Owner's Handbook

you wanted to switch to another subdirectory for those files; what would
you do? You could go through and modify all the IT options, inserting the
appropriate path name. Or, you could define a macro.

A macro is a name that represents some string of characters (letters and
digits). A macro definition gives a macro name and the expansion text;
thereafter, when MAKE encounters the macro name, it replaces the name
with the expansion text.

Suppose you defined the following macro at the start of your makefile:

TURBO=c:\tp4\bin

You've defined the macro TURBO, which is equivalent to the string
c:\tp4\bin. You could now rewrite the makefile as follows:

TURBO=c:\tp4\bin
myapp.exe: myapp.pas myglobal.tpu myutils.tpu

tpc myapp /T$(TURBO)

myutils.tpu: myutils.pas myglobal.tpu myutil.obj
tpc myutils /T$(TURBO)

myglobal.tpu: myglobal.pas
tpc myglobal /T$(TURBO)

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

Everywhere the Turbo directory is specified, you use the macro invocation
$(TURBO). When you run MAKE, $(TURBO) is replaced with its expansion
text, m. The result is the same set of commands you had before.

So what have you gained? Flexibility. By changing the first line to

TURBO=c:\tp4\project

you've changed all the commands to use the configuration and library files
in a different subdirectory. In fact, if you leave out the first line altogether,
you can specify which subdirectory you want each time you run MAKE,
using the -D (Define) option:

make -DTURBO=c:\tp4\project

This tells MAKE to treat TURBO as a macro with the expansion text
c:\tp4\project.

Macro definitions take the form

macro _name=expansion text

where macro_name is the name of a macro made up of a string of letters and
digits with no whites pace in it, though you can have whitespace between
macro_name and the equal sign (=). expansion text is any arbitrary string

Appendix 0, The Turbo Pascal Utilities 557

containing letters, digits, whitespace, and punctuation; it is ended by a
carriage return.

If macro_name has previously been defined, either by a macro definition in
the makefile or by the -D option on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macros names turbo, Turbo, and
TURBO are all considered to be different.

Macros are invoked in your makefile with the format

$ (macro_name)

The parentheses are required for all invocation, even if the macro name is
just one character, with the exception of three special predefined macros
that we'll talk about in just a minute. This construct-$(macro_name)-is
known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the invocation
with the macro's expansion text. If the macro is not defined, MAKE
replaces it with the null string.

Macros in macros: Macro cannot be invoked on the left (macro_name) side
of a macro definition. They can be used on the right (expansion text) side,
but they are not expanded until the macro being defined is invoked. In
other words, when a macro invocation is expanded, any macros embedded
in its expansion text are also expanded.

Macros in rules: Macro invocations are expanded immediately in rule
lines.

Macros in directives: Macro invocations are expanded immediately in lif
and lelif directives. If the macro being invoked in an lif or lelif directive is
not currently defined, it is expanded to the value 0 (False).

Macros in commands: Macro invocations in commands are expanded
when the command is executed.

MAKE comes with several special predefined macros built-in: $d, $*, $<, $:,
$., and $&. The first is a defined test macro, used in the conditional
directives lif and lelif; the others are file name macros, used in explicit and
implicit rules. The various file name macros work in similar ways,
expanding to some variation of the full path name of the file being built. In
addition, the current SET environment strings are automatically loaded as
macros, and the macro _MAKE_ is defined to be 1 (one).

558 Turbo Pascal Owner's Handbook

Defined Test Macro ($d)

This macro expands to 1 if the given macro name is defined, or to 0 if it is
not. The content of the macro's expansion text does not matter. This special
macro is allowed only in lif and lelif directives. For example, if you wanted
to modify your make file so that it would use a particular Turbo Pascal
directory if you didn't specify one, you could put this at the start of your
makefile:

! if ! $d (TURBO)
TURBO=c:\tp4\bin
!endif

If you invoke MAKE with the command line

make -DTURBO=c:\tp4\project

if TURBO is not defined
define it to C:\TP4\BIN

then TURBO is defined as c:\tp4\project. If, however, you just invoke
MAKE by itself

make

then TURBO is defined as c: \ tp4 \bin, your "default" subdirectory.

Base File Name Macro ($*)

This macro is allowed in the commands for an explicit or an implicit rule.
The macro expands to the file name being built, excluding any extension,
like this:

File name is A:\P\TESTFILE.PAS
$* expands to A:\P\TESTFILE

For example, you could modify the explicit MYAPP.EXE rule already given
to look like this:

myapp.exe: myapp.pas myglobal.tpu myutils.tpu
tpc $* /T$(TURBO)

When the command in this rule is executed, the macro $* is replaced by the
target file name (without an extension), myapp. This macro is very useful for
implicit rules. For example, an implicit rule for TPC might look like this
(assuming that the macro TURBO has been or will be defined):

.pas.exe:
tpc $* /T$(TURBO)

Appendix 0, The Turbo Pascal Utilities 559

Full File Name Macro ($<)

The full file name macro ($<) is also used in the commands for an explicit
or implicit rule. In an explicit rule, $< expands to the full target file name
(including extension), like this:

File name is A:\P\TESTFILE.PAS
$< expands to A:\P\TESTFILE.PAS

For example, the rule

starlib.tpu: starlib.pas
copy $< \oldtpus
tpc $* /T$(TURBO)

will copy STARLIB.TPU to the directory \OLDTPUS before compiling
STARLIB.P AS.

In an implicit rule, $< takes on the file name plus the source extension. For
example, the previous implicit rule

.asm.obj:
masm $*.asm,$*.obj;

can be rewritten as

.asm.obj:
masm $<, $* . obj;

File Name Path Macro ($:)

This macro expands to the path name {without the file name),like this:

File name is A:\P\TESTFILE.PAS
$: expands to A:\P\

File Name and Extension Macro ($.)

This macro expands to the file name, with extension, like this:

File name is A:\P\TESTFILE.PAS
$. expands to TESTFILE.PAS

File Name Only Macro ($&)

This macro expands to the file name only, without path or extension, like
this:

560 Turbo Pascal Owner's Handbook

File name is A:\P\TESTFILE.PAS
$& expands to TESTFILE

Directives

The version of MAKE bundled with Turbo Pascal allows something that
other versions of MAKE don't: conditional directives similiar to those
allowed for Turbo Pascal. You can use these directives to include other
makefiles, to make the rules and commands conditional, to print out error
messages, and to "undefine" macros.

Directives in a makefile begin with an exclamation point (!). Here is the
complete list of MAKE directives:

!include
!if
!else
!elif
!endif
!error
!undef

A file-inclusion directive (!include) specifies a file to be included into the
make file for interpretation at the point of the directive. It takes the
following form:

!include "filename"

or

!include <filename>

These directives can be nested arbitrarily deep. If an include directive
attempts to include a file that has already been included in some outer level
of nesting (so that a nesting loop is about to start), the inner include
directive is rejected as an error.

How do you use this directive? Suppose you created the file PATH.MAC so
it contained the following:

! if ! $d (TURBO)
TURBO=c:\tp4\bin
!endif

You could then make use of this conditional macro definition in any
makefile by including the directive

!include "PATH.MAC"

Appendix 0, The Turbo Pascal Utilities 561

When MAKE encounters the !include directive, it opens the specified file
and reads the contents as if they were in the makefile itself.

Conditional directives (lif, lelif, lelse, and lendif) give a programmer a measure
of flexibility in constructing makefiles. Rules and macros can be
"conditionalized" so that a command-line macro . definition (using the -D
option) can enable or disable sections of the makefile.

The format of these directives parallels, but is more extensive than, the
conditional directives allowed by Turbo Pascal:

!if expression
[lines 1

!endif

!if expression
[lines 1

!else
[lines

!endif

!if expression
[lines 1

!elif expression
[lines 1

!endif

Note: [lines] can be any of the following:

macro definition
explicitJule
implicitJule
include directive
if_group
error directive
undef directive

The conditional directives form a group, with at least an !if directive
beginning the group and an ! endif directive closing the group.

• One lelse directive can appear in the group.

• !elif directives can appear between the lif and any lelse directives.

• Rules, macros, and other directives can appear between the various
conditional directives in any number. Note that complete rules, with their
commands, cannot be split across conditional directives.

• Conditional directive groups can be nested arbitrarily deep.

Any rules, commands, or directives must· be complete within a single
source file.

562 Turbo Pascal Owner's Handbook

Any lif directives must have matching !endif directives within the same
source file. Thus the following include file is illegal regardless of what is
contained in any file that might include it, because it does not have a
matching lendif directive:

!if $(FILE_COUNT) > 5
some rules
!else
other rules
<end-of-file>

The expression allowed in an Iif or an lelif directive uses a syntax similar to
that found in the C programming language. The expression is evaluated as
a simple 32-bit signed integer expression.

Numbers can be entered as decimal, octal, or hexadecimal constants. For
example, these are legal constants in an expression:

4536
0677
Ox23aF

decimal constant
octal constant (note the leading zero)

hexadecimal constant

and any of the following unary operators:

negation
bit complement
logical not

An expression can use any of the following binary operators:

+ addition
subtraction

* multiplication
/ division
% remainder
» right shift
« left shift
& bitwise and
I bitwise or

A bitwise exclusive or
&& logical and
I I logical or
> greater than
< less than
>= greater than or equal to
<= less than or equal to

equality
!= inequality

Appendix 0, The Turbo Pascal Utilities 563

An expression can contain the following ternary operator:

? : The operand before the? is treated as a test.

If the value of that operand is nonzero, then the second operand (the part
between the? and the colon) is the result. If the value of the first operand is
zero, the value of the result is the value of the third operand (the part after
the :).

Parentheses can be used to group operands in an expression. In the absence
of parentheses, binary operators are grouped according to the same
precedence given in the C language.

As in C, grouping is from left to right for operators of equal precedence,
except for the ternary operator (? :), which is right to left.

Macros can be invoked within an expression, and the special macro $dO is
recognized. After all macros have been expanded, the expression must
have proper syntax. Any words in the expanded expression are treated as
errors.

The error directive (ferror) causes MAKE to stop and print a fatal diagnostic
containing the text after ferror. It takes the format

! error any_text

This directive is designed to be included in conditional directives to allow a
user-defined abort condition. For example, you could insert the following
code in front of the first explicit rule:

! if ! $d (TURBO)
if TURBO is not defined
!error TURBO not defined
!endif

If you reach this spot without having defined TURBO, then MAKE will
stop with this error message:

Fatal rnakefile 5: Error directive: TURBO not defined

The undefine directive (fundef) causes any definition for the named macro to
be forgotten. If the macro is currently undefined, this directive has no
effect. The syntax is

!undef macro name

564 Turbo Pascal Owner's Handbook

Using MAKE

You now know a lot about how to write makefiles; now's the time to learn
how to use them with MAKE. The simplest way to use MAKE is to type the
command

make

at the MS-DOS prompt. MAKE then looks for MAKEFILE; if it can't find it,
it looks for MAKEFILE.MAK; if it can't find that, it halts with an error
message.

What if you want to use a file with a name other than MAKE FILE or
MAKEFILE.MAK? You give MAKE the file (-f> option, like this:

make -fstars.mak

The general syntax for MAKE is

make option option ... target target

where option is a MAKE option (discussed later) and target is the name of a
target file to be handled by explicit rules.

Here are the syntax rules:

• The word make is followed by a space, then a list of make options.
• Each make option must be separated from its adjacent options by a space.

Options can be placed in any order, and any number of these options can
be entered (as long as there is room in the command line).

• After the list of make options comes a space, then an optional list of
targets.

• Each target must also be separated from its adjacent targets by a space.
MAKE evaluates the target files in the order listed, recompiling their
constituents as necessary.

If the command line does not include any target names, MAKE uses the
first target file mentioned in an explicit rule. If one or more targets are
mentioned on the command line, they will be built as necessary.

Here are some more examples of MAKE command lines:

make -n -fstars.mak
make -s
make -linclude -DTURBO=c:\tp4\project

MAKE will stop if any command it has executed is aborted via a etr/-Break.
Thus, a Ctr/-C will stop the currently executing command and MAKE as
well.

Appendix 0, The Turbo Pascal Utilities 565

The BUlL TINS.MAK File

When using MAKE, you will often find that there are macros and rules
(usually implicit ones) that you use again and again. You've got three ways
of handling them. First, you can put them in each and every makefile you
create. Second, you can put them all in one file and use the !include
directive in each makefile you create. Third, you can put them all in a file
named BUlL TINS.MAK.

Each time you run MAKE, it looks for a file named BUILTINS.MAK; if it
finds the file, MAKE reads it in before handling MAKEFILE (or whichever
makefile you want it to process).

The BUILTINS.MAK file is intended for any rules (usually implicit rules) or
macros that will be commonly used in files anywhere on your computer.

There is no requirement that any BUILTINS.MAK file exist. If MAKE finds
a BUlL TINS.MAK file, it interprets that file first. If MAKE cannot find a
BUILTINS.MAK file, it proceeds directly to interpreting MAKE FILE (or
whatever makefile you specify).

How MAKE Searches for Files

MAKE will search for BUILTINS.MAK in the current directory or in the
exec directory if your computer is running under DOS 3.x. You should
place this file in the same directory as the MAKE.EXE file.

MAKE always searches for the makefile in the current directory only. This
file contains the rules for the particular executable program file being built.
The two files have identical syntax rules.

MAKE also searches for any !include files in the current directory. If you use
the -/ (Include) option, it will also search in the specified directory.

MAKE Command-Line Options

We've alluded to several of MAKE's command-line options; now we'll
present a complete list of them. Note that case (upper or lower) is
significant; the option -d is not a valid substitute for -D.

-Didentifier Defines the named identifier to the string consisting of
the single character 1.

-Diden=string Defines the named identifier iden to the string after the
equal sign. The string cannot contain any spaces or tabs.

566 Turbo Pascal Owner's Handbook

-Idirectory

-Uidentifier

-s

-n

-ffi1ename

-? or-h

MAKE will search for include files in the indicated
directory (as well as in the current directory).

Undefines any previous definitions of the named
identifier.

Normally, MAKE prints each command as it is about to
be executed. With the -s option, no commands are
printed before execution.

Causes MAKE to print the commands, but not actually
perform them. This is useful for debugging a makefile.

Uses filename as the MAKE file. If filename does not exist
and no extension is given, tries filename.MAK.

Prints help message.

MAKE Error Messages

MAKE diagnostic messages fall into two classes: fatals and errors. When a
fatal error occurs, execution immediately stops. You must take appropriate
action and then restart the execution. Errors will indicate some sort of
syntax or semantic error in the source makefile. MAKE will complete
interpreting the makefile and then stop.

Fatals

Don't know how to make XXXXXXXX
This message is issued when MAKE encounters a nonexistent file name
in the build sequence, and no rule exists that would allow the file name
to be built.

Error directive: XXXX
This message is issued when MAKE processes an #error directive in the
source file. The text of the directive is displayed in the message.

Incorrect command line argument: XXX
This error occurs if MAKE is executed with incorrect command-line
arguments.

Not enough memory
This error occurs when the total working storage has been exhausted.
You should try this on a machine with more memory. If you already
have 640K in your machine, you may have to simplify the source file.

Appendix D, The Turbo Pascal Utilities 567

Unable to execute command
This message is issued after attempting to execute a command. It could
be caused because the command file could not be found, or because it
was misspelled. A less likely possibility is that the command exists but is
somehow corrupted.

Unable to open makefile
This message is issued when the current directory does not contain a file
named MAKEFILE.

Errors

Bad file name format in include statement
Include file names must be surrounded by quotes or angle brackets. The
file name was missing the opening quote or angle bracket.

Bad undef statement syntax
An lundef statement must contain a single identifier and nothing else as
the body of the statement.

Character constant too long
Character constants can be only one or two characters long.

Command arguments too long
The arguments to a command executed by MAKE were more than 127
characters-a limit imposed by MS-DOS.

Command syntax error
This message occurs if

• the first rule line of the makefile contained any leading whitespace.

• an implicit rule did not consist of .ext.ext:.
• an explicit rule did not contain a name before the: character.

• a macro definition did not contain a name before the = character.

Division by zero
A divide or remainder in an lif statement has a zero divisor.

Expression syntax error in lit statement
The expression in an lif statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a missing or
extra constant.

File name too long
The file name given in an linclude directive was too long for MAKE to
process. File path names in MS-DOS must be no more than 78 characters
long.

568 Turbo Pascal Owner's Handbook

Illegal character in constant expression X
MAKE encountered some character not allowed in a constant
expression. If the character is a letter, this indicates a (probably)
misspelled identifier.

Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Macro expansion too long.
A macro cannot expand to more than 4096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

Misplaced elif statement
An leUf directive was encountered without any matching lif directive.

Misplaced else statement
An lelse directive was encountered without any matching lif directive.

Misplaced endif statement
An lendif directive was encountered without any matching lif directive.

No file name ending
The file name in an include statement was missing the correct closing
quote or angle bracket.

Redefinition of target XXXXXXXX
The named file occurs on the left-hand side of more than one explicit
rule.

Unable to open include file XXXXXXXXX~XXX
The named file could not be found. This could also be caused if an
include file included itself. Check whether the named file exists.

Unexpected end of file in conditional started on line #
The source file ended before MAKE encountered an I endif. The I endif was
either missing or misspelled.

Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and the
statement name following was not error, undef, if, elif, include, else, or
endif.

The TOUCH Utility

There are times when you want to force a particular target file to be
recompiled or rebuilt, even though no changes have been made to its
sources. One way to do this is to use the TOUCH utility included with

Appendix 0, The Turbo Pascal Utilities 569

Turbo Pascal. TOUCH changes the date and time of one or more files to the
current date and time, making it "newer" than the files that depend on it.

To force a target file to be rebuilt, "touch" one of the files that target
depends on. To touch a file (or files), enter

touch filename [filename ...]

at the DOS prompt. TOUCH will then update the file's creation date(s).

Once you do this, you can invoke MAKE to rebuild the touched target
file(s). (You can use the DOS.wildcards * and? with TOUCH.)

The GREP Utility

Also included on your Turbo Pascal disks is a stand-alone utility program
called GREP. This is a powerful search utility that can look for text in
several files at once. For example, if you have forgotten what program you
defined a procedure called SetUpMyModem, you could use GREP to search
the contents of all the .P AS files in your directory to look for the string
SetUpMyModem.

The command-line syntax for GREP follows:

GREP [options] searchstring filers]

where options consists of one or more single characters preceded by a
hyphen; searchstring definds the pattern to search for.

The GREP Switches

Each individual switch character can be followed by the symbol" +" to turn
the option on, or by another hyphen (-) to turn the option off. The default is
+ (that is, -r means the same thing as -r+). 'Here is a list of the option
characters used with GREP:

-r The text defined by searchstring is treated as a regular expression
instead of a literal string.

-1 Only the name of each file containing a match is printed. After a
match is found, the file name is printed and processing imme
diately moves on to the next file.

-c Only a count of matching lines is printed. For each file that contains
at least one matching line, the file name and a count of the number
of matching lines is printed. Matching lines are not printed.

570 Turbo Pascal Owner's Handbook

-n Each matching line that is printed is preceded by its line number.

-v Only non-matching lines are printed. Only lines that do not contain
the search string are considered to be matching lines.

-i Ignore uppercase/lowercase differences (case folding). All letters
a-z are treated identically to the corresponding letters A-Z in all
situations.

-d Search subdirectories. For each file set specified on the command
line, all files that match the wildcard file specification are searched
in the directory specified and all subdirectories below the specified
directory. If a file-set is given without a path, it is assumed to be the
current directory.

-z Verbose. The file name of every file searched is printed. Each
matching line is preceded by its line number. A count of matching
lines in each file is given, even if it's zero.

-w Write Options. Combine the options given on the command line
with the default options and write these to a new .COM file as the
new defaults. This option allows you to tailor the default option
settings to your own taste.

Several of these options are in direct conflict with each other. In these cases,
the following order applies (the first one is the one that takes precedence):

-z -1 -c -n

Each occurrence of an option overrides the previous definition. The default
setting for each option can be installed.

How to Search in GREP

The search string can be enclosed in quotation. marks to prevent spaces and
tabs from being treated as delimiters. Matches will not cross line
boundaries. When the -r switch is used, the search string is treated as a
regular expression (as opposed to a literal expression) and the following
symbols take on special meanings:

1\

$

*

A circumflex at the start of the expression matches the start of a
line.

A dollar sign at the end of the expression matches the end of a line.

A period matches any character.

An expression followed by an asterisk wildcard matches zero or
more occurrences of that expression: fo* matches f, fo, faa, etc.

Appendix 0, The Turbo Pascal Utilities 571

+ An expression followed by a plus sign matches one or more
occurrences of that expression: fo+ matches fo, foo, etc., but not f.

[] A string enclosed in brackets matches any character in that string,
but no others. If the first character in the string is a circumflex (1\),
the expression matches any character except the characters in the
string. For example, [xyzJ matches x, y, and z, while [l\xyzJ matches
a and b, but not x or y. A range of characters can be specified by
two characters separated by a hyphen (-). These can be combined to
form expressions like [a-bd-z?J to match any letter except c, and?

Note: Four characters ($, +, *, and .) do not have any special
meaning when used in a set. The character 1\ is only treated
specially if it immediately follows the beginning of the set (that is,
immediately after the D.

\ The backslash "escape character" tells GREP to seach for the literal
character that follows it. For example, \. matches a period instead
of any character.

Any ordinary character not mentioned in this list matches that character. A
concatenation of regular expressions is a regular expression.

Examples of Using GREP

The following examples assume all options default to off.

grep main(*.pas

Matches: main ()
mymain(

Does not match: mymainfunc ()
MAIN(i: integer);

Searches: *.pas in current directory

Note: By default, search is case-sensitive.

grep -r[Aa-z]main \ *(* .pas

Matches: main(i:integer)
main(i,j:integer)
if (main ()) halt;

Does not match: mymain ()

572 Turbo Pascal Owner's Handbook

Searches:

Note:

MAIN(i:integer);

*.pas in current directory

Since spaces and tabs are normally considered to be
command-line delimiters, you must quote them if you
wish to include them as part of a regular expression. In
this case, the space after main was quoted using the
backslash escape character. You could also accomplish
this by placing the space or the entire regular expression
in double quotes (1/).

grep -ri [a-cl:\ \data\.fil *.pas *.inc

Matches: A:\data.fil
c:\Data.Fil
B: \DATA.FIL

Does not match: d:\data.fil

Searches:

a:data.fil
Writeln("c:\\data.fil");

*.pas and *.inc in current directory

Note: If you wish to search for the characters 1/\" and 1/.", you
must quote them by placing the backslash (\) escape
character immediately in front of them.

grep -ri [Aa-zlword[Aa-zl *.doc

Matches: every new word must be on a new line.
MY WORD!
word--smallest unit of speech.
In the beginning there was the WORD, and the WORD

Does not match: Each file has at least 2000 words.
He misspells toward as toward.

Searches: *.doc in the current directory

Note: This format basically defines a word search.

grep "search string with spaces" *.doc *.asm
a: \ work \myfile. *

Matches: This is a search string with spaces in it.

Does not match: THIS IS A SEARCH STRING WITH SPACES IN IT.
This is a search string with many spaces in it.

Appendix 0, The Turbo Pascal Utilities 573

Searches:

Note:

*.doc and *.asm in the current directory, and myfile.* in a
directory called \ work on drive A:

Example of how to search for a string with embedded
spaces.

grep -rd "[,.:?'\"]"$ \ * .doc

Matches: He said hi to me.
Where are you going?
Happening in anticipation of a unique situation,
Examples include the following:
"Many men smoke, but fu man chu."

Does not match: He said "Hi" to me

Searches:

Note:

Where are you going? I'm headed to the beach this

*.doc in the root directory and all its subdirectories on
the current drive

Searches for ,.:?' and" at the end of a line. Notice that
the double quote within the range has an escape
character in front of it so it is treated as a normal
character instead of the ending quote for the string.
Also, notice the $ character appears outside of the
quoted string, which demonstrates how regular
expressions can be concatenated together to form a
longer expression.

grep -ild " the" \ * .doc
grep -i -1 -d " the" \ * .doc
grep -il -d " the" \ * .doc

Matches: Anyway, this is the time we have
do you think? The main reason we are

Does not match: He said "Hi" to me just when I
Where are you going? I'll bet you're headed to

Searches: * .doc in the root directory and all its subdirectories on
the current drive

Note: Ignores case and prints the names of any files that
contain at least one match. The examples show the
different ways of specifying multiple switches.

574 Turbo Pascal Owner's Handbook

The BINOBJ Utility

A utility program BINOBJ.EXE has been added that converts any file to an
.OBJ file so it can be linked into a Turbo Pascal program as a "procedure."
This is useful if you have a binary data file that must reside in the code
segment or is too large to make into a typed constant array. For example,
you can use BINOBJ with the Graph unit to link the graphics driver or font
files directly into your .EXE file. Then, to use your graph program, you
need only have the .EXE file (see the example GRLINK.PAS on Disk 2).

BINOBJ takes three parameters:

BINOBJ <source[.BINl> <destination[.OBJl> <public name>

source is the binary file to convert; destination is the name of the .OBJ to be
produced; and public name is the name of the procedure as it will be
declared in your Turbo Pascal program.

The following example, the procedure ShowScreen, takes a pointer as a
parameter and moves 4000 bytes of data to screen memory. The file called
MENU.DTA contains the image of the main menu screen (80 * 25 * 2 = 4000
bytes).

Here's a simple (no error-checking) version of MYPROG.P AS:

program MyProg;

procedure ShowScreen(var ScreenData : pointer);
{ Display a screenful of data--no error-checking!
var

ScreenSegrnent: word;

begin
if (Lo(LastMode) = 7) then

ScreenSegrnent := $BOOO
else

ScreenSegrnent := $B800;
Move (ScreenDataA,

Ptr(ScreenSegment, O)A,
4000);

end;

var
MenuP pointer;
MenuF file;

begin
Assign (MenuF, 'MENU.DTA');
Reset (MenuF, 1);
GetMem(MenuP, 4000);
BlockRead(MenuF, Menup A

, 4000);
Close(MenuF);
ShowScreen(MenuP);

end.

Appendix 0, The Turbo Pascal Utilities

{ Mono? }

{ From pointer
To video memory

{ 80 * 25 * 2

{ Open screen data file

{ Allocate buffer on heap
{ Read screen data

{ Display screen

575

The screen data file (MENU.DTA) is opened and then read into a buffer on
the heap. Both MYPROG.EXE and MENU.DTA must be present at runtime
for this program to work. You can use BINOBJ to convert MENU.DTA to an
.OBJ file (MENUDTA.OBJ) and tell it to associate the data with a procedure
called MenuData. Then you can declare the fake external procedure
MenuData, which actually contains the screen data. Once you link in the
.OBJ file with the {$L} compiler directive, MenuData will be 4000 bytes long
and contain your screen data. First, run BINOBJ on MENU.DTA:

binobj MENU.DTA MENUDTA MenuData

The first parameter, MENV.DTA, shows a familiar file of screen data; the
second, MENUDTA, is the name of the .OBJ file to be created (since you
didn't specify an extension, .OBJ will be added). The last parameter,
MenuData, is the name of the external procedure as it will be declared in
your progam. Now that you've converted MENU.DTA to an .OBJ file,
here's what the new MYPROG.P AS looks like:

program MyProg;

procedure ShowScreen(ScreenData : pointer);
{ Display a screenful of data--no error checking!
var

ScreenSegment: word;
begin

if (Lo(LastMode) = 7) then
ScreenSegment := $BOOO

else
ScreenSegment := $B800;

Move(ScreenData~,

Ptr(ScreenSegment, O)~,

4000);
end;

procedure MenuData; external;
{$L MENUDTA.OBJ }
begin

ShowScreen(@MenuData);
end.

{ Mono? }

{ From pointer }
{ To video memory }

{ 80 * 25 * 2 }

{ Display screen }

Notice that ShowScreen didn't change at all, and that the ADDRESS of your
procedure is passed using the @ operator.

The advantage of linking the screen data into the .EXE is apparent: You
don't need any support files in order to run the program. In addition, you
have the luxury of referring to your screen by name (MenuData). The
disadvantages are that (1) every time you modify the screen data file, you
must reconvert it to an .OBJ file and recompile MYPROG and (2) you have
to have a separate .OBJ file (and external procedure) for each screen you
want to display.

576 Turbo Pascal Owner's Handbook

BINOB] is especially useful when the binary file you wish to link in is fairly
stable. One of the sample graphics programs uses BINOB] to build two
units that contain the driver and font files; refer to the extensive comment
at the beginning of GRLINK.P AS on Disk 2.

Appendix E, Reference Materials 577

578 Turbo Pascal Owner's Handbook

A p p E N D x

E

Reference M'aterials

This chapter is devoted to certain reference materials, including an ASCII
table, keyboard scan codes, and extended codes.

ASCII Codes

The American Standard Code for Information Interchange (ASCII) is a
code that translates alphabetic and numeric characters and symbols and
control instructions into 7-bit binary code. Table E.1 shows both printable
characters and control characters.

Appendix E, Reference Materials 579

Table E.l: ASCII Table

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 0 32 20 64 40 @ 96 60 .
1 1 @ 33 21 I 65 41 A 97 61 a
2 2 • 34 22 It 66 42 B 98 62 b
3 3 • 35 23 # 67 43 C 99 63 c
4 4 • 36 24 $ 68 44 D 100 64 d

5 5 .. 37 25 % 69 45 E 101 65 e

6 6 • 38 26 & 70 46 F 102 66 f

7 7 • 39 27 . 71 47 G 103 67 9
8 8 a 40 28 (72 48 H 104 68 h
9 9 0 41 29) 73 49 I 105 69 i

10 A I 42 2A * 74 4A J 106 6A j

11 B cJ 43 2B + 75 4B K 107 6B k
12 C 9 44 2C . 76 4C L 108 6C 1
13 D l' 45 20 - 77 4D M 109 6D m
14 E J' 46 2E 78 4E N 110 6E n
15 F a 47 2F / 79 4F 0 111 6F 0

16 10 ~ 48 30 a 80 50 P 112 70 .p

17 11 ... 49 31 1 81 51 Q 113 71 q
18 12 1 50 32 2 82 52 R 114 72 r
19 13 II 51 33 3 83 53 S 115 73 S

20 14 ~ 52 34 4 84 54 T 116 74 t

21 15 § 53 35 5 85 55 U 117 75 U

22 16 • 54 36 6 86 56 V 118 76 v
23 17 1 55 37 7 87 57 W 119 77 W

24 18 T 56 38 8 88 58 X 120 78 x
25 19 ! 57 39 9 89 59 Y 121 79 Y
26 1A . -+ 58 3A : 90 5A Z 122 7A z
27 1B 4- 59 3B ; 91 5B [123 7B {

28 1C L 60 3C < 92 5C \ 124 7C I
29 1D ++ 61 3D = 93 5D] 125 7D }

30 1E A 62 3E > 94 5E ... 126 7E -
31 1F ... 63 3F ? 95 5F 127 7F ll. -

580 Turbo Pascal Owner's Handbook

Table E.': ASCII Table, continued

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

128 80 C; 160 AO a. 192 CO L 224 EO ex
129 81 ii 161 A1 i 193 C1 ..L 225 E1 ~
130 82 e 162 A2. 6 194 C2 T 226 E2 r
131 83 a 163 A3 11 195 C3 ~ 227 E3 1T

132 84 a. 164 A4 fi 196 C4 - 228 E4 1:
133 85 a. 165 AS N 197 C5 + 229 E5 (j'

134 86 a 166 A6 §. 198 C6 F 230 E6 II
135 87 9 167 A7 Q 199 C7 I~ 231 E7 T

136 88 ~ 168 A8 l, 200 C8 l!: 232 E8 ~

137 89 e 169 A9 r 201 C9 rr 233 E9 e
138 8A e 170 AA -. 202 CA :!!: 234 EA n
139 8B i 171 AB ~ 203 CB iF 235 EB cS

140 8C 1 172 AC % 204 CC I~ 236 EC 00

141 8D 1 173 AD i 205 CD = 237 ED ¢

142 8E it 174 AE « 206 CE JL 238 EE E lr

143 8F A 175 AF » 207 CF :!: 239 EF n
144 90 E 176 BO [~ 208 DO II 240 FO =

145 91 ~ 177 B1 II 209 D1 T 241 F1 ±
146 92 If. 178 B2 I 210 D2 1T 242 F2 ~

147 93 8 179 B3 I 211 D3 Ii 243 F3 ::;

148 94 0 180 B4 ~ 212 04 I: 244 F4 r
149 95 0 181 B5 ~ 213 05 F 245 F5 J
150 96 11 182 B6 ~I 214 06 IT 246 F6

151 97 U 183 B7 11 215 07 ~~ 247 F7 :::

152 98 Y 184 B8 216 08 .L 248 F8 · 9 T

153 99 0 185 B9 ~I 217 09 J 249 F9 ·
154 9A ti 186 BA II 218 OA r 250 FA ·
155 9B ¢ 187 BB il 219 DB • 251 FB .,
156 9C £ 188 BC :!J 220 DC 252 FC n •
157 90 Y 189 BO .1J 221 DO I 253 FO 2

158 9E Pt 190 BE ::I 222 DE I 254 FE ·
159 9F f 191 BF 1 223 OF • 255 FF

Appendix E, Reference Materials 581

Extended Key Codes

Extended key codes are returned by those keys or key combinations that
cannot be represented by the standard ASCII codes listed in Table E.l. (See
ReadKey in Chapter 27 for a description about how to determine if an
extended key has been pressed.)

Table E.2 shows the second code and what it means.

Second Code

582

3
15
16-25
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132
133
134
135
136
137
138
139
140

Table E.2: Extended Key Codes

Meaning

NUL (null character)
Shift Tab (-<vv)
Alt-Q/W/ E/ R/ T / Y/ U/ 1/ 0/ P
Alt-A/ S/ 0/ F / G/ H/ 1/ J/ K/ L
Alt-Z/ X/ C/ V / B/ N/ M
Keys FI-F1O (disabled as softkeys)
Home
Uparrow
PgUp
Left arrow
Right arrow
End
Down arrow
PgDn
Ins
Del
FII-F20 (Shift-FI to Shift-FlO)
F21-F30 (Ctrl-FI through FlO)
F31-F40 (AIt-FI through FlO)
Ctr/-PrtSc
Ctrl-Left arrow
CtrJ-Right arrow
Ctr/-End
Ctr/-PgDn
Ctrl-Home
Alt-1 /2/3/ 4/ 5/6/7/ 8/9/0/ -/ =
Ctr/-PgUp
FII
F12
Shift-FII
Shift-Fl2
Ctr/-FII
Ctrl-Fl2
Alt-FII
Alt-F12

Turbo Pascal Owner's Handbook

Keyboard Scan Codes

Keyboard scan codes are the codes returned from the keys on the IBM PC
keyboard, as they are seen by Turbo Pascal. These keys are useful when
you're working at the assembly language level. Note that the keyboard
scan codes displayed in Table E.3 on page 584 are in hexadecimal values.

Appendix E, Reference Materials 583

Table E.3: Keyboard Scan Codes

Scan Code Scan Code
Key in Hex Key in Hex

Esc 01 Left/ Right arrow OF
11 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
%5 06 T 14
"6 07 Y 15
&7 08 U 16
"'8 09 I 17
(9 OA 0 18
)0 OB P 19
- OC {[lA
+= 00 }] IB
Backspace OE Return lC
Gtrl 10 /1 2B
A IE Z 2C
S IF X 20
D 20 G 2E
F 21 V 2F
G 22 B 30
H 23 N 31
J 24 M 32
K 25 <, 33
L 26 >. 34 .. 27 ?/ 35 . ,
.11 28 RightShift 36
",' 29 PrtSc'" 37
LeftShift 2A Alt 38
SpaceBar 39 7Home 47
Gaps Lock 3A 8Uparrow 48
F1 3B 9PgUp 49
F2 3C Minus sign 4A
F3 3D 4Left arrow 4B
F4 3E 5 4C
F5 3F 6Right arrow 40
F6 40 + 4E
F7 41 1 End 4F
F8 42 2Downarrow 50
F9 43 3PgDn 51
F10 44 Olns 52
F11 09 Del 53
F12 OA NumLock 45
Scroll Lock 46

584 Turbo Pascal Owner's Handbook

A p p E N D x

F

Customizing Turbo Pascal

This appendix explains how to customize Turbo Pascal and install your
customizations in the TURBO.EXE file.

What Is TINST?

TINST is the Turbo Pascal installation program that you can use to
customize TURBO.EXE (the integrated environment version of Turbo
Pascal). Through TINST, you can change various default settings in the
Turbo Pascal operating environment, such as the screen size, editing
commands, menu colors, and default directories. It directly modifies certain
default values within your copy of TURBO.EXE.

With TINST, you can do any of the following:

• set up paths to the directories where your include files, unit files,
configuration files, Help files, Pick file, and executable files are located

• customize the Editor command keys

• set up Turbo Pascal's editor defaults and on screen appearance

• set up the default video display mode

• change screen colors
• resize Turbo Pascal's Edit and Output windows

• change the defaults of any of the settings accessible through the
Options/Compiler menu or the Options/Compiler/Memory sizes menu

• change the defaults of any of the settings accessible through the
Options/Environment menu or the Options/Environment/Screen size
menu

Appendix F, Customizing Turbo Pascal 585

• change the destination setting (menu equivalent: Compile/Destination)
, • determine the primary file (menu equivalent: Compile/Primary file)

Turbo Pascal comes ready to run; there is no installation per se. You can
copy the files from the distribution disks to your working floppies (or hard
disk) as described in Chapter 1, then run Turbo Pascal.

You will need to also run TINST if you want to do any of the following:

• automatically load a configuration file (TURBO.TP) that does not reside
in the current directory

• change Turbo Pascal's default menu colors

• force the display mode or snow checking

If you want to store path names (to all the different directories you use
when running Turbo Pascal) directly in TURBO.EXE, you'll need to use one
of the menu options (off of Options/Directories) from within the TINST
program.

You can use the Editor commands option to reconfigure (customize) the
interactive editor's keystrokes to your liking.

The Environment option is for setting various defaults for the default
editing modes and the appearance of the Turbo Pascal integrated
environment.

With Display mode, you can specify the video display mode that Turbo
Pascal will operate in, and whether your display is a "snowy" video
adapter.

You can customize the colors of almost every part of Turbo Pascal's
integrated environment through the Set colors option.

The Resize windows option allows you to change the sizes of the Edit and
Output windows.

Running TINST

1. To get started, type tinst Enter at the DOS prompt. TURBO.EXE must be
in the same directory as TINST; if it isn't, you must add the path name
of TURBO.EXE to the command invoking TINST.

586

Note: TINST comes up in black and white by default. If you have a color
monitor and want to run TINST in color rather than black and white,
type tinst Ie Enter at the DOS prompt.

, Turbo Pascal Owner's Handbook

Note that you can use one version of TINST to customize several
different copies of Turbo Pascal on your system. These various copies of
TURBO.EXE can have different executable program names. Simply
invoke TINST and give a (relative or absolute) path name to the copy of
TURBO.EXE you're customizing; for example,

tinst e:\turboOO\tpOO.exe
tinst .. \ .. \bwtp.exe
tinst Ie c:\borland\eolortp.exe

In this way, you can customize the different copies of Turbo Pascal on
your system to use different editor command keys, different menu
colors, and so on, if you're so inclined.

2. From the main TINST installation menu, you can select Compile,
Options, Editor commands, Display mode, Set colors, Resize windows,
or Quit/save. You can either press the highlighted capital letter of a
given option, or use the Up and Down arrow keys to move to your
selection and then press Enter. For instance, press S to Set the colors of
the Turbo Pascal integrated environment.

3. In general, pressing Esc (more than once if necessary) will return you
from a submenu to the main installation menu.

The Turbo Pascal Directories Option

With the Directories option, you can specify a path to each of the
TURBO.EXE default directories. These are the directories Turbo Pascal
searches when looking for an alternate configuration file, the Help file, and
the object, include, and unit files, along with the directory where it will
place your executable program.

When you select Options/Directories, TINST brings up a menu with the
following items:

• Turbo directory
• Executable directory
• Include directories
• Unit directories
• Object directories
• Pick file name

Appendix F, Customizing Turbo Pascal 587

Object directories, Include directories, and Unit directories

You can enter multiple directories in Include directories and Unit
directories. You must separate these "ganged" directory path names with a
semicolon (;), and can enter a maximum of 127 characters with either
menu item. You can enter absolute or relative path names.

For example, if you have three directories of include files, you could enter
the following in the Include directories pop-up input window:

c:\turbo\include;c:myincld;a: .. \ .. \include2

If, in addition, you have divided your unit files among four different
directories, and want Turbo Pascal to search each of those directories when
looking for units, you could enter the following in the Unit· directories
pop-up input window:

c:\turbo\startups;c:\turbo\stdunits;c: .. \myunits2;a:newunits3

Executable directory and Turbo directory

The Executable directory and Turbo directory menu items each take one
(absolute or relative) directory path name; each item accepts a maximum of
64 characters.

The Turbo directory is where Turbo Pascal will look for the Help files, the
default pick file, and TURBO.TP (the default configuration file) if they
aren't located in the current directory.

For example, you could type the following path name at the Turbo
directory menu item:

c:\turbo\cfgsnhlp

Then, if Turbo Pascal can't find the configuration and Help files in the
current directory, it will look for them in the directory called TURBO\
CFGSNHLP (off the root directory of the C drive).

Pick file name

When you select this menu item, an input window pops up. Type in the
path name of the Pick file you want Turbo Pascal to load or create. The
default Pick file name is TURBO.PCK.

After typing a path name (or names) for any of the Environment menu
items, press Enter to accept, then press Esc to return to the main TINST
installation menu. When you exit the program, TINST prompts whether

588 Turbo Pascal Owner's Handbook

you want to save the changes. Once you save the Turbo directory paths, the
locations are written to disk and become part of TURBO.EXE's default
settings.

The Editor Commands Option

Turbo Pascal's interactive editor provides many editing functions,
including commands for

• cursor movement
• text insertion and deletion
• block and file manipulation
• string search (plus search-and-replace)

These editing commands are assigned to certain keys (or key combi
nations), which are explained in detail in Chapter II.

When you select Editor commands from TINST's main installation menu,
the Install Editor screen comes up, displaying three columns of text:

• The left-hand column describes all the functions available in Turbo
Pascal's interactive editor.

• The middle column lists the Primary keystrokes; what keys or special key
combinations you press to invoke a particular editor command.

• The right-hand column lists the Secondary keystrokes; these are optional
alternate keystrokes you can also press to invoke the same editor
command.

Note: Secondary keystrokes always take precedence over primary key
strokes.

The bottom lines of text in the Install Editor screen summarize the keys you
use to select entries in the Primary and Secondary columns.

Appendix F, Customizing Turbo Pascal 589

Key Legend What It Does

Left, Right, Select Selects the editor command you
Up, and Down want to re-key
Arrow keys

PgUpand Page Scrolls up or down one full
PgDn screen page

Enter Modify Enters the keystroke-modifying
mode

R Restore factory Resets all editor commands to
defaults the factory default keystrokes

Esc Exit Leaves the Install Editor screen
and returns to the main TINST
installation menu

F4 Key Modes Toggles between the three flavors
of keystroke combinations

After you press Enter to enter the modify mode, a pop-up window appears
on screen, listing the currently defined keystrokes for the selected
command. The bottom lines of text in the Install Editor screen summarize
the keys you use to change those keystrokes.

590 Turbo Pascal Owner's Handbook

Key

Backspace

Enter

Esc

F2

F3

F4

Legend

Backspace

Accept

Abandon
changes

Restore

Clear

Key Modes

What It Does

Deletes keystroke to left of cursor

Accepts newly defined
keystrokes for selected
editor command

Abandons changes to the current
selection, restoring the
command's original keystrokes,
and returns to the Install Editor
screen (ready to select another
editor command)

Abandons changes to current
selection, restoring the
command's original keystrokes,
but keeps the current command
selected for redefinition

Clears the current selection's
keystroke definition, but keeps
the current command selected for
redefinition

Toggles between the three flavors
of keystroke combinations:
WordStar-like, Ignore case, and
Verbatim

Note: To enter the keys F2, F3, F4, or the backquote (') character, as part of
an editor command key sequence, first press the backquote key, then the
appropriate function key.

Keystroke combinations come in three flavors: WordStar-like, Ignore case,
and Verbatim. These are listed on the bottom line of the screen; the
highlighted one is the current selection.

WordS tar-Like Selection

All commands must begin with a special key or a control key. Subsequent
characters can be any key.

Appendix F, Customizing Turbo Pascal 591

If you type a letter (or one of these five characters: [,], \, '\ -) in this mode,
it will automatically be entered as a control-character combination. For
example:

• Typing a or A or Ctrl-A will yield < Ctrl A >

• Typing yor Yor Ctrl-y will yield < Ctrl Y>

• Typing [will yield <Ctrl [>

In the Turbo Pascal editor, you must then explicitly press the special key or
Ctrl key when entering the first keystroke of a command-key sequence, but
for the subsequent keystrokes of that command you can use a lowercase,
uppercase, or control key.

For example, if you customize an editor command to be < Ctrl A > < Ctrl B > <
Ctrl C > in WordStar-like mode, you can type any of the following in the
Turbo Pascal editor to activate that command:

• < Ctrl A > < Ctrl B > < Ctrl C>
.<CtrIA><CtrlB><C>
.<CtrIA><CtrIB><c>
• <CtrlA > < B> <CtrIC>
.<CtrIA><C>
.<CtrIA><c>
• < CtrlA > <CtrIC>
.<CtrIA><C>
• < CtrlA > <c>

In WordStar-like keystrokes, any letter you type is converted to a control
uppercase-letter combination. Five other characters are also converted to
control-character combinations:

• left square bracket ([)
• backslash (\)
• right square bracket (])
• caret (1\, also known as Shift 6)
• minus (-)

Ignore Case Selection

In Ignore case keystrokes, the only character conversions are from
lowercase to uppercase (letters only). All commands must begin with a
special key or a control key. Subsequent characters can be any key. In this
mode all alpha (letter) keys you enter are converted to their uppercase
equivalents. When you type a letter in this mode, it is not automatically

592 Turbo Pascal Owner's Handbook

entered as a control-character combination; if a keystroke is to be a control
letter combination, you must hold down the Ctr! key while typing the letter.
For example:

• Typing a or A will yield A (if this is the first keystroke, you'll get an error
message)

• Typing Ctr! y or Ctr! Y will yield < Ctr! Y>

• Typing Ctr! [will yield < Ctr! [>

In Ignore case keystrokes, the only character conversions are from
lowercase to uppercase (letters only).

Verbatim Selection

These keystrokes must always explicitly begin with a character that is a
special key or control key. If you type a letter in this mode, it will be
entered exactly as you type it.

• Typing a will yield a (if this is the first keystroke, you'll get an error
message)

• Typing A will yield A (if this is the first keystroke, you'll get an error
message)

• Typing Ctr! Y will yield < Ctr! Y>

• Typing Ctr! y will yield < Ctr! y >

• Typing Ctr! [will yield < Ctr! [>

In Verbatim keystrokes, what you enter in the Install Editor screen for a
command's keystroke sequence is exactly what you must type in the Turbo
Pascal editor when you want to invoke that command. If, for example, you
enter < Ctr! A > band < Crt! H > B as the Verbatim primary and secondary
keystroke sequences for some editor command, you will only be able to
type those keys to invoke the command. Using the same letters but in
different cases-< Ctr! A> Band < Ctr! H > b-won't work.

Allowed Keystrokes

Although TINST provides you with lots of flexibility for customizing the
Turbo Pascal editor commands to your own taste, there are a few rules
governing the keystroke sequences you can define. Some of the rules apply
to any keystroke definition, while others only come into effect in certain
keystroke modes.

Appendix F, Customizing Turbo Pascal 593

Global Rules

1. You can enter a maximum of six keystrokes for any given editor
command. Certain key combinations are equivalent to two keystrokes,
such as Alt (any valid key), the cursor-movement keys (Up arrow, PgDn, Del,
etc.) and all function keys or function key combinations (F4, Shift-F7, Alt
FB, etc.).

2. The first keystroke must be a character that is non-alphanumeric, non-
punctuation; in other words, it must be a control key or a special key.

3. To enter the Esc key as a command keystroke, type Gtrl{.
4. To enter the Backspace key as a command keystroke, type Gtrl H.
5. To enter the Enter key as a command keystroke, type Gtrl M.
6. The Turbo Pascal predefined Help function keys (F1 and Alt F2) can't be

reassigned as Turbo Pascal editor command keys. Any other function
key can, however. If you enter a hotkey as part of an editor command
key sequence, TINST will issue a warning that you are overriding a
hotkey in the editor and will verify whether you want to override that
key.

Turbo Pascal Editor Keystrokes

Command name Primary Secondary
............... _---_

New Line * <CtrlM> • <CtrlM>
Cursor Left * <CtrlS> • <Lft>
Cursor Right * <CtrlD> • <Rgt>
Word Left * <CtrlA> • <CtrlLft>
Word Right * <CtrlF> • <CtrlRgt>
Cursor Up * <CtrlE> • <Up>
Cursor Down * <CtrlX> • <Dn>
Scroll Up * <CtrlW>
Scroll Down * <CtrlZ>

594 Turbo Pascal Owner's Handbook

Cormnand name Primary Secondary
- ---------- ---------
Page Up * <CtrlR> • <PgUp>
Page Down * <CtrIC> • <PgDn>
Left of Line * <CtrIQ><CtrIS> • <Home>
Right of Line * <CtrIQ><CtrID> • <End>
Top of Screen * <CtrIQ><CtrIE> • <CtrlHome>
Bottom of Screen * <CtrIQ><CtrIX> • <CtrIEnd>
Top of File * <CtrIQ><CtrIR> • <CtrlPgUp>
Bottom of File * <CtrIQ><CtrIC> • <CtrlPgDn>
Move to error * <CtrIQ><CtrIW>
Move to Block Begin * <CtrIQ><CtrIB>
Move to Block End * <CtrIQ><CtrIK>
Move to Block End * <CtrlQ><CtrIK>
Move to Previous Pos * <CtrIQ><CtrIP>
Move to Marker 0 * <CtrlQ>O
Move to Marker 1 * <CtrlQ>l
Move to Marker 2 * <CtrlQ>2
Move to Marker 3 * <CtrlQ>3
Toggle Insert * <CtrlV> • <Ins>
Insert Line * <CtrlN>
Delete Line * <CtrlY>
Delete to End of Line * <CtrIQ><CtrIY>
Delete Word * <CtrIT>
Delete Char * <CtrIG> •
Delete Char Left * <CtrlBkSp> • <CtrlH>
Set Block Begin * <CtrIK><CtrIB>
Set Block End * <CtrIK><CtrIK>
Mark Word * <CtrIK><CtrIT>
Hide Block * <CtrlK><CtrlH>
Set Marker 0 * <CtrIK>O
Set Marker 1 * <CtrlK>l
Set Marker 2 * <CtrlK>2
Set Marker 3 * <CtrIK>3
Copy Block * <CtrIK><CtrIC>
Move Block * <CtrIK><CtrIV>
Delete Block * <CtrlK><CtrlY>
Read Block * <CtrIK><CtrIR>
Write Block * <CtrIK><CtrIW>
Print Block * <CtrIK><CtrIP>
Exit Editor * <CtrIK><CtrID> • <CtrIK><CtrIQ>
Tab * <CtrlI>
Toggle Autoindent * <CtrIO><CtrII> • <CtrlQ><CtrlI>
Toggle Tabs * <CtrIO><CtrIT> • <CtrIQ><CtrlT>
Restore Line * <CtrIQ><CtrIL>
Find String * <CtrIQ><CtrIF>
Find and Replace * <CtrIQ><CtrIA>

Appendix F, Customizing Turbo Pascal 595

Command name

Search Again
Insert Control Char
Save file
Match pair
Match pair backward

Primary

* <CtrlL>
* <CtrlP>
* <CtrlK><CtrlS>
* <CtrlQ><Ctrl[>
* <CtrlQ><Ctrl]>

The Options/Environment Option

Secondary

You can install several editor default modes of operation with this option.
The items on the menu, and their significance, are described here.

First, take a look at the bottom status line for directions on how to select
these options: Either use the arrow keys to move the selection bar to the
option and then press Enter, or press the key that corresponds to the
highlighted capital letter of the option.

You can change the operating environment defaults to suit your preferences
(and your monitor) then save them as part of Turbo Pascal. Of course,
you'll still be able to change these settings from inside Turbo Pascal's
editor.

Note: Any option you install with TINST that also appears as a menu
settable option in TURBO.EXE will be overridden whenever you load a
configuration file that contains a different setting for that option.

Backup source files (default = on)
With Backup source files on, Turbo Pascal automatically creates a backup
of your source file when you do a File/Save. It uses the same file name, and
adds a .BAK extension: the backup file for FILENAME, FILENAME.C or
FILENAME.XYZ would be FILENAME.BAK. With Backup source files off,
no .BAK file is created.

Edit auto save (default = on)
With Edit auto save on, Turbo Pascal automatically saves the file in the
editor (if it's been modified since last saved) whenever you use Run (or Alt
R) or as shell. This helps prevent the loss of your source files in the event
of some calamity. With Edit auto save off, no such automatic saving occurs.

Config auto save (default = on)
With Config auto save on, Turbo Pascal automatically saves the
configuration file (if it's been modified since last saved) whenever you use
Run (or AIt-R), File/OS shell, or File/Quit (or Alt >0. Which file it saves the
current (recently modified) configuration to depends on three sets of
factors.

596 Turbo Pascal Owner's Handbook

Zoom state (default = off)
With Zoom state on, Turbo Pascal starts up with the Edit window
occupying the full screen; when you switch to the Output window, it will
also be full-screen. With Zoom state off, the Edit window occupies the top
portion of the screen, above the Output window. (You can resize the
windows with the Resize windows option from the main installation
menu.)

Insert mode (default = on)
With Insert mode on, the editor inserts anything you enter from the
keyboard at the cursor position, and pushes existing text to the right of the
cursor even further right. Toggling Insert mode off allows you to overwrite
text at the cursor.

Autoindent mode (default = on)
With Autoindent mode on, the cursor returns to the starting column of the
previous line when you press Enter. When autoindent mode is toggled off,
the cursor always returns to column one.

Use tabs (default = off)
With Use tabs on, when you press the Tab key, the editor places a tab
character (A 1) in the text using the tab size specified with Tab size. With Use
tabs off, when you press the Tab key, the editor inserts enough space
characters to align the cursor with the first letter of each word in the
previous line.

Screen size
When you select Screen size, a menu pops up. The items in this menu allow
you to set the Turbo Pascal integrated environment display to one of three
sizes (25-, 43-, or 50-line). The available sizes depend on your hardware:
25-line mode is always available; 43-line mode is for systems with an EGA,
while 50-line mode is for PS/2 or other VGA-equipped systems.

The Display Mode Option

Normally, Turbo Pascal will correctly detect your system's video mode.
You should only change the Display mode option if

• you want to select a mode other than the current video mode

• you have a Color/Graphics Adapter that doesn't "snow"

• you think Turbo Pascal is incorrectly detecting your hardware

• your system has a composite screen, which acts like a CGA with only one
color-for this situation, select Black and white

Appendix F, Customizing Turbo Pascal 597

Press D to select Display mode from the installation menu. A pop-up menu
will appear; from this menu you can select the screen mode Turbo Pascal
will use during operation. Your options include Default, Color, Black and
white, or Monochrome.

Default
By default, Turbo Pascal always operates in the mode that is active when
you load it.

Color

Turbo Pascal uses SO-column color mode no matter what mode is active
when you load TURBO.EXE, and switches back to the previously active
mode when you exit.

Black and white

Turbo Pascal uses SO-column black and white mode characters no matter
what mode is active, and switches back to the previously active mode when
you exit. This is required for composite monitors.

Monochrome

Turbo Pascal uses monochrome mode if you're currently in monochrome
mode, and switches back to the previously active mode when you exit.

When you select one of the first three options, the program conducts a
video test on your screen; look at the bottom status line for instructions
about what to do.

When you press any key, a window comes up with the query

Was there Snow on the screen?

You can choose

• Yes, the screen was "snowy"
• No, always turn off snow checking
• Maybe, always check the hardware

Look to the status line for more about Maybe. Press Esc to return to the
main installation menu.

The Color Customization Option

Pressing C from the main installation menu allows you to make extensive
changes to the Colors of your version of Turbo Pascal. After pressing C, you
will see a menu with these options:

• Customize colors

598 Turbo Pascal Owner's Handbook

• Default color set
• Turquoise color set
• Magenta color set

Because there are nearly 50 different screen items that you can color
customize, you will probably find it easier to choose a preset set of colors.
Three preset color sets are on disk.

Press D, T, or M, and scroll through the colors for the Turbo Pascal screen
items using the PgUp and PgDn keys. If you don't like any of the preset color
sets, you can design your own.

To make custom colors, press C to Customize colors. Now you have a
choice of 12 items that can be color-customized in Turbo Pascal; some of
these are text items, some are screen lines and boxes. Choose one of these
items by pressing a letter A through L.

Once you choose a screen item to color-customize, you will see a pop-up
menu and a viewport. The viewport is an example of the screen item you
chose, while the pop-up menu displays the components of that selection.
The viewport also reflects the change in colors as you scroll through the
color palette.

For example, if you chose H to customize the colors of Turbo Pascal's error
boxes, you would see a new pop-up menu with the four different parts of
an error box: Title, Border, Normal text, and Highlighted text.

You must now select one of the components from the pop-up menu. Type
the appropriate highlighted letter, and you're treated to a color palette for
the item you chose. Using the arrow keys, select a color to your liking from
the palette. Watch the viewport to see how that item looks in that color.
Press Enter to record your selection.

Repeat this procedure for every screen item you want to color-customize.
When you are finished, press Esc until you are back at the main installation
menu.

Note: Turbo Pascal maintains three internal color tables: color, black and
white, and monochrome. TINST only allows you to change one of these
three color sets at a time, based upon your current video mode. So, for
example, if you wanted to change to the black and white color table, you
must set your video mode to BW80 at the DOS prompt and then load
TINST.

Appendix F, Customizing Turbo Pascal 599

The Resize Windows Option

This option allows you to change the respective sizes of Turbo Pascal's Edit
and Output windows. Press R to choose Resize windows from the main
installation menu.

Using the Up arrow and Down arrow keys, you can move the bar dividing the
Edit window from the Output window. Neither window can be smaller
than three lines. When you have resized the windows to your liking, press
Enter. You can discard your changes and return to the Installation menu by
pressing Esc.

Note: If you are running Turbo Pascal in 43- or 50-line mode, the ratio of
the lines in 25-line mode will be used.

Quitting the Program

Once you have finished making all desired changes, select Quit/ save at the
main installation menu. The message

Save changes to TURBO.EXE? (YIN)

will appear at the bottom of the screen .

• If you press Y (for Yes), all the changes you have made will be
permanently installed into Turbo Pascal. (Of course, you can always run
TINST again if you want to change them.)

• If you press N (for No), your changes will be ignored and you will be
returned to the operating system prompt without changing Turbo
Pascal's defaults or startup appearance. If you press Esc, you'll be
returned to the menu.

If you decide you want to restore the original Turbo Pascal factory defaults,
simply copy TURBO.EXE from your master disk onto your work disk. You
can also restore the Editor commands by selecting the E option at the main
menu, then press R (for restore factory defaults) and Esc.

600 Turbo Pascal Owner's Handbook

A p p E N D x

G

A DOS Primer

If you are new to computers or to DOS, you may have trouble
understanding certain terms used in this manual. This appendix provides
you with a brief overview of the following DOS concepts and functions:

• what DOS is and does

• the proper way to load a program

• directories, subdirectories, and the path command

• using AUTOEXEC.BAT files

This information is by no means a complete explanation of the DOS
operating system. If you need more details, please refer to the MS-DOS or
PC-DOS user's manual that came with your computer system.

Turbo Pascal runs under the MS-DOS or PC-DOS operating system, version
2.0 or later.

What"ls DOS?

DOS is shorthand for Disk Operating System. MS-DOS is Microsoft's
version of DOS, while PC-DOS is IBM's rendition. DOS is the traffic
coordinator, manager, and operator for the transactions that occur between
the parts of the computer system and the computer system and you. DOS
operates in the background, taking care of may of the menial computer
tasks you wouldn't want to have to think about-for instance, the flow of
characters between your keyboard and the computer, between the
computer and your printer, and between your disk(s) and internal memory
(RAM).

Appendix G, A DOS Primer 601

Other transactions are initiated by entering commands on the DOS
command line; in other words, immediately after the DOS prompt. Your
DOS prompt probably looks like one of the following:

A>
B>
C>

The capital letter refers to the active disk drive (the one DOS and you are
using right now). For instance, if the prompt is A>, it means you are
working with the files on drive A, and that commands you give DOS will
refer to that drive. When you want to switch to another disk, making it the
active disk, all you do is type the letter of the disk, followed by a colon and
·press Enter. For instance, to switch to drive B, just type

B: Enter

There are a few commands you will use often with DOS, if you haven't
alread y, such as

DEL or ERASE

DIR

COpy

TURBO

To erase a file

To see a list of files on the logged disk

To copy files from one disk to another

To load Turbo Pascal

DOS doesn't care whether you type in uppercase or lowercase letters, or a
combination of both, so you can enter your commands however you like.

We'll assume you know how to use the first three commands listed; if you
don't, refer to your DOS manual. Next, we will explain the proper way to
load a program like Turbo Pascal, which is the last command-TURBO.

How to Load a Program

On your distribution disk, you'll find the main Turbo Pascal program
under the file name TURBO.EXE. This program file is necessary for all
functions, so you always need it when you start the program. A file name
,with the extension, or "last name," .COM or .EXE is a program file you can
load and run (use, start) by typing its first name at the DOS prompt. To
start Turbo Pascal, you simply type TURBO and press Enter, and Turbo
Pascal will be loaded into your computer's memory.

There's one thing you need to remember about loading Turbo Pascal and
other similar programs: You must be logged onto the disk and directory where

602 Turbo Pascal Owner's Handbook

the program is located in order to load it; unless you have set up a DOS path
(described shortly), DOS won't know where to find the program.

For instance, if your distribution disk with the TURBO.EXE program is in
drive A but the prompt you see on your screen is B>, DOS won't know
what you're talking about if you type TURBO and press Enter. Instead of
starting Turbo Pascal, it will give you the message Bad command or file
name.

It's as if you were shuffling through the "Pet Records" file in your file
cabinet looking for information about your home finances. You're in the
wrong place. So if you happen to get that DOS message, simply switch to
drive A by typing A: and then press Enter. Then type TURBO and press Enter
to load Turbo Pascal.

You can set up a "path" to the Turbo Pascal files so that DOS can find them,
using the DOS path command. See the section titled "The AUTOEXEC.BAT
File" for more information.

Directories

A directory is a convenient way to organize your floppy or hard disk files.
Directories allow you to subdivide your disk into sections, much the way
you might put groups of manila file folders into separate file boxes. For
instance, you might want to put all your file folders having to do with
finance-a bank statement file, an income tax file, or the like-into a box
labeled "Finances."

On your computer, it would be convenient to make a directory to hold all
your Turbo Pascal files, another for your SideKick files, another for your
letters, and so on. That way, when you type DIR on the DOS command line,
you don't have to wade through hundreds of file names looking for the file
you want. You'll get a listing of only the files on the directory you're
currently logged onto.

Although you can make directories on either floppy or hard disks, they are
used most often on hard disks. Because hard disks can hold a greater
volume of data, there is a greater need for organization and
compartmentalization.

When you're at the DOS level, rather than in Turbo Pascal or another
program, you can tell DOS to create directories, move files around between
directories, and display which files are in a particular directory.

In the examples that follow, we assume you are using a hard disk system,
and that you are logged onto the hard disk so that the prompt you see on

Appendix G, A DOS Primer 603

your screen is C>. If you want to create directories on your floppy disks,
substitute A or B for C in the example.

To make a directory for your Turbo Pascal files, do the following:

1. At the C> prompt, type MKDIR Turbo and press Enter. The MKDIR
command tells DOS to make a directory called TURBO.

2. Type CHDIR TURBO and press Enter. The CHDIR command tells DOS to
move you into the TURBO directory.

3. Now, put the Turbo Pascal disk you want to copy from into one of your
floppy drives-let's say A for this example-and type COPY A: * . * Enter.
(The asterisks are wildcards that stand for all files.) The COPY command
tells DOS to copy all files on the A drive to the TURBO directory on the
C drive. As each file on the disk is copied, you will see it listed on the
screen.

That's all there is to it. Treat a directory the same way you would a disk
drive: To load Turbo Pascal, you must be in the TURBO directory before
typing TURBO and pressing Enter or DOS won't be able to find the
program.

Subdirectories

If you are someone who really likes organization, you can subdivide your
directories into subdirectories. You can create as many directories and
subdirectories as you like-just don't forget where you put your files!

A subdirectory is created the same way as a directory. To create a
subdirectory from the TURBO directory (for instance, for storing your unit
files), do the following:

1. Be sure you are in the TURBO directory.

2. Type MKDIR UNITS Enter.

3. Type CHDIR UNITS. You are now in the UNITS subdirectory.

4. Copy your unit files to the new subdirectory.

Where Am I? The $p $g Prompt

You've probably noticed when you change directories that you still see the
C> prompt; there is no evidence of the directory or subdirectory you are
currently in. This can be confusing, especially if you leave your computer
for a while. It's easy to forget where you were when you left.

604 Turbo Pascal Owner's Handbook

DOS gives you an easy way to find out. Just type

prompt=$p $g

and from now on (until you turn your computer off or reboot), the prompt
will show you exactly where you are. Try it. If you are still in the UNITS
subdirectory, your DOS prompt will look like

C:\TURBO\UNITS >

The AUTOEXEC.BAT File

To avoid typing the prompt command (discussed in the previous section)
to see where you are every time you turn on your computer, you can set up
an AUTOEXEC.BAT file to do it for you. The AUTOEXEC.BAT file is a
useful tool to set your computer to do things automatically when it starts
up. There are many more things it can do, but rather than go into great
detail here, we suggest referring to your DOS manual for more
information. We will show you how to create an AUTOEXEC.BAT file that
will automatically change your prompt so you know where you are in your
directory structure, set a path to the TURBO directory, and then load Turbo
Pascal.

The DOS path command tells your computer where to look for commands it
doesn't recognize. DOS only recognizes programs in the current (logged)
directory, unless there is a path to the directory containing pertinent
programs or files.

In the following example, we will set a path to the TURBO directory.

If you have an AUTOEXEC.BAT file in your root (main) directory, your
computer will do everything in that file when you first tum your computer
on. (The root directory is where you see the C> or C: \ prompt, with no
directory names following it.)

Here's how to create an AUTOEXEC.BAT file.

1. Type CHOIR \ to get to the root directory.

2. Type COPY CON AUTOEXEC.BAT Enter. This tells DOS to copy
whatever you type next into a file called AUTO EXEC. BAT.

3. Type

PROMPT=$P $G Enter
PATH=C:\TURBO
CHOIR TURBO
Ctrl-Z Enter

The Ctrl-Z sequence saves your commands in the AUTOEXEC.BAT file.

Appendix G, A DOS Primer 605

To test your new AUTOEXEC.BAT file, reboot your computer by holding
down the Gtrl and Aft keys and then pressing Del. You should see
C:\TURBO>.

Changing Directories

How do you get from one directory to another? It depends on where you
want to go. The basic DOS command for changing directories is CHOIR.
Use it like this:

• To move from one directory to another: For example, to change from the
TURBO directory to one called SPRINT, type the following from the
TURBO directory:

C:\TURBO> CHOIR \SPRINT Enter

Notice the backslash (\) before the directory name. Whenever you are
moving from one directory to another unrelated directory, type the name
of the directory, preceded by a backslash.

• To move from a directory to its subdirectory: For example, to move
from the TURBO directory to the UNITS subdirectory, type the following
from the TP directory:

C:\TP> CHOIR UNITS Enter

In this case, you did not need the backslash, because the UNITS directory
is a direct offshoot of the TP directory. In fact, DOS would have
misunderstood what you meant if you had used the backslash-OOS
would have thought that UNITS was a directory off the main (root)
directory.

• To move from a subdirectory to its parent directory: For example, to
move from the UNITS subdirectory to the TP directory, type the
following from the UNITS subdirectory:

C:\TP\UNITS> CHDIR •• Enter

DOS will move you back to the TP directory. Any time you want to move
back to the parent directory, use a space followed by two periods after
the CHOIR command.

• To move to the root directory: The root directory is the original directory.
It is the parent (or grandparent) of all directories (and subdirectories).
When you are in the root directory, you'll see this prompt: C:\ >.

To move to the root directory from any other directory, simply type
CHOIR \ Enter

The backslash without a directory name signals DOS that you want to
return to the root directory.

606 Turbo Pascal Owner's Handbook

This appendix has presented only a quick look at DOS and some of its
functions. Once you're familiar with the information given here, you may
want to study your DOS manual and discover all the other things you can
do with your computer's operating system. There are many DOS functions
not mentioned here that can simplify and enhance your computer use.

Appendix G, A DOS Primer 607

608 Turbo Pascal Owner's Handbook

A p p E N D x

H

Glossary

Here are some quick glossary ideas. Enjoy.

absolute variable A variable declared to exist at a fixed location in
memory rather than letting the compiler determine its location.

ANSI The acronym for the the American National Standards Institute, the
organization that, among other things, describes the elements of so-called
standard Pascal.

ASCII character set The American Standard Code for Information
Interchange's standard set of numbers to represent the characters and
control signals used by computers.

actual parameter A variable, expression, or constant that is substituted for
a formal parameter in a procedure or function call.

address A specific location in memory.

algorithm A set of rules that defines the solution to a problem.

allocate To reserve memory space for a particular purpose, usually from
the heap.

array A sequential group of identical data elements that are arranged in a
single data structure and are accessible by an index.

argument An alternative name for a parameter (see actual parameter).

assignment operator The symbol :=, which gives a value to a variable or
function of the same type.

assignment statement A statement that assigns a specific value to an
identifier.

Appendix H, Glossary 609

assembler A program that converts assembly-language programs into
machine language.

assembly language The first language level above machine language.
Assembly language is specific to the microprocessor it is running on. The
major difference between assembly language and machine language is that
assembly language provides mnemonics, making it easier to read and
write.

base type The type of values in an array.

binary Base 2; a method of representing numbers using only two digits, 0
and 1.

bit A binary digit with a value of either 0 or 1. The smallest unit of data in
a computer.

block The associated declaration and statement parts of a program or
subprogram.

body The instructions pertaining to a program or a subprogram (a
procedure or function).

boolean A data type that can have a value of True or False.

braces The characters { and }, used to delimit comments; sometimes called
curly brackets.

brackets The characters [and]; sometimes called square brackets.

buffer An area of memory allocated as temporary storage.

bug An error in a program. Syntax errors refer to incorrect use of the rules
of the programming language; logic errors refer to incorrect strategy in the
program to accomplish the intended result.

build The process of recompiling all the units used by a program.

byte A sequence of 8 bits.

call To cause a subprogram (procedure or function) to execute by referring
to its name.

case label A constant, or list of constants, that label a component statement
in a case statement.

case selector An expression whose result is used to select which
component statement of a case statement will be executed.

central processing unit (CPU) The ''brain'' of a computer system, which
interprets and executes instructions and controls the other components of
the system.

610 Turbo Pascal Owner's Handbook

chaining The passing of control from one program to another.

char A Pascal type that represents a single character.

code Instructions to a computer. Code is made up of algorithms.

code segment A portion of a compiled program up to 32767 bytes in
length.

comment An explanatory statement in the source code enclosed by the
symbols (* *) or { }.

compiler A program that translates a program written in a high-level
language into machine language.

compiler directive An instruction to the compiler that is. embedded within
the program; for example, {$R+} turns on range-checking.

compound statement A series of statements surrounded by a matching set
of the reserved words begin and end.

concatenate The joining of two or more strings.

constant A fixed value in a program.

control character A special nonprinting character in the ASCII character set
designed originally to control a printing device or communications link.

control structure A statement that manages the flow of execution of a
program.

crash A sudden computer failure due to a hardware problem or program
error.

data segment The segment in memory where the static global variables are
stored.

data structures Areas of related items in memory, represented as arrays,
records, or linked lists.

debugger A special program that provides capabilities to start and stop
execution of a program at will, as well as analyze values that the program
is manipulating .

. debugging Thr process of finding and removing bugs from programs.

decimal A method of representing numbers using base 10 notation, where
legal digits range from 0 to 9.

declare The act of explicitly defining the name and type of an identifier in
a program .

. dereferencing The act of accessing a value pointed to by a pointer variable
(rather than the pointer variable itself).

Appendix H, Glossary 611

definition part The part of a program where constants, labels, and
structured types are defined.

delimiter A boundary marker that can be a word, a character, or a symbol.

directory A work area on a disk or a listing of files (or directories) on a
disk.

documentation A written explanation of a computer program.
Documentation can vary from manuals hundreds of pages long to a one
line comment embedded in the program itself.

dynamic Something that varies while the program is running.

dynamic allocation The allocation and deallocation of memory from the
heap at runtime.

dynamic variable A variable on the heap.

element One of the items in an array.

enumerated type A user-defined scalar type that consists of an arbitrary
list of identifiers.

evaluate To compute the value of an expression.

expression Part of a statement that represents a value or can be used to
calculate a value.

extension Any addition to the standard definition of a language. Also, the
optional three-character ending (following the period) in a standard DOS
file name.

execute To carry out the program's instructions.

external A file of one or more subprograms that have been written in
assembly language and assembled to native executable code.

field list The field name and type definition of a record.

field width The number of place holders in an output statement.

file A collection of data that can be stored on and retrieved from a disk.

file pointer A pointer that tracks where the next object will be retrieved
from within a file.

file variable An identifier in a program that represents a file.

fixed-point notation The representation of real numbers without decimal
points.

flag A variable, usually of type integer or boolean, that changes value to
indicate that an event has taken place.

612 Turbo Pascal Owner's Handbook

floating-point notation The representation of real numbers using decimal
points.

formal parameter An identifier in a procedure or function declaration
heading that represents the arguments that will be passed to the
subprogram when it is called.

forward declaration The declaration of a procedure or function and its
parameters in advance of the actual definition of the subroutine.

function A subroutine that computes and returns a value.

global variable A variable declared in the main program block that can be
accessed from anywhere within the program.

high-level language A programming language that more closely
resembles human language than machine language. Pascal is a high-level
language.

heap An area of memory reserved for the dynamic allocation of variables.

hexadecimal A method of representing numbers using base 16 notation,
where legal digits range from 0 to 9 and A to F.

identifier A user-defined name for a specific item (a constant, type,
variable, procedure, function, unit, program, and field). It must begin with
a letter and cannot contain spaces.

implementation The particular embodiment of a programming language.
Turbo Pascal is an implementation of standard Pascal for IBM-compatible
computers.

increment To increase the value of a variable.

index A position within a list of elements.

index type The type of indexes in an array.

initialize The process of giving a known initial value to a variable or data
structure.

input The information a program receives from some external device, such
as a keyboard.

integer A numeric variable that is a whole number from -32768 to +32767.

interactive A program that communicates with a user through some I/O
device.

interrupt The temporary halting of a program in order to process an event
of higher priority.

Appendix H, Glossary 613

interpreter A program that sequentially interprets each statement in a
program into machine code and then immediately executes it.

liD Short for Input/Output. The process of receiving or sending data.

liD error An error that occurs while trying to input or output data.

lID redirection The DOS ability to direct input/output to access devices
other than the default DOS devices.

iteration The process of repetition or looping.

keyword A reserved word in Pascal. In this manual, keywords are shown
in boldface type (for example, begin, end, nil).

label An identifier that marks a place in the program text for a goto
statement. Labels have digit sequences whose values range from 0 to 9999.

level The depth of nesting prcedures or control structures.

linked list A dynamic data structure that is made up of elements, each of
which point to the next element in the list through a pointer variable.

literal An unnamed constant in a program.

local identifier An identifier declared within a procedure or a function.

local variable A variable declared within a procedure or a function.

long word A location in memory occupying 4 adjacent bytes; the storage
required for a variable of type longint.

loop A set of statements that are executed repeatedly.

main procedure The program part enclosed by the outermost begin and
end.

machine language A language consisting of strings of Os and 1s that the
computer interprets as instructions; compare the glossary entry for
"assembly language."

main program The begin/ end block terminated by a period that appears
at the end of a program; also called the statement part.

make The process of recompiling only those units whose source code has
been modified since the last compile. A program that manages this process.

memory The space within the computer for holding information and
running programs.

module A self-contained routine or group of routines.

nesting The placement of one unit within another.

614 Turbo Pascal Owner's Handbook

nil pointer A pointer having the special value nil; a nil pointer doesn't
point to anything.

node An individual element of a tree or list.

object code The output of a compiler.

offset An index within a segment.

operand An argument that is combined with one or more operands and
opera tors to form an expression.

operating system A program that manages all operations and resources of
the computer.

operator A symbol, such as +, that is used to form expressions.

operator hierarchy The rules that determine the order in which operators
in an expression are evaluated.

ordinal type An ordered range of values; same as scalar type.

output The result of running a program. Output can be sent to a printer,
displayed on screen, or written to disk.

overflow The condition that results when an operation produces a value
that is more positive or negative than the computer can represent, given the
allocated space for the value or expression.

parameter A variable or value that is passed to a procedure or function.

parameter list The list of value and variable parameters declared in the
heading of a procedure or function declaration.

Pascal, Blaise A French mathematician and philosopher (1623-66) who
built a mechanical adding machine, considered to be an early predecessor
to calculators and computers.

pass To use as a parameter.

pointer A variable that points to a specific memory location.

pop The removal of the topmost element from a stack.

port An I/O device that can be accessed through the CPU's data bus.

precedence The order in which operators are executed.

predefined identifier A constant, type, file, logical device, procedure, or
function that is available to the programmer without having to be defined
or declared.

procedure A subprogram that can be called from various parts of a larger
program.

Appendix H, Glossary 615

procedure call The invocation of a procedure.

program A set of instructions for a computer to carry out.

prompt A string printed by a program to signal to the user that input is
desired and (sometimes) what kind of input is expected.

push The addition of an element to the top of a stack.

random access Directly accessing an element of a data structure without
sequentially searching the entire structure for the element.

random-access memory (RAM) Memory devices that can be read from
and written to.

range-checking A Turbo Pascal feature that checks a value to make sure it
is within the legal range defined.

read-only memory (ROM) The memory device from which data can be
read but not written.

real number A number represented by decimal point and/or scientific
notation.

record A structured data type referenced by one identifier that consists of
several different fields.

recursion A programming technique in which a subprogram calls itself.

relational operator The operators =, <>, <, >, <=, >=, and in, all of which
are used to form Boolean expressions.

reserved word An identifier reserved by the compiler. A word whose use
and meaning is reserved for use only by the program. You cannot redefine
the meaning of a reserved word.

result The value returned by a procedure, function, or program.

runtime During the execution of a program.

scalar type Any Pascal type consisting of ordered components (for
example, integer, char, longint, enumerated types, and so forth).

scientific notation A description of a number that uses a number between
1 and 10 (called the mantissa) multiplied by a power of 10 (called the
exponent). Because computers cannot easily display exponents on the
screen, scientific notation on computers is usually written using an E, as in
24El5-which means 24 multiplied by 10 to the 15th power.

scope The visibility of an identifier within a program.

segment On 8088-based machines, RAM is divided into several segments,
or parts, each made up of 64K of memory.

616 Turbo Pascal Owner's Handbook

separate compilation The ability to break a large program into several
discrete modules, compile each module separately, then link them into a
large, executable (.EXE) file.

separator A blank or a comment.

sequential access The ordered access of each element of a data structure,
starting at the first element of the structure.

set An unordered group of elements, all of the same scalar type.

set operator The symbols +, -, *, =, <=, >=, <>, and in, all of which return
set-type results when used with set-type operands.

simple type A type that contains only a single value.

source code The input to a compiler.

stack A data structure in which the last element stored is the first to be
removed.

stack overflow An error condition that occurs when the amount of space
allocated to the computer's stack is used up.

stack segment The segment in memory allocated as the program's stack.

statement The simplest unit in a program; statements are separated by
semicolons.

static variable A variable with a lifetime that exists the entire length of the
program. Memory for static variables is allocated in the data segment (or
area).

string A sequence of characters that can be treated as a single unit.

structured type One of the predefined types (array, set, record, file, or
string) that are composed of structured data elements.

subprogram A procedure or function within a program; a subroutine.

sub range A continuous range of any scalar type.

subscript An identifier used to access a particular element of an array.

syntax error An error caused by violating the rules of a programming
language.

termin-al An I/O device for communication between a human being and a
computer.

tracing Manually stepping through each statement in a program in order
to understand the program's behavior-an important debugging technique.

Appendix H, Glossary 617

transfer function A function that converts a value of one type to a value of
another type.

tree A dynamic data structure in which a node (branch of a tree) may point
to one or more other nodes.

type definition The specification of a non-predefined,type. Defines the set
of values a variable can have and the operations that can be performed on
it.

typed constant A variable with a value that is defined at compile time but
can be modified at runtime. (Think of it as a preinitialized variable.)

type conversion The reformulation of a value in another form, for
example, the conversion of integer values to real.

type coercion Technique also known as typecasting in which one variable
is forced to be read as another type.

underlying type The scalar type corresponding to a particular subrange.

unit A program module that makes it possible to do separate compilation.
A unit can contain code, data, type and/or constant declarations. A unit
can use other units, and is broken into interface (public) and
implementation (private) sections.

untyped parameter A formal parameter that allows the actual parameter
to be of any type.

value parameter A procedure or function parameter that is passed by
value; that is, the value of the parameter is passed and cannot be changed.

vanilla Programmer's lingo for standard or basic.

variable declaration A declaration that consists of the variable and its
associated type.

variable parameter A procedure or function parameter that is passed by
reference; that is, the address of the parameter is passed so that the value of
the parameter can be accessed and modified.

variant record A record in which some fields share the same area in
memory.

word A location in memory occupying 2 adjacent bytes; the storage
required for a variable of type integer.

618 Turbo Pascal Owner's Handbook

A p p E N D x

I

Error Messages and Codes

Compiler Error Messages

The following lists the possible error messages you can get from the
compiler during program development. Whenever possible, the compiler
will display additional diagnostic information in the form of an identifier or
a file name, for example:

Error 15: File not found (WINDOW.TPU).

When an error is detected, Turbo Pascal (in the integrated environment)
automatically loads the source file and places the cursor at the error. The
command-line compiler displays the error message and number and the
source line, and uses a caret (A) to indicate where the error occurred. Note,
however, that some errors are not detected until a little later in the source
text. For example, a type mismatch in an assignment statement cannot be
detected until the entire expression after the := has been evaluated. In such
cases, look for the error to the left of or above the cursor.

lOut of memory.

This error occurs when the compiler has run out of memory. There are a
number of possible solutions to this problem:

• If Compile/Destination is set to Memory, set it to Disk in the integrated
environment.

• If Options/Compiler/Link buffer in the integrated environment is set to
Memory, set it to Disk. Alternatively, place a {$L-} directive at the
beginning of your program. Use / $L- option to link to disk in the
command-line compiler.

Appendix /, Error Messages and Codes 619

• If you are using any memory-resident utilities, such as SideKick and
SuperKey, remove them from memory .

• If you are using TURBO.EXE, try use TPC.EXE instead-it takes up less
memory.

If none of these suggestions help, your program or unit may simply be too
large to compile in the amount of memory available, and you may have to
break it into two or more smaller units.

2 Identifier expected.

An identifier was expected at this point. You may be trying to redeclare a
reserved word.

3 Unknown identifier.

This identifier has not been declared.

4 Duplicate identifier.

The identifier has already been used within the current block.

5 Syntax error.

An illegal character was found in the source text. You may have forgotten
the quotes around a string constant.

6 Error in real constant.

The syntax of real-type constants is defined in Chapter 13, "Tokens and
Constants."

7 Error in integer constant.

The syntax of integer-type constants is defined in Chapter 13, "Tokens and
Constants." Note that whole real numbers outside the maximum integer
range must be followed by a decimal point and a zero; for example,
12345678912.0.

8 String constant exceeds line.

You have most likely forgotten the ending quote in a string constant.

620 Turbo Pascal Owner's Handbook

9 Too many nested files.

The compiler allows no more than five nested source files. Most likely you
have more than four nested include files.

10 Unexpected end of file. You might have gotten this error message
because of one of the following:

• Your source file ends before the final end of the main statement part.
Most likely, your begins and ends are unbalanced.

• An include file ends in the middle of a statement part. Every statement
part must be entirely contained in one file.

• You didn't close a comment.

11 Line too long.

The maximum line length is 126 characters.

12 Type identifier expected.

The identifier does not denote a type as it should.

13 Too many open files.

If this error occurs, your CONFIG.SYS file does not include a FILES=xx
entry or the entry specifies too few files. Increase the number to some
suitable value, for instance, 20.

14 Invalid file name.

The file name is invalid or specifies a nonexistent path.

15 File not found.

The file could not be found in the current directory or in any of the search
directories that apply to this type of file.

16 Disk full.

Delete some files or use a new disk.

Appendix /, Error Messages and Codes 621

17 Invalid compiler directive.

The compiler directive letter is unknown, one of the compiler directive
parameters is invalid, or you are using a global compiler directive when
compilation of the body of the program has begun.

18 Too many files.

There are too many files involved in the compilation of the program or
unit. Try not to use that many files, for instance, by merging include files or
making the file names shorter.

19 Undefined type in pointer definition.

The type was referenced in a pointer-type declaration previously, but it was
never declared.

20 Variable identifier expected.

The identifier does not denote a variable as it should.

21 Error in type.

This symbol cannot start a type definition.

22 Structure too large.

The maximum allowable size of a structured type is 65520 bytes.

23 Set base type out of range.

The base type of a set must be a subrange with bounds in the range 0 .. 255
or an enumerated type with no more than 256 possible values.

24 File components may not be files.

file of file constructs are not allowed.

25 Invalid string length.

The declared maximum length of a string must be in the range 1 .. 255.

622 Turbo Pascal Owner's Handbook

26 Type mismatch.

This is due to

• incompatible types of the variable and the expression in an assignment
statement

• incompatible types of the actual and formal parameter in a call to a
procedure or function

g an expression type that is incompatible with index type in array indexing

• incompatible types of operands in an expression

27 Invalid sub range base type.

All ordinal types are valid base types.

28 Lower bound greater than upper bound.

The declaration of a subrange type specifies a lower bound greater than the
upper bound.

29 Ordinal type expected.

Real types, string types, structured types, and pointer types are not allowed
here.

30 Integer constant expected.

31 Constant expected.

32 Integer or real constant expected.

33 Type identifier expected.

The identifier does not denote a type as it should.

34 Invalid function result type.

Valid function result types are all simple types, string types, and pointer
types.

35 Label identifier expected.

The identifier does not denote a label as it should.

Appendix /, Error Messages and Codes 623

36 BEGIN expected.

37 END expected.

38 Integer expression expected.

The preceding expression must be of an integer type.

39 Ordinal expression expected.

The preceding expression must be of an ordinal type.

40 Boolean expression expected.

The preceding expression must be of type boolean.

41 Operand types do not match operator.

The operator cannot be applied to operands of this type, for example, 'A'
div'2'.

42 Error in expression.

This symbol cannot participate in an expression in the way it does. You
may have forgotten to write an operator between two operands.

43 Illegal assignment .

• Files and untyped variables cannot be assigned values .

• A function identifier can only be assigned values within the statement
part of the function.

44 Field identifier expected.

The identifier does not denote a field in the preceding record variable.

45 Object file too large.

Turbo Pascal cannot link in .OBJ files larger than 64K.

624 Turbo Pascal Owner's Handbook

46 Undefined external.

The external procedure or function did not have a matching PUBLIC
definition in an object file. Make sure you have specified all object files in
{$L filename} directives, and check the spelling of the procedure or function
identifier in the .ASM file.

47 Invalid object file record.

The .OBJ file contains an invalid object record; make sure the file is in fact
an .OBJ file.

48 Code segment too large.

The maximum size of the code of a program or unit is 65520 bytes. If you
are compiling a program, move some procedures or functions into a unit. If
you are compiling a unit, break it into two or more units.

49 Data segment too large.

The maximum size of a program's data segment is 65520 bytes, including
data declared by the used units. If you need more global data than this,
declare the larger structures as pointers, and allocate them dynamically
using the New procedure.

50 DO expected.

51 Invalid PUBLIC definition.

• The identifier was made public through a PUBLIC directive in assembly
language, but is has no matching external declaration in the Pascal
program or unit.

• Two or more PUBLIC directives in assembly language define the same
identifier.

• The .OBJ file defines PUBLIC symbols that do not reside in the CODE
segment.

52 Invalid EXTRN definition.

• The identifier was referred to through· an EXTRN directive in assembly
language, but it is not declared in the Pascal program or unit, nor in the
interface part of any of the used units.

• The identifier denotes an absolute variable.

• The identifier denotes an inline procedure or function.

Appendix /, Error Messages and Codes 625

·53 Too many EXTRN definitions.

Turbo Pascal cannot handle .OB} files with more than 256 EXTRN
definitions.

54 OF expected.

55 INTERFACE expected.

56 Invalid relocatable reference.

• The .OB} file contains data and relocatable references in segments other
than CODE. For example, you are attempting to declare initialized
variables in the DATA segment.

• The .OB} file contains byte-sized references to relocatable symbols. This
error occurs if you use the HIGH and LOW operators with relocatable
symbols or if you refer to relocatable symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined in the
CODE segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an offset, for
example, CALL SortProc+8.

57 THEN expected.

58 TO or DOWNTO expected.

59 Undefined forward.

• The procedure or function was declared in the interface part of a unit,
but its definition never occurred in the implementation part.

• The procedure or function was declared with forward, but its definition
was never found.

60 Too many procedures.

Turbo Pascal· does not allow more than 512 procedures or functions per
module. If you are compiling a program, move some procedures or
functions into a unit. If you are compiling a unit, break it into two or more
units.

626 Turbo Pascal Owner's Handbook

61 Invalid typecast.

• The sizes of the variable reference and the destination type differ in a
variable typecast.

• You are attempting to typecast an expression where only a variable
reference is allowed.

62 Division by zero.

The preceding operand attempts to divide by zero.

63 Invalid file type.

The file type is not supported by the file-handling procedure; for example,
readln with a typed file or Seek with a text file.

64 Cannot Read or Write variables of this type.

• Read and Readln can input variables of char, integer, real, and string
types.

• Write and Writeln can output variables of char, integer, real, string, and
boolean types.

65 Pointer variable expected.

The preceding variable must be of a pointer type.

66 String variable expected.

The preceding variable must be of a string type.

67 String expression expected.

The preceding expression must be of a string type.

68 Circular unit reference.

Two units are not allowed to use each other:

unit U1;

uses U2;
unit U2;
uses U1;

In this example, doing a Make on either unit will generate error 68.

Appendix /, Error Messages and Codes 627

69 Unit name mismatch.

The name of the unit found in the .TPU file does not match the name
specified in the uses clause.

70 Unit version mismatch.

One or more of the units used by this unit have been changed since the unit
was compiled. Use Compile/Make or Compile/Build in the integrated
environment and / M or / B options in the command-line compiler to
automatically compile units that need recompilation.

71 Duplicate unit name.

You have already named this unit in the uses clause.

72 Unit file format error.

The .TPU file is somehow invalid; make sure it is in fact a .TPU file.

73 Implementation expected.

74 Constant and case types do not match.

The type of the case constant is incompatible with the case statement's
selector expression.

75 Record variable expected.

The preceding variable must be of a record type.

76 Constant out of range.

• You are trying to index an array with an out-of-range constant.

• You are trying to assign an out-of-range constant to a variable.

• You are trying to pass an out-of-range constant as a parameter to a
proced ure or function.

77 File variable expected.

The preceding variable must be of a file type.

78 Pointer expression expected.

The preceding expression must be of a pointer type.

628 Turbo Pascal Owner's Handbook

79 Integer or real expression expected.

The preceding expression must be of an integer or a real type.

80 Label not within current block.

A goto statement cannot reference a label outside the current block.

81 Label already defined.

The label already marks a statement.

82 Undefined label in preceding statement part.

The label was declared and referenced in the preceding statement part, but
it was never defined.

83 Invalid @ argument.

Valid arguments are variable references and procedure or function
identifiers.

84 UNIT expected.

85 "i" expected.

86 ":" expected.

87 "," expected.

88 "(" expected.

89 ")" expected.

90 "=" expected.

91 ":=" expected.

92 "[" or "(." expected.

93 "]" or ".)" expected.

Appendix /, Error Messages and Codes 629

94 "." expected.

95 " .• " expected.

96 Too many variables .

• The total size of the global variables declared within a program or unit
cannot exceed 64K .

• The total size of the local variables declared within a procedure or
function cannot exceed 64 Kb.

97 Invalid FOR control variable.

The for statement control variable must be a simple variable defined in the
declaration part of the current subprogram.

98 Integer variable expected.

The preceding variable must be of an integer type.

99 Files are not allowed here.

A typed constant cannot be of a file type.

100 String length mismatch.

The length of the string constant does not match the number of components
in the character array.

101 Invalid ordering of fields.

The fields of a record-type constant must be written in the order of
declaration.

102 String constant expected.

103 Integer or real variable expected.

The preceding variable must be of an integer or real type.

104 Ordinal variable expected.

The preceding variable must be of an ordinal type.

630 Turbo Pascal Owner's Handbook

105 INLINE error.

The < operator is not allowed in conjunction with relocatable references to
variables-such references are always word-sized.

106 Character expression expected.

The preceding expression must be of a char type.

107 Too many relocation items.

The size of the relocation table part of the .EXE file exceeds 64K, which is
Turbo Pascal's upper limit. If you encounter this error, your program is
simply too big for Turbo Pascal's linker to handle. It is probably also too big
for DOS to execute. You will have to split the program into a "main" part
that executes two or more "subprogram" parts using the Exec procedure in
the Dos unit.

108 Not enough memory to run program.

There is not enough memory to run the program from within the TURBO
environment. If you are using any memory-resident utilities, such as
SideKick and SuperKey, remove them from memory. If that doesn't help,
compile the program to disk, and exit TURBO to execute.

109 Cannot find EXE file.

For some reason, the .EXE file previously generated by the compiler has
disappeared.

110 Cannot run a unit.

You cannot run a unit. To test a unit, write a program that uses the unit.

111 Compilation aborted.

The compilation was aborted by etr/-Break.

112 CASE constant out of range.

For integer type case statements, the constants must be within the range
-32768 . .32767.

113 Error in statement.

This symbol cannot start a statement.

Appendix " Error Messages and Codes 631

114 Cannot call an interrupt procedure.

You cannot directly call an interrupt procedure.

115 Must have an 8087 to compile this.

The compiler requires an 8087 coprocessor to compile programs and units
in the {$N+} state.

116 Must be in 8087 mode to compile this.

This construct can only be compiled in the {$N+} state. Operations on the
8087 real types, single, double, extended, and comp, are not allowed in the
{$N-} state.

117 Target address not found.

The Compile/Find error command in the integrated environment or the / F
option in the command-line version could not locate a statement that
corresponds to the specified address.

118 Include files are not all()wed here.

Every statement part must be entirely contained in one file.

119 TPM file format error.

The .TPM file is somehow invalid; make sure it is in fact a .TPM file.

120 NIL expected.

121 Invalid qualifier.

• You are trying to index a variable that is not an array.

• You are trying to specify fields in a variable that is not a record.

• You are trying to dereference a variable that is not a pointer.

122 Invalid variable reference.

The preceding construct follows the syntax of a variable reference, but it
does not denote a memory location. Most likely, you are calling a pointer
function, but forgetting to dereference the result.

632 Turbo Pascal Owner's Handbook

123 Too many symbols.

The program or unit declares more than 64K of symbols. If you are
compiling with {$D+}, try turning it off-note, however, that this will
prevent you from finding runtime errors in that module. Otherwise, you
could try moving some declarations into a separate unit.

124 Statement part too large.

Turbo Pascal limits the size of a statement part to about 24K. If you
encounter this error, move sections of the statement part into one or more
procedures. In any case, with a statement part of that size, it's worth the
effort to clarify the structure of your program.

125 Module has no debug information

A runtime error occurred in a module (program or unit) that has no debug
information, and for that reason Turbo Pascal cannot show you the
corresponding statement. Recompile the module with Debug info on, and
use Compile/Find error to locate the error in the integrated environment or
the /F option in the command-line compiler.

126 Files must be var parameters

You are attempting to declare a file type value parameter. File type
parameters must be var parameters.

127 Too many conditional symbols

There is not enough room to define further conditional symbols. Try to
eliminate some symbols, or shorten some of the symbolic names.

128 Misplaced conditional directive

The compiler encountered an {$ELSE} or {$ENDIF} directive without a
matching {$IFDEF}, {$IFNDEF}, or {$IFOPT} directive.

129 ENDIF directive missing

The source file ended within a conditional compilation construct. There
must be an equal number of {$IFxxx}s and {$ENDIF}s in a source file.

Appendix /, Error Messages and Codes 633

130 Error in initial conditional defines

The initial conditional symbols specified in 0 I CI Conditional defines or in
a I D directive are invalid. Turbo Pascal expects zero or more identifiers
separated by blanks, commas, or semicolons.

131 Header does not match previous definition

• The procedure or function header specified in the interface part does not
match this header .

• The' procedure or function header specified in the forward declaration
does not match this header.

132 Critical disk error

A critical error occurred during compilation (for example, drive not ready
error).

133 Old map file

The .TPM file is older than the corresponding .EXE file. This indicates that
the 'last time you compiled your program, a .TPM file was not produced.
For example, if TEST.TPM is older than TEST.EXE, you must recompile
TEST.PAS with the {$T} compiler directive in order to find a runtime error.

Runtime Errors

Certain ·errors at runtime cause the program to display an error message
and terminate:

Runtime error nnn at xxxx:yyyy

where nnn is the runtime error number, and xxxx:yyyy is the runtime error
address (segment and offset).

The runtime errors are divided into four categories: DOS errors 1-99; 1/0
errors, 100-149; critical errors, 150-199; and fatal errors, 200-255.

DOS Errors

2 File not found.

Reported by Reset, Append, Rename, or Erase if the name assigned to the file
variable does not specify an existing file.

634 Turbo Pascal Owner's Handbook

3 Path not found.

• Reported by Reset, Rewrite, Append, Rename, or Erase if the name assigned
to the file variable is invalid or specifies an unexisting subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or speficies an
unexisting subdirectory.

4 Too many open files.

Reported by Reset, Rewrite, or Append if the program has too many open
files. DOS never allows more than 15 open files per process. If you get this
error with less than 15 open files, it may indicate that the CONFIG.SYS file
does not include a FILES=xx entry or that the entry specifies too few files.
Increase the number to some suitable value, for instance, 20.

5 File access denied.

• Reported by Reset or Append if FileMode allows writing and the name
assigned to the file variable specifies a directory or a read-only file.

• Reported by Rewrite if the directory is full or if the name assigned to the
file variable specifies a directory or an existing read-only file.

• Reported by Rename if the name assigned to the file variable specifies a
directory or if the new name specifies an existing file.

• Reported by Erase if the name assigned to the file variable specifies a
directory or a read-only file.

• Reported by MkDir if a file with the same name exists in the parent
directory, if there is no room in the parent directory, or if the path
specifies a device.

• Reported by RmDir if the directory isn't empty, if the path doesn't specify
a directory, or if the path specifies the root directory.

• Reported by Read or BlockRead on a typed or untyped file if the file is not
open for reading.

• Reported by Write or Block Write on a typed or untyped file if the file is
not open for writing .

. 6 Invalid file handle.

This error is reported if an invalid file handle is passed to a DOS system
call. It should never occur; if it does, it is an indication that the file variable
is somehow trashed.

Appendix /, Error Messages and Codes 635

12 Invalid file access code.

Reported by Reset or Append on a typed or untyped file if the value of
FileMode is invalid.

15 Invalid drive number.

Reported by GetDir if the drive number is invalid;

16 Cannot remove current directory.

Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.

Reported by Rename if both names are not on the same drive.

I/O Errors

These errors cause termination if the particular statement was compiled in
the {$I+} state. In the {$I-} state, the program continues to execute, and the.
error is reported by the JOResult function;

100 Disk read error.

Reported by Read on a typed file if you attempt to read past the end of the
file.

101 Disk write error.

Reported by Close, Write, Writeln, Flush, or Page if the disk becomes full.

102 File not assigned.

Reported by Reset, Rewrite, Append, Rename, and Erase if the file variable has
not been assigned a name through a call to Assign.

103 File not open.

Reported by Close, Read, Write, Seek, Eot, FilePos, FileSize, Flush, BlockRead, or
Block Write if the file is not open.

104 File not open for input.

Reported by Read, Readln, Eot, Eoln, SeekEot, or SeekEoln on a text file if the
file is not open for input.

636 Turbo Pascal Owner's Handbook

105 File not open for output.

Reported by Write, Writeln, and Page on a text file if the file is not open for
output.

106 Invalid numeric format.

Reported by Read or Readln if a numeric value read from a text file does not
conform to the proper numeric format.

Critical Errors

150 Disk is write-protected.

151 Unknown unit.

152 Drive not ready.

153 Unknown command.

154 CRC error in data.

155 Bad drive request structure length.

156 Disk seek error.

157 Unknown media type.

158 Sector not found.

159 Printer out of paper.

160 Device write fault.

161 Device read fault.

162 Hardware failure.

Refer to your DOS programmer's reference manual for more information
about critical errors.

Appendix /, Error Messages and Codes 637

Fatal Errors

These errors always immediately terminate the program.

200 Division by zero.

201 Range check error.

This error is reported by statements compiled in the {$R+} state when one
of the following situations arise:

• The index expression of an array qualifier was out of range.

• An attempt was made to assign an out of range value to a variable.

• An attempt was made to pass an out of range value as a parameter to a
procedure or function.

202 Stack overflow error.

This error is reported on entry to a procedure or function compiled in the
{$S+} state when there is not enough stack space to allocate the
subprogram's local variables. Increase the size of the stack by using the $M
compiler directive.

203 Heap overflow error.

This error is reported by New or GetMem when there is not enough free
space in the heap to allocate a block of the requested size. For a complete
discussion of the heap manager, refer to Chapter 26, "Inside Turbo Pascal."

204 Invalid pointer operation.

This error is reported by Dispose or FreeMem if the pointer is nil or points to
a location outside the heap, or if the free list cannot be expanded.

205 Floating point overflow.

A floating-point operation produced an overflow.

638 Turbo Pascal Owner's Handbook

206 Floating point underflow

A floating-point operation produced an underflow. This error is only
reported if you are using the 8087 numeric coprocessor with a control word
that unmasks underflow exceptions. By default, an underflow causes a
result of zero to be returned.

207 Invalid floating point operation

• The real value passed to Trunc or Round could not be converted to an
integer within the longint range (-2147483648 to 2147483647).

• The argument passed to the Sqrt function was negative.

• The argument passed to the Ln function was zero or negative.

• An 8087 stack overflow occurred. For further details on correctly
programming the 8087, refer to Chapter 25.

Appendix /, Error Messages and Codes 639

640 Turbo Pascal Owner's Handbook

Borland
. Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at bettBr dealers nationwide.
To order by credit card, call (BOO) 255-8008; CA (800) 742-1133;
CANADA (BOO) 237-1136.

OUATTRO~
THE PROFESSIONAL SPREADSHEET

Borland's super graphic new genera
tion spreadsheet: Twice the power at
half the price! 'Jen types of presen
tation-quality graphs. Compatible with
1-2-3®, dBASE®, Paradox® and other
spreadsheets and databases.

Quattro, Borland's new generation professional
spreadsheet, proves there are better and faster
ways to get your work done-whether it's gra
phics, recalculations, macros, or search and sort.

Presentation-quality graphics
Quattro has excellent built-in graphics capabili

ties that help you create a wide variety of graphs.
Bar graphs, line graphs, pie charts, XY graphs,
area charts-you can create up to 10 types of
graphs, and print them directly from the spread
sheet or store them for future use.

Smarter recalculation
When a formula needs to be recalculated,

Quattro uses "intelligent recalc" to recalculate
only those formulas whose elements have changed.
This makes Quattro smarter and faster than other
spreadsheets.

Greater macro capability
You can create macros instantly by recording

your actions and storing them in the spreadsheet.
The number of macros is limited only by memory.
A built-in macro debugging environment makes it
easy to find and correct problem areas. Quattro
also includes a set of over 40 macro commands
which make up a programming language.

Suggested retail price $195.00
(not copy protected)

Direct compatibility
Quattro can directly load and use data files

created with other spreadsheet and database pro
grams like 1-2-3, dBASE, and Paradox. Quattro can
read and even write WKS, WKl, and WKE files. You
can also import ASCII and other text files into the
spreadsheet.

Easy installation
Quattro can detect most computers and screen

types, so it's always ready to load and run!
Plus, like all other Borland products, Quattro is

not copy protected!

'Jechnical Features
o Understands your 1-2-3 macros
o 100 built-in financial and statistical functions
o Menu Builder add-in for customizing menus
o Supports 8087/80287 math coprocessors
o Supports EGA, CGA. and VGA graphics adapters
o Pop-up menus
o Shortcuts to menu commands
o Context-sensitive online help
o Three types of choice lists: @functions and syn

tax, macro commands, and existing block names
o Pointing lets you specify a block of cells using

arrow keys
o Search (or Query) lets you find speCific records

or cells
o Lets you arrange/rearrange data in alphabetical,

numerical, or chronological order
o Supports Expanded Memory Specification to

create spreadsheets larger than 640K
o Supports PostScript"" printers and typesetters

Minimum system requirements: For the IBM PS/2~ and the IBM· and
Compaq- families of personal computers and all 100% compatibles. PC
DOS (MS-DOS·) 2.0 or later. Two floppies or a hard disk. 384K.

Quattro and Paradox are trademarks of Borland International. Inc. Lotus and 1-2-3 are regis
tered trademarks of Lotus Development Corp Other brand and product names are trade
marks or registered trademarks of their respective holders. Copynght C1987 Berland Interna
IiOnal, Inc BOR 0414

,..'E8 AND DEVElIfl'8 IIBIAIY

An unsurpassed col/ection of TURBO
PASCAL TOOLS that make you the
expert, now upgraded to Version 4.0!

Turbo Pascal Tutor:
For both the novice programmer and the profes

sional. Everything you need to write a simple pro
gram or handle advanced concepts like using
assembly language routines with your Thrbo Pascal
programs. The programmer's guide covers the fine
points of Thrbo Pascal programming with lots of
examples; and on accompanying disk gives you all
the source code. A real education for just $69.95!

Turbo Pascal Editor lbolbox:
Everything you need to build your own custom

text editor or word processor including easy-to
install modules, source code and plenty of know
how. Includes all the popular features like word
wrap, auto indent, find/replace. Just $99.95!

Turbo Pascal Database lbolbox:
A complete library of Pascal procedures that let

you sort and search your data and build powerful
applications. Includes Thrbo Access files that use
B+ trees to organize and search your data, and
ThrboSort to sort it. GINST even gets your pro
grams up and running on other terminals! Includes
a free database that you can use as is or modify to
suit your needs. Just $99.95!

Turbo Pascal Graphix lbolbox:
Gives you all the high-resolution graphics and

graphic window management capabilities you need,
with tools to draw and hatch pie charts, bar charts,
circles, rectangles and a full range of geometric
shapes. Save and restore graphic images to and
from disk, plot precise curves, and create anima
tion.* All for just $99.95!

Turbo Pascal GameWorks:
Secrets and strategies of the masters with easy

to-understand examples that teach you how to
quickly create your own computer games using
Thrbo Pascal. For instant excitement, play the three
great computer games included on disk-Thrbo
Chess, Thrbo Bridge and Thrbo Go-Moku. They're
all compiled and ready to run. Just $99.95!

Turbo Pascal Numerical
Methods lbolbox:

All the state-of-the-art applied mathematical
tools you'll ever need. A collection of Thrbo Pascal
mathematical routines and programs and ten inde
pendent modules that you can easily adapt to dif
ferent programs. Gives you the kind of mathemati
cal routines IMSL8 and NAG libraries provide for
FORTRAN. Complete with sample programs and
source code for each module. All for just $99.95!

Buy them separately or get The
Developer's Library, which includes
all six, for just $395 suggested retail
price! Not copy protected!

System Requirements: For the IBM PS/2- and the I BM- and Compaq
families of personal computers and all 100% compatibles.
Operating System: PC-DOS (MS-DOS) 2.0 or later.
*'lIlrbo Pascal Graphix 1bo/box also requires one of the following
graphics adapters: CGA. EGA. Hercules. or IBM 3270.

All Borland products are trademarks or registered trademarks of Borland International, Inc.
Borland Turbo Too/box- products. Other brand and product name are trademarks or regis
tered trademarks of their respective holders. Copyright 01987 Borland International,lnc.

BOA 0486

.11,rll'lIlI ® THE IEII1I1'
lJ,j In'lIn: IIIIA.,IEI
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts all these desktop
accessories at your fingertips-Instantly!

A lull-screen WordStar-Jike Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A lull-Ieatured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Bortilld tnternational. Inc. dBASE is a registered trademark of
Ashton- Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp
AT&T is a registered trademark of Americill Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp WordStar is a registered trademark of MicroPro
International Corp Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

BIIPEIIEY:® :~:::IIt:'''"'r
RAM-resident

Increased productivity lor IBM®PCs or compatibles
SuperKey's simple macros are electronic shortcuts to success.

By letting you reduce a lengthy paragraph into a single . keystroke
01 your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 11
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with SuperKey's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your confidential files-confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. Super Key aTso implements the U.S.
government Data Encryption Standard (DES).

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character
keyboard "type-ahead" buffer to 128
characters

even while running other programs
~ PUll-down menus
~ Superfast file encryption
~ Choice of two encryption schemes
~ On-line context-sensitive help
~ One-finger mode reduces key

commands to single keystroke

~ Real-time delay causes macro playback
to pause for specified interval

~ Transparent display macros allow
creation of menus on top of application
programs

~ Screen OFF/ON blanks out and restores
screen to protect against "burn in"

~ Data entry and format control using
"fixed" or "variable" fields

~ Command stack recalls last 256
characters entered ~ Partial or complete reorganization of

keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

SuperKey is a registered trademark of Borland tnternational, Inc. IBM, Xl AT, and PCjr are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
BO,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

~~~~ ~~Ht:'. it k~') ~j.'~.af tlt.l:t d~'~:"$ ~~ ad:l .. !h 
hl~lItd iI' "ht-ih hJ ~{I! M~t i~~ <I.!"'<MlM tJ)E: '¥:i>1' ~~ >l ,II 

The Turbo Lightning Proofreader 

The Turbo Lightning Thesaurus 

Suggested Retail Price: $99.95 (not copy protected) 

You can teach Turbo 
Lightning new words 

You can teach your new Turbo 
Lightning your name, business 
associates' names, street 
names, addresses, correct 
capitalizations, and any 
specialized words you use 
frequently. Teach Turbo 
Lightning once, and it 
knows forever. 

Turbo Lightning is the 
engine that powers 
Borland's Turbo Lightning 
Library® 

Turbo Lightning brings 
electronic power to the 
Random House Concise Word 
List and Random House 
Thesaurus. They're at your 
fingertips-even while you're 
running other programs. Turbo 
Lightning will also "drive" 
soon-to-be-released 
encyclopedias, extended 
thesauruses, specialized 
dictionaries, and many other 
popular reference works. You 
get a head start with this 
first volume in the Turbo 
Lightning Library. 

Minimum system configuration: IBM PC, Xl, Al, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DOS) 2.0 or greater. 
256K RAM. Hard disk recommended. 

BORLAND 
INTERNATIONAL 

Turbo lightning and Turbo Lightning library are registered trademarks of Borland International. Inc 
IBM. Xl. AT. and PCjr are registered trademarks of International Business Machines Corp Random 
House is a registered trademark of Random House. Inc Copyright 1987 Borland International 

BOR 0070B 



Your Development Toolbox and Technical Reference Manual for Thrbo Lightning® 

l I G H T N I N G 

Lightning Word Wizard includes complete, commented Turbo 
Pascal® source code and all the technical information you'll 

need to understand and work with Turbo Lightning's "engine." 
More than 20 fully documented Turbo Pascal procedures 

reveal powerful Turbo Lightning engine calls. Harness the full power 
of the complete and authoritative Random House® Concise 

Word List and Random House Thesaurus. 

Turbo Lightning's "Reference 
Manual" 
Developers can use the versatile on-line 
examples to harness Turbo Lightning's 
power to do rapid word searches. Lightning 
Word Wizard is the forerunner of the data
base access systems that will incorporate 
and engineer the Turbo Lightning Library® 
of electronic reference works. 

The ultimate collection of word 
games and crossword solvers! 
The excitement, challenge, competition, 
and education of four games and three 
solver utilities-puzzles, scrambles, spell
searches, synonym-seekings, hidden words, 
crossword solutions, and more. You and 
your friends (up to four people total) can 
set the difficulty level and contest the high
speed smarts of Lightning Word Wizard! 

Turbo Lightning-Critics' Choice 
"Lightning's good enough to make programmers and users cheer, executives of other 
software companies weep." Jim Seymour, PC Week 

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently 
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles 

"This newest product from Borland has it all." Don Roy, Computing Now! 

Minimum system configuration: IBM PC, Xl, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC·DOS (MS·DOS) 2.0 
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code. 

Suggested Retail Price: $69.95 
(not copy protected) 

Turbo Pascal. Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International. Inc. Random 
House is a registered trademark of Random House. Inc. IBM. XT. AT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a 
registered trademark at Microsoft Corp. Copyright 1987 Borland International BOR0087B 



1'££1 £11 ® THE IATABASE 
~r'~II: .AIASE' 

The high-performance database manager 
that's so advanced it's easy to use! 

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists, 
customer files, or even your company's budgets-Reflex is the database manager for you! 

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends 
database management with business graphics. Because a picture is often worth a 1000 words, Reflex 
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see. 

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports. 
You can use database files created with Reflex or transferred from Lotus 1-2-3,e dBASE,e PFS: File,e 
and other applications. 

Rellex: The Critics' Choice 

'.' ... if you use a PC, you should know about Reflex ... may be the best bargain in software today." 
Jerry Pournelle, BYTE 

"Everyone agrees that Reflex is the best-looking database they've ever seen." 
Adam B. Green, Info World 

"The next generation of software has officially arrived." Peter Norton, PC Week 

Reflex: don't use your PC without itl 
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of 
Borland's award-winning Reflex. 

Suggested Retail Price: $149.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules 
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE, 
or PFS: File optional. 

Reflex is a trademark 01 Borland/Analytica Inc. Lotus 1-2-3 is a registered trademark 01 Lotus 
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a 
registered trademark 01 SOf1ware Publishing Corporation. tBM, XT. AT, and IBM Color Graphics 
Adapter are registered trademarks of International Business Machines Corporation. Hercules 
Graphics Card is a trademark 01 Hercules Computer Technology. MS-DOS is a registered 
trademark of Microsoft Corp Copyright 1987 Borland International BOR 0066C 



BEILE1'HE WIIISHIP" 
Includes 22 "instant templates" covering a broad range of 

business applications (listed below). Also shows you how to 
customize databases, graphs, crosstabs, and reports. It's an invaluable 

analytical tool and an important addition to another one of 
our best sellers, Reflex: The Database Manager. 

Fast-start tutorial examples: 
Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies 
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each 
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple 
steps to adapt the files to your own needs. 
22 practical business applications: 
Workshop's 22 "instant templates" give you a wide range of analytical tools: 

Administration 
• Scheduling Appointments 
• Planning Conference Facilities 
• Managing a Project 
• Creating a Mailing System 
• Managing Employment Applications 

Sales and Marketing 
• Researching Store Check Inventory 
• Tracking Sales Leads 
• Summarizing Sales Trends 
• Analyzing Trends 

Production and Operations 
• Summarizing Repair Turnaround 

• Tracking Manufacturing Quality Assurance 
• Analyzing Product Costs 

Accounting and Financial Planning 
• Tracking Petty Cash 
• Entering Purchase Orders 
• Organizing Outgoing Purchase Orders 
• Analyzing Accounts Receivable 
• Maintaining Letters of Credit 
• Reporting Business Expenses 
• Managing Debits and Credits 
• Examining Leased Inventory Trends 
• Tracking Fixed Assets 
• Planning-Commercial Real Estate Investment 

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex: 
The Workshop will help you quickly become an expert database analyst. 

Minimum system configuration: IBM PC, AI, and Xl, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex: 
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent. 

Suggested Retail Price: $69.95 
(not copy protected) 

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/ Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business 
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International 

BOR 0088B 



TURBO 

the natural language of ArtifICial Intelligence 

Turbo Prolog brings fifth-generation supercomputer 
power to your IBM®PC! 

Turbo Prolog takes 
programming into a new, 
natural, and logical 
environment 
With Turbo Prolog, 
because of its natural, 
logical approach, both 
people new to programming 
and professional programmers 
can build powerful applica
tions such as expert systems, 

Turbo Prolog provides 
a fully integrated pro
gramming environment 
like Borland's Turbo 
Pascal,® the de facto 
worldwide standard. 
You get the 
complete Turbo 
Prolog programming 
system 
You get the 200-page 
manual you're holding, 
software that includes 

customized knowledge 
bases, natural language 
interfaces, and smart ;~~~~~~~it] the lightning-fast Turbo 
information management systems. 
Turbo Prolog is a declarative language which 
uses deductive reasoning to solve 
programming problems. 

Turbo Prolog's development system 
includes: 
o A complete Prolog compiler that is a variation 

of the Clocksin and Mellish Edinburgh 
standard Prolog. 

o A full-screen interactive editor. 
o Support for both graphic and text windows. 
o All the tools that let you build your own 

expert systems and AI applications .with 
unprecedented ease. 

--..=.. 
BORLAND 

--:::"' INTERNATIONAL 

Prolog six-pass 
compiler and interactive editor, and the 
free GeoBase natural query language 
database, which includes commented 
source code on disk, ready to compile. 
(GeoBase is a complete database designed 
and developed around U.S. geography. 
You can modify it or use it "as is.") 

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PCjr 
and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 384K RAM 
minimum. 

Suggested Retail Price: $99.95 
(not copy protected) 

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland International, Inc 
IBM, AT, Xl and PCjr are registered trademarks of International Business Machines Corp MS-DOS is a 
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 00160 



"IIII',IIIIIST. 

"'11" 
Enhances Turbo Prolog with more than 80 tools 

and over 8,000 lines of source code 

Turbo Prolog, the natural language of Artificial Intelligence, is the 
most popular AI package in the world with more than 100,000 users. 

Our new Turbo Prolog Toolbox extends its possibilities. 

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th-generation computer programming 
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80 
tools and over 8,000 lines of source code that can be incorporated into your programs, Quite easily. 

Turbo Prolog Toolbox features include: 
@ Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics 
@ Complete communications package: supports XModem protocol 
@ File transfers from Reflex,@> dBASE III,@> Lotus 1-2-3,@> Symphony" 
@ A unique parser generator: construct your own compiler or Query language 
@ Sophisticated user -interface design tools 
@ 40 example programs 
@ Easy-to-use screen editor: design your screen layout and liD 
@ Calculated fields definition 
@ Over 8,000 lines of source code you can incorporate into your own programs 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10 
or higher. Dual-floppy disk drive or hard disk. 512K. 

Turbo Prolog Toolbox and Turbo Prolog are trademarks 01 Borland International, Inc. Rellex 
is a registered trademark of Borland/Analytica, Inc. dBASE III is a registered trademark of 
Ashlon-Tate. Lotus 1-2-3 and SYfTllhony are registered trademarks of Lotus Development 
Corp. IBM, XT. and AT are registered trademarks of International Business Machines Corp. 
MS-DOS is a registered trademark of Microsoft Corp. BOR 0240 



TUBIII IABIC® 
The high-speed BASIC you've been waiting lor! 

You probably know us for our Turbo Pascal® and Turbo Prolog.® Well, we've done 
it again! We've created Turbo Basic, because BASIC doesn't have to be slow. 

If BASIC taught you how to walk, Turbo Basic will teach you how to run! 
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development envir-
0nment with an amazingly fast compiler, an interactive editor and a trace debugging system. And because 
Turbo Basic is also compatible with BASICA, chances are that you already know how to use Turbo Basic. 

Turbo Basic ends the basic confusion 
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is right, 
the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing Borland 
family of programming languages we call the "Turbo Family." And hundreds of thousands of users are 
already using Borland's languages. So, welcome to a whole new generation of smart PC users! 

Free spreadsheet included with source code! 
Yes, we've included MicroCalc,'" our sample spreadsheet, complete with source code. So you can get 
started right away with a "real program." You can compile and run it "as is," or modify it. 

A technical look at Turbo Basic 
s' Full recursion supported 
s' Standard IEEE floating-point format 
s' Floating-point support, with full 8087 copro

cessor integration. Software emulation if no 
8087 present 

s' Program size limited only by available 
memory (no 64K limitation) 

s' EGA, CGA, MCGA and VGA support 
s' Full integration of the compiler, editor, and 

executable program, with separate windows 
for editing, messages, tracing, and execution 

s' Compile and run-time errors place you in 
source code where error occurred 

s' Access to local, static and global variables 
s' New long integer (32-bit) data type 
s' Full 80-bit precision 
s' PUll-down menus 
s' Full window management 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configuration: IBM PC. AT, XT, PS/2 or true compatibles. 320K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later. 

liJrbo BaSic. Turbo Prolog and Turbo Pascal are registered trademarks and MicroCalc is a trade
mark of Borland International. Inc. Other brand and product names are trademarks or registered 
trademarks of their respective holders. 
Copyright 1987 Borland International BOA 0265B 



"RBII BABIC
e 

DATABASE TOOLBOX'· 
With the Turbo Basic Database Toolbox you can build your own 

powerful, professional-quality database programs. And like aI/ other 
Borland Toolboxes, it's advanced enough for professional 

programmers yet easy enough for beginners. 

Three ready-to-use modules 
The Toolbox enhances your program

ming with three problem-solving 
modules: 
Turbo Access quickly locates, inserts, 
or deletes records in a database using 
B+ trees-the ,fastest method for finding 
and retrieving database information. 
(Source code is included.) 
Turbo Sort uses the Quicksort 
method to sort data on single items 
or on multiple keys. Features virtual 
memory management for sorting large 
data files. (Commented source code 
is on disk.) 
TRAINER is a demonstration program 
that graphically displays how B+ trees 
work. You can key in sample records and 
see a visual index of B+ trees being 
built. 

Free sample database 
Included is a free sample database 

with source code. Just compile it, and it's 
ready to go to work for you-you can 
use it as is or customize it. You can 
search the database by keywords or 
numbers, update records, or add and 
delete them, as needed. 

Saves you lime and money 
If you're a professional programmer 

writing software for databases or other 
applications where search-and-sort capa
bilities are important, we can save you 
time and money. Instead of writing the 
same tedious but essential routines over 
and over again, you can simply include 
any of the Toolbox's modules 
in your own compiled programs. 

Technical Features 
@ Maximum number of files open: 15 files, 

or 7 data sets 
@ Maximum file size: 32 Mb 
@ Maximum record size: 32K 

@ Maximum number of records: +2 billion 
@ Maximum field size: 32K 
@ Maximum key size: 128 bytes 
@ Maximum number of keys: +2 billion 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system requirements: For the IBM PS/2 and the IBM~ and CompaQ~ families of personal computers and all 100% compatibles. running 
Turbo Basic 1.0. PC-~OS (Ms-oose) 2.0 or later. Memory: 640K. 

All Borland products are registered trademarks or trademarks 01 Borland 
Inlernational, Inc. or Borland/ Analytica, Inc. A Borland Turbo Too/box pro
duct. Other brand and product names are trademarks or regislered trade
marks 01 their respective holders. Copyright 1987 Borland International. 

BOR 0384A 



',IBI BABIC® 
EI1111B 11111lllll" 

With Turbo Basic we gave you the fastest BASIC around. Now the 
Turbo Basic Editor Toolbox will help you build your own superfast 

editor to incorporate into your Turbo Basic programs. We provide all 
the editing routines. You plug in the features you want! 

Two sample editors with source code 
To demonstrate the tremendous power of the Toolbox, we've included two sample editors 

with complete source code: 
FirstEd. A compl~te editor with windows, block commands, and memory-mapped screen 
routines, all ready to include in your programs. 

MicroSta"-: A full-blown text editor with a pull-down menu user interface and all the standard 
features you'd expect in any word processor. Plus features other word processors can't begin 
to match: 

g RAM-based editor for superfast editing 
g View and edit up to eight windows at a 

time 
g Support for line, stream, and column 

block mode 
g Instant paging, scrolling, and text 

display 
g Up to eight hidden buffers at a time to 

edit, swap, and call text from 

Build the word processor of your choice! 

g Multitasking to let you print in the 
"background" 

g Keyboard installation for customizing 
command keys 

g Custom designing of colors for text, 
windows, menus, and status line 

g Support for DOS functions like Copy 
file, Delete file, Change directory, and 
Change logged drive 

We give you easy-to-install modules. Use them to build yourself a full-screen editor with 
pull-down menus, and make it work as fast as most word processors-without having to 
spend hundreds of dollars! 

Source code for everything in the Toolbox is provided. Use any of its features in your own 
Turbo Basic programs or in programs you develop for others. You don't even have to pay 
royalties! 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system requirements: For the IBM PS/2~ and the IBM" and CompaQ~ families of personal computers and all 100% 
compatibles running Turbo Basic 1.0. PC-DOS (MS-DOS@)) 2.0 or greater. Memory: 640K. 

=, ~- =- BORLAND EJ INTERNATIONAL 

All Borland products are trademarks or registered trademarks of Borland 
International. Inc. or Borland/Analytica. Inc. Other brand and product names 
are trademarks or registered trademarks of their respective holders. A Bor
land Turbo Toolbox product. Copyright 1987 Borland International BOR 0383 



',1111 C· Includes tree 
MicroCalc spreadsheet 

with source code 

A complete interactive development environment 
With Turbo C, you can expect what only Borland delivers: 
Quality, Speed, Power and Price. And with its compilation 
speed of more than 1000 lines a minute, Turbo C makes 

everything else look like an exercise in slow motion. 

Turbo C: The C compiler for both amateurs and professionals 
If you're just beginning and you've "kinda wanted to learn C," now's your chance to do it the easy way. 
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will 
considerably increase your productivity and help make your programs both smaller and faster. 

Turbo C: a complete interactive development environment 
Like Turbo Pascale and TlJ'bo Prolog," Turbo C comes with an interactive editor that will show 
you syntax errors right in your source code. Developing, debugging, and running a Turbo C 
program is a snap! 

Technical Specifications 
5r' Compiler: One-pass compiler generating native in- 5r' Development Environment: A powerful "Make" is 

line code, linkable object morules and assembler. included so that managing Turbo C program 
The object module format is compatible with the development is easy. Borland's fast "Turbo 
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down 
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pOinters. Includes ment or generate an executable file. 
floating point emulator (utilizes 8087/80287 if 5r' Links with relocatable object modules created 
installed). using Borland's Turbo Prolog into a 

5r' Interactive Editor: The system includes a powerful, single program. 
interactive full-screen text editor. If the compiler 5r' ANSI C compatible. . 
detects an error, the editor automatically positions 5r' Start-up routine ~ource ~ode Included .. 
the cursor appropriately in the source code. 5r' Both. co~mand lIne and Integrated enVIronment 

versIOns Included. 

"Sieve" benchmark (25 iterations) 

Turbo C Microsoftf'J C Lattice C 

Compile time 3.89 16.37 13.90 

Compile and link time 9.94 29.06 27.79 

Execution time s.n 9.51 13.79 

Object code size 214 297 301 

Price $99.95 $450.00 $500.00 

Benchmark run on a 6 Mhz IBM AT USing Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and the 
MS overlay linker version 3.51; Lattice eversion 3.1 and the MS object linker version 3.05. 

Suggested Retail Price: $99.95* (not copy protected) "IntroductOl)' offer good through July 1. 1987 

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K. 

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland 
International. Inc. Microson C and MS-DOS ife registered trademarks of Microson Corp. Lattice C 
is a registered trademark of Lattice. Inc. IBM. Xl. and AT are registered trademarks of International 
Business Machines Corp. BOR 0243 



EIREIA: lIE "lVER" 
The solution to your most complex 

equations-in seconds! 
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with 
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimization problems, plots functions, generates reports, and 
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you 
solve your real-world mathematical problems fast, without having to learn numerical approximation 
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka 
is easy to learn and easy to use-as simple as a hand-held calculator. 

X + exp(X) = 10 solved instantly instead of eventually! 
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka, 
there's no guessing, no dancing in the dark-you get the right answer, right now. (Ps: X = 2.0705799, 
and Eureka solved that one in .4 of a second!) 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into the 

full-screen editor 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

Some of Eureka's key features 
You can key in: 
~ A formula or formulas 
~ A series of equations-and solve for 

all variables 
~ Constraints (like X has to be 

< or = 2) 
~ A function to plot 
~ Unit conversions 
~ Maximization and minimization problems 
~ Interest Rate/Present Value calculations 
~ Variables we call "What happens?," like 

You can then tell Eureka to 
• Evaluate your solution 
• Plot a graph 
• Generate a report, then send the output 

to your printer, disk file or screen 
• Or all of the above 

Eureka: The Solver includes 
~ A full-screen editor 
~ Pull-down menus 
~ Context-sensitive Help 
~ On-screen calculator 
00 Automatic 8087 math co-processor 

chip support 
~ Powerful financial functions 
~ Built-in and user-defined math and 

financial functions 
~ Ability to generate reports complete with 

plots and lists 
"What happens if I change this variable to 
21 and that variable to 27?" 

~ Polynomial finder 
~ Inequality solutions 

Minimum system configuration: IBM PC. AT, XT, PS/2. Portable. 
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and 
later. 384K. 

Suggested Retail Price: $167.00 
(not copy protected) 

Eureka: The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered 
trademarks of International BUSiness Machines Corp. MS-DOS is a registered trademark of 
Microsoft Corp. Copyright 1987 Borland International BOR 0221 B 



.,nrll'PI® THE DESKTOP 
1J'"~n' .. ~ : ORBAN/IER Release 2.0 

Macintosh'M 

The most complete and comprehensive collection of 
desk accessories available for your Macintosh! 

Thousands of users already know that SideKick is the best collection of desk accessories available 
for the Macintosh. With our new Release 2.0, the best just got better. 

We've just added two powerful high-performance tools to SideKick-Outlook'": The Outliner 
and MacPlan'": The Spreadsheet. They work in perfect harmony with each other and while you 
run other programs! 

Outlook: The Outliner 
• It's the desk accessory with more power than a stand-alone outliner 
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics 

into your outlines 
• Works hand-in-hand with MacPlan 
• Allows you to work on several outlines at the same time 

MacPlan: The Spreadsheet 
• Integrates spreadsheets and graphs 
• Does both formulas and straight numbers 
• Graph types include bar charts, stacked bar charts, pie charts and line graphs 
• Includes 12 example templates free! 
• Pastes graphics and data right into Outlook creating professional memos and reports, complete 

with headers and footers. 

SideKick: The Desktop Organizer, 
Release 2.0 now includes 

~ Outlook: The Outliner 
~ MacPlan: The Spreadsheet 
~ Mini word processor 
~ Calendar 
~ Phone Log 
~ Analog clock 
~ Alarm system 
~ Calculator 
~ Report generator 
~ Telecommunications (new version now 

supports XModem file transfer protocol) 

• 1361~ Sall's ~ 
01594'£ Sooll'sB 

II 2HHiS Tohl R"'l'fl"lUfS 

[] ((1 

• 0:1 £X,fflm 
o Q3114 Labor 

[D 4(.e.1i Natff'\ill; 

~ 621-;11 Ovtl'h.~1f 

o 111&'E TOl<1lllxl'fflSIS 

IJ ". 
• 1843'6 Hf.tF'ro(lt 

MacPlan does both spreadsheets and business 
graphs. Paste them into your Oul/ook files and 

generate professional reports. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended. 
With one 400K drive, a limited number of desk accessories will be installable per disk. 

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland 
International. Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple 
Computer. Inc. Copyright 1987 Borland International BOA 00690 



The ultimate Pascal development environment 

Borland's new Turbo Pascal lor the Mac is so incredibly last that it can 
compile 1,420 lines 01 source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal lor the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal lor the Mac is so compatible with Lisae that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh. 

The 27 -second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in compiler directives 
• Compilation options include compiling to disk or 

memory, or compile and run 
• Search and change features in the editor speed up 

and simplify alteration' of routines 
• No need to switch between programs to compile 

or run a program 
• Ability to use all available Macintosh memory 

without limit 
• Streamlined development and debugging • "Units" included to call all the routines provided by 
• Compatibility with Macintosh Programmer's Macintosh Toolbox 

'Suggested Retail Price: $99.95* (not· copy protected) 
·Inlroductory price expires July 1. 1987 

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. 

Turbo Pascal and SideKick are registered trademarks of Borland International. Inc. and Reflex is a 
registered trademark of Borland/Analytica. Inc. Macintosh is a trademark of Mcintosh Laboratories, Inc. licensed 
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside 
MaCintosh is a copyright of Apple Computer. Inc. 
Copyright 1987 Borland International BOA 0167A 



1URBB PABCAl® 

TIITI' 
From the folks who created Turbo Pascal. Borland's new 
Turbo Pascal Tutor is everything you need to start pro
gramming in Turbo Pascal on the MacintoshtM It takes 

you from the bare basics to advanced programming in a 
simple, easy-to-understand fashion. 

No gimmicks. It's all here. 

The manual, the Tutor application, and 30 sample 
programs provide a step-by-step tutorial in three 
phases: programming in Pascal, programming on 
the Macintosh, and programming in Turbo Pascal 
on the Macintosh. Here's how the manual is set 
up: 

Turbo Pascal for the Absolute Novice 
delivers the basics-a concise history of Pascal, 
key terminology, your first program. 

A Programmer's Guide to Turbo Pascal 
covers Pascal specifics-program structure, 
procedures and functions, arrays, strings, and so 
on. We've also included Turbo Typist, a textbook 
sample program. 

Advanced Programming 
takes you a step higher into stacks, queues, 
binary trees, linked structures, writing large pro
grams, and more. 

Using the Power of the Macintosh 
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the 
600-plus utility routines in the Apple Toolbox. 

Programming the Macintosh in Turbo Pascal 
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com
plete stand-alone application featuring animated 
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge 
you've just acquired. 

The disk contains the source code for all the 
sample programs, including Turbo Typist, MacTy
pist, and Turbo Tutor. The Tutor's split screen lets 
you run a procedure and view its source code 
simultaneously. After running it, you can take a 
test on the procedure. If you're stuck for an 
answer, a Hint option steers you in the right 
direction. 

Macintosh topics included are 
g memory management g menus 
g resources and resource files g desk accessory support 
g QuickDraw g dialogs 
g events g File Manager 
g windows g debugging 
g controls 

Suggested Retail Price: $69.95 

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal. 

~:;o BORLAND ~_. INTERNATIONAL 
Turbo Pascal and Turbo Tulor are reglslered Irademarks 01 Borland Inlernatlonal.lnc Other brand and product names 
are trtidemarks or registered trademarks 01 the" respect"e holders Copyrlqht 1987 Borland Inlernallonal BaR 0381 



fIlBfKA: THE SBlVE'" 
If you're a scientist, engineer, financial analyst, student, teacher, or any 

other professional working with equations, Eureka: The Solver can do 
your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimiza
tion problems, plots functions, generates reports, 
and saves an incredible amount of time. Even if 
you're not a computer specialist, Eureka can help 
you solve your real-world mathematical problems 
fast, without having to learn numerical approximation 
techniques. Eureka is easy to learn and easy to 
use-as simple as a hand-held calculator. 

x + exp(X) = 10 solved instantly instead 
of eventually! 

Imagine you have to solve for X, where X + 
exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going 
to take a lot of time guessing at X. With Eureka, 
there's no guessing, no dancing in the dark-
you get the right answer, right now. (PS: X = 
2.0705799, and Eureka solved that one in less than 
5 seconds!) 

Some of Eureka's key features 
You can key in: 
51 A formula or formulas 
51 A series of equations-and solve for 

all variables 
51 Constraints (like X must be < or = 2) 
51 Functions to plot 
51 Unit conversions 
51 Maximization and minimization problems 
51 Interest Rate/Present Value calculations 
51 Variables we call "What happens?," like 

"What happens if I change this variable to 
21 and that variable to 27?" 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into a problem 

text window 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

You can then tell Eureka to: 
• Verify the solutions 
• Draw a graph 
• Zoom in on interesting areas of the graph 
• Generate a report and send the output to 

your printer or disk file 
• Or all of the above 

Eureka: The Solver includes: 
51 Calculator+ desk accessory 
51 Powerful financial functions 
51 Built-in and user-defined functions 
51 Reports: generate and save them as 

MacWrite'· files-complete with graphs 
and lists-or as Text Only files 

51 Polynomial root finder 
51 Inequality constraints 
51 Logging: keep an up-to-the-minute record 

of your work 
51 Macintosh'· text editor 
51 On-screen Help system 

Suggested Retail Price: $195.00 (not copy protected) 

Minimum system configuration: Macintosh 512K. MaCintosh Plus, SE, or II with one BOOK disk drive or two 400K disk drives. 

Eureka The Solver is a trademark 01 Borland International. Inc. Macintosh is 
a trademark 01 Mcintosh Laboratory. Inc. licensed to Apple Computer, Inc. 
Copyright 1987 Borland International BOR 0415 



"BBII PASCAl ll1l1lBlIlTM 

1'.ERICAl.ETIII's 
Turbo Pascal Numerical Methods Toolbox for the Macintosh 

implements the latest high-level mathematical methods to solve 
common scientific and engineering problems. Fast. 

So every time you need to calculate an integral, work with Fourier transforms, or incorporate any of 
the classical numerical analysis tools into your programs, you don't have to reinvent the wheel, because 
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that 
gives you applied state-of-the-art math tools. It also includes two graphics demo programs that use 
least-square and Fast Fourier Transform routines to give you the picture along with the numbers. 

The Turbo Pascal Numerical Methods Toolbox is a must if you're involved with any type of scientific or 
engineering computing on the Macintosh. Because it comes with complete source code, you have total 
control of your application at all times. 

What Numerical Methods Toolbox will do lor you: 

• Find solutions to equations • Differential equations 
• Interpolations • Least-squares approximations 
• Calculus: numerical derivatives and integrals • Fourier transforms 
• Matrix operations: inversions, determinants, and eigenvalues • Graphics 

Five free ways to look at Least-Squares Fit! 
As well as a free demo of Fast Fourier Transforms, you also get the Least-Squares Fit in 

five different forms-which gives you five different methods of fitting curves to a collection 
of data pOints. You instantly get the picture! The five different forms are 

1. Power 4. 5-term Fourier 
2. Exponential 5. 5-term 
3. Logarithm Poynomial 

They're all ready to compile and run as is. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system requirements: Macintosh 512K, Macintosh Plus, SE, or II, with one 800K disk drive (or two 400K). 

All Borland products are trademarks or registered trademarks of Borland International, 
Inc or Borlandl Analytlca, Inc. Macintosh IS a trarJemark licensed to Apple Computer, 
Inc. Copyrrght 1987 Borland International A Borland Turbo Toolbox product 

BOR 0419 



Borland 
Software 
OBDEll rODAY 

------
I 4585 Scot~ Valley Drive Scotts Valley, Califomia 95066 

I In I To Orde~ ,"'-", California 
By Credit call . 

I Card, ' ... ,' (800) 
I (~:g) 742-1133 
I 255-8008 In Canada call 

(800) 237-1136 

-------
BOA023~ 



Index 

Index 



! makefile directive, 561 
# makefile comment, 550 
# character, 199 
$, See Compiler directives 

See also Hexadecimal constants 
?: operator, 564 

in makefiles, 567 
@ operator, 216, 226, 245-246, 525 

versus A symbol, 531 
versus Addr, 374 

A pointer symbol, 216 

A 
A86 assembler, 84 
Abs, 285, 374 
Absolute clause, 223 
Active window, 165 
Actual parameters, 247 

defined, 59 
Addr, 286, 374 

in version 3.0, 525 
Address operators, 49 
And operator, 241,308 
AndPut constant, 316,459 
ANSI Pascal, 75, 531-536 

compatibility with 4.0, 119 
errors in, 536 

Append procedure, 275, 278, 374 
Arc procedure, 318, 325, 375 
ArcTan function, 285, 376 
Arithmetic functions, 285 
Arithmetic operators, 239 
Arrays, 212, 231 

types, 348 
variables, 225 

ASCII codes, 579-581 
.ASM files, Make utility and, 89 
Aspect ratio, 408 
Assembler, 353 
Assembly language, 82, 122, 353-361, 

530,543 
A86 and, 84 
examples, 355-358 
external procedures and functions, 

83 
inline directive, 83, 360-361 

inline statement, 83, 358-359 
$L compiler directive and, 84 
linking routines, 88 
Make utility and, 89 
MASM assembler and, 84 
routines, 82 

AssignCrt procedure, 303, 364, 378 
Assignment operators, 46 
Assign procedure, 76,275-276,364, 

377 
AUTOEXEC.BAT file, 605 
Autoindent mode default, 597 
Auto save default option, 596 
Aux, version 3.0, 365-369, 523 
AUX:, version 3.0, 112 
AUXINOUT.PAS,365-367 
AX register, 351, 360 

B 
Back procedure, 325 
Backup disks, 12-14 
Backup source files option, 4, 160 

default, 592 
.BAK files, 4 
Bar procedure, 318, 378 
Bar3D procedure, 305, 318,379 
Basic editor commands, 166 
BCD arithmetic, 112, 119,527 
BCD.PAS,119 
$B compiler directive, 48, 98, 119, 

121,158,522,529 
.BCI files, 305 
Binary floating-point arithmetic, 40 
.BIN files, 111,530 
BINOBJ, 14,467-471 
BIOS, 298 
BitBlt operations, 308, 316, 458 
Bit images, 308, 416 
Bit-mapped fonts, 307 
Bit-oriented routines, 305 
Bitwise operators, 47, 240 
Block commands, 171 
BlockRead procedure, 279, 380 
Blocks, program, 201 
BlockWrite procedure, 279, 381 
Boolean, 39 

Turbo Pascal Owner's Handbook 



evaluation, 98, 538 
evaluation option, 158 
expressions, 43, 119,529 
operators, 241 
types, 43, 344 
values, 208 

/B option, 183 
Bottom line, 20 
BP register, 353, 359, 362 
Brackets, in expressions, 247-248 
Buffering, link, 540 
Buffers, flushing, 406 
BufLen function, in 3.0, 112 
Build all option, 183 
Build command, 3, 32, 34, 88,154 
BUILTINS.MAK, 566 
BX register, 351, 360 
Byte data type, 40, 76 

c 
Calling conventions, 349 
Case statement, 52, 253 
CBreak variable, 108, 112, 115,324, 

523 
.CFG files, 4 
CGA, 300, 305, 314, 434-435 

CheckSnow and, 302 
Chain programs, 111,522 
Change dir option, 152 
Characters 

reading, See ReadKey 
special, 299, See also 

Char data types 
strings, 198 

Char data types, 41, 208, 344 
defined,39 

ChDir procedure, 276, 382 
CheckBreak variable, 112, 115, 301 
CheckEOF variable, 301 
CheckSnow variable, 302 
.CHR files, 305 
Chr function, 284, 383 
Circle procedure, 305, 318, 325, 383 
ClearDevice procedure, 318, 384 
ClearScreen procedure, 325 
ClearViewPort procedure, 318, 384 

Index 

Clipping parameters, 424 
Close procedure, 276, 363, 385, 526 
CloseGraph procedure, 305, 318, 386 
ClrEol procedure, 386,523 
ClrScr procedure, 304, 387, 523 . 
CODE, 354, See also CSEG 
Code size, 522 
Color customization option, in 

TINST,598 
Color graphics adapter, See CGA 
Colors, 413 

background, 409 
drawing, 410 

ColorTable procedure, 325 
COM devices, 281, 365 
.COM files, 3 
Command-line compiler, 2, 13, 15 

directory options, 185 
mode options, 182-184 
program execution options, 188 
reference, 179-189 

Command lists, in makefiles, 555-556 
Comments 

makefile, 550 
program, 59, 200 

Communications, serial, 365 
Compilation, 26-27, 32 

See also Conditional compilation 
separate, 2 
unit, 70 
window, 156 

Compile command, 26, 145, 154 
menu, 153-156 

Compiler, 32-36 
command-line, 2, 13, 15 
conditional, 91-96, 544-548 
directive command, 181 
directives, 157-159,200,522,537 

$B,48,98, 119, 121, 158,529 
$D,36, 121, 132, 183,530,539 
$ELSE,95 
$F, 121, 158,352,530 
$1,98, 112, 157, 161, 526 
IFDEF,96 
IFNDEF,96 
IFOPT,97 
$IFOPT N+,94,97 



$L, 63, 84, 158,353,530 
$~, 121, 159, 182,337,445-446 
$N, 40, 76, 119, 158,527,529 
parameter, 543 
$R, 98, 121, 157 
$S,98,157 
switches, 538-542 
$T,132,183,530 
$U, 34, 70, 544 
$V,98,158 

error messages, 619-638 
integrated environment, 2, 12, 15 
mode options, 182-185 
options, 180 

Compile-time errors, 125 
See also Errors, syntax 

Compiling, See Compilation 
Complete Boolean evaluation option, 

158 
Compound statement, 52 
Comp type, 76, 330, 345 
Con, 524 
CON:, 112 
Concatenation, 242 
Concat function, 286, 387 
CON devices, 281 
Conditional compilation, 91-98, 544 
Conditional defines option, 158 
Conditional directives, in makefiles, 

561-564 
Conditional execution, defined, 39 
Conditional statements, 51-52 
Conditional symbols, 93-95, 545-548 
Config auto save option, 160, 596 
Configuration files, 4 

menu option, 160, 162 
pick file and, 164 
TPC.CFG, 189 

ConInPtr (version 3.0), 523 
ConOutPtr (version 3.0), 523 
Constants, 292 

array type, 231 
Crt mode, 300 
declaration part, 202 
declarations, 199 
file attribute, 294 
folding, 370 
merging, 371 

pointer type, 233 
record type, 232 
set type, 232 
simple type, 230 
string type, 230 
structured type, 230 
text color, 300 
typed, 122,229, 528 

ConStPtr (version 3.0), 523 
Context-sensitive help, 19 
Control characters, 42, 199, 579 
Converting from 3.0, See Turbo 

Pascal 3.0, converting from 
Coprocessors, See ~ath coprocessors 
Copy function, 286, 388, 526 
Copy string library routine, 118 
Cos function, 285,388 
CPU symbols, 94, 546 
Critical errors 

messages, 637 
trapping, 292 

CrtExit procedure, 112, 523 
CrtInit procedure, 112, 523 
Crt unit, 62, 68, 79, 112, 117,278,282, 

289,290,298,323 
AssignCrt, 378 
ClrEoI,386 
ClrScr,387 
constants, 300 
Delay, 389 
DelLine, 390 
functions, 304 
GotoXY,427 
High Video, 432 
InsLine, 437 
KeyPressed,439 
line input in, 299 
LowVideo,444 
mode constants, 300 
NormVideo,450 
NoSound, 450 
procedures, 303-304 
ReadKey,464 
Sound, 501 
special characters in, 299 
TextBackground, 504 
text color, 300 
TextColor,504 

Turbo Pascal Owner's Handbook 



TextMode, 506 
variables, 301-303 
WhereX, 512 
WhereY, 512 
Window,512 

CSEG354 
CSeg function, 111,286,354,389,526 
CS register, 362, 389 
Current pick option, 162 
Current pointer, 306 
Cursor position 

reading, 512 
setting, 427 

Customizing Turbo Pascal, 12, 22, 
585-600 

CX register, 362 

D 
DATA, 354, See also DSEG 
Data 

defined, 38 
ports, 361 
segment, 222 

Data types, 39-45,117 
BCD,119 
boolean, 39, 43,344 
byte, 76 
char, 39, 344 
defined,39 
8087,330 
enumerated,344 
integer, 39,76,344 
longint,76 
pointers, 39, 44 
real numbers, 39 
shortint, 76 
string, 43 
typecasting, 528 
word, 76 

Date and time procedures, 296-297 
GetDate, 411 
GetFfime, 414 
GetTime, 424 
SetDate, 482 
SetFfime, 485 
SetTime, 496 

Index 

DateTime type, 295 
$D compiler directive, 36, 121, 132, 

183,522,539,542 
/$D directive, 185 
Dead code removal, 372 
Debug information option, 36, 157, 

183,539,633 
Debuggers, using, 135 
Debugging, 4, 96, 530 

compile-time errors, 125 
IFDEF and, 95-96 
input/ output error-checking, 126 
IOResult, 127 
.MAP files, 132-142,539,542 
range-checking, 128 
range errors, 541 
runtime errors, 126 
runtime error messages, 634-638 
stack overflow, 541 
syntax errors, 125 
.TPM files, 132-142,539,542 
tracing errors, 130 

Decimal notation, 197 
Declaration part, block, 201 
Dec procedure, 285, 389 
Default settings, Turbo Pascal, 4 

changing, 585-600 
restoring, 600 

$DEFINE, 92, 541-546 
Delay procedure, 304, 389, 523 
Delete procedure, 286, 390 
DelLine procedure, 390, 523 
Destination setting command, 28, 155 
DetectGraph procedure, 319, 391 
Devices, 280, 384 

drivers, 363 
handlers, 362 

. Directives, See also Compiler 
directives 
makefile, 561 

Direct memory, 361 
Directories, 411 

changing, 152,382 
command-line options, 185 
DOS, 603, 606 
option, 152, 160-162,587-589 
procedures, 475 



saving option, 162 
scan procedures for, 295 
searching, 403 

DirectVideo variable, 302 
DI register, 362 
DiskFree function, 297, 392 
Disk space, 392 
Disk status func.tions, 297 
Disks 

backup, 11 
distribution, 12-14 

DiskSize function, 297, 392 
Display mode option, TINST, 597 
Dispose procedure, 45, 284, 337, 339, 

393 
Distribution disks, 11-14 
Div operator, 41, 240 
DOS, 93, 112, 546 

basics, 601 
calls, 77 
device handling, 363 
devices, 280 
directories in, 603, 606 
environment, 335 
error level, 370 
exit code, 368-370 
go to, 153 
operating system routines, 292 
Pascal functions for, 449 
returning from, 153 
Registers and, 294 
symbol, 93 

Dos unit, 62, 68, 77, 117,289,292,523 
constants, 292 
date and time procedures, 296 
DiskFree, 392 
DiskSize, 392 
disk status functions, 297 
DosError in, 296 
DosExitCode, 393 
Exec, 398 
file-handling procedures, 297 
FindFirst, 403 
FindNext,404 
GetDate,411 
GetF Attr, 411 
GetFTime, 414 
GetIntVec,417 

GetTime, 424 
interrupt support procedures, 296 
Intr, 79,437 
Keep, 439 
MsDos, 79, 449 
PackTime, 455 
process-handling procedures and 

functions, 297 
SetFTime, 485 
SetIntVec,488 
SetTime, 496 
types, 293 
UnpackTime,510 

DosError, 296, 398-399, 403, 412, 414, 
483,485 

DosExitCode, 297, 393 
Double type, 76, 330, 345 
Draw procedure, 325 
DrawPoly procedure, 305, 319, 394 
Drivers, 305 
DSeg function, 111, 286, 354, 395, 526 
DS register, 354, 359, 362, 395 
DX register, 351, 362 
Dynamic memory allocation, 290-291 

functions, 283-284 
Dynamic variables, See Heap 

E 
East constant, 325 
Edit auto save option, 160 
Edit window, 20, 25,146,165 

creating source files in, 148 
status line, 166 
working in, 148 

Editor commands, 145, 153, 166-176 
option in TINST, 589-596 
specifications, 165 
summary of, 166-168 

EGA, 29-31, 598-600 
CheckSnow and, 302 

8087, See Math coprocessor 
Ellipse, 319, 395 
ELSE 

directive, 548 
symbol, 94 

$ELSE directive, 92, 94, 548 

Turbo Pascal Owner's Handbook 



Empty set, 215 
End of file 

error messages, 621 
status, 396-397 

$ENDIF,94 
directive, 548 
symbol,94 

Enhanced Graphics Adapter, See 
EGA 

Entry code, procedures and 
functions, 353 

Enumerated types, 344 
Environment option, See Compiler 

directive 
Eoffunction,277,396 
Eoln function, 278, 397 
IE option, 186 
Erase procedure, 276, 397 
ERR:, 112 
Error, DOS standard, See TextRec 
Errors, 27 

ANSI Pascal, 536 
checking, 121, 158 
codes for graphics operations, 

428 
converting from 3.0 and, 111-112 
handling, 97, 308, 529 
messages, 428,567,619-638 
reporting, 369 

with graphics, See 
GraphErrorMsg 

runtime, 126, 155, 157,369,634-638 
syntax, 35 
trapping, See ExitProc, 

GraphResult, HeapError, 
IOResult 

ErrorAddr variable, 370 
Error messages 

critical,637 
ErrorPtr (version 3.0), 111, 122,523, 

529 
ES register, 362 
Exclamation point (!), makefile 

directives, 561 
Exec procedure, 111,398,524 
Executable code 

saving, 155 

Index 

Executable directories option, 161, 
186 

eXecute option, 189 
Execute procedure, 297, 524 
.EXE files, 3 
Exit 

codes, 393 
functions, 353 
procedures, 283,291,353,368-370, 

399 
ExitCode variable, 370 
Exiting a program, 368 
ExitProc variable, 111, 122,291,369, 

529 
Exp function, 285, 400 
Exponents, 345 
Expressions, 235, 238 
Extended key codes, 298, 582 
Extended movement commands, 169 
Extended type, 76, 330, 331, 345 
Extensions 

ANSI Pascal, 531-536 
data type, 76 
Turbo Pascal, 76 

External 
declarations, 263, 353, 543 
procedure errors, 625-626 
procedures and functions, 82 

EXTRN definition errors, 354-355, 
625-626 

F 
Factor (syntax), 236 
Far calls, 351, 530 

menu option, 158 
model, 539 

Fatal runtime errors, 638 
See also Errors 

$F compiler directive, 121, 158,352, 
522,530 

Field designators, 226 
Field list (of records), 214 
Field-width specifiers, 50 
File access denied error, 635 
File attribute constants, 294 



File menu, 26 
Files 

Assign procedure, 76, 377 
attributes, 411 
backup source, 4 
buffer, 348-349 
closing, 385 
commands, 150-153 
configuration, 4 
debugging, 4 
default settings, 4 
erasing, 397 
extension names, 3 
handles, 348-349 
1/0,290 
library, 4 
.MAP, 4 
mode, 348-349 

constants, 293 
name macros, 559-561 
pick,4 
primary, 32 
Read,75 
record types, 293 
saving, 152 
source code, 4 
text, 277 
TPC.CFG,4 
TPMAP.EXE,4 
Turbo Pascal 3.0, 4 
TURBO.TPL,4 
typed,291 
types, 348 
unit, 3 
untyped, 279, 291 
Write, 75 

File-handling procedures, 297, 534 
Rename, 472 
Reset, 472 
Rewrite, 474 
routines, 291 
Seek,476 
SetFAttr, 297, 482 
Truncate, 509 

FileMode variable, 279, 291 
FilePos function, 279, 400, 524 
FileRec, 293, 348 
FileSeek function, 524 

FileSize function, 115,279,400,524 
FillChar procedure, 287, 401 
Filling areas, 404 
FillPattern procedure, 325 
Fill patterns, 404, 412-413 
FillPoly procedure, 308, 319, 402 
FillScreen procedure, 325 
FillShape procedure, 325 
Find error command, 28, 36 
Find error option, 155, 157, 183 
FindFirst, 294, 297, 403 

SearchRec and, 295 
FindNext, 294, 297, 404 

SearchRec and, 295 
Fixed part (of records), 214 
Flags constants, 293 
Floating-point, See also Real numbers 

errors, 635 
hardware, 158,211 
numbers, 329-334 
routines, 290 
software, 158,210 
types, 345-347 

FloodFill procedure, 308, 319, 404 
Flush function, 364, 365 
Flush procedure, 278, 406 
IF option, 183 
Font8x8 variable, 300, 505-506, 508 
Font files, 312 
Force far calls, 539 

option, 158 
Formal parameters 

defined,59 
list, 266 

Form function, 112, 119 
For statement 

loop, 55, 526 
syntax, 256 

Forward declarations, 111,263 
Forwd procedure, 325 
Frac function, 285, 406 
Fractions, returning, 406 
Free list 

overflow, 342 
record, 341 

FreeMem procedure, 284, 337, 339, 
341,406 

FreeMin variable, 291, 342 

Turbo Pascal Owner's Handbook 



FreePtr, 291, 341 
Full file name macro (MAKE), 560 
Functions, 261 

address, 286 
arithmetic, 284 
body, 266 
built-in, 76 
calls, 246, 349 
declarations, 264 
defined, 56 
dynamic allocation, 283 
headings, 265 
miscellaneous, 287 
non-ANSI, 535 
ordinal, 285 
pointer, 286 
results, 349, 351 
standard, 283 
string, 286 
transfer, 284 

G 
GetArcCoords procedure, 319, 407 
GetAspectRatio procedure, 319,408 
GetBkColor function, 321, 409 
GetColor function, 321, 410 
GetDate procedure, 296, 411 
GetDir procedure, 276, 411 
GetDotColor procedure, 326 
GetFAttr procedure, 294,297,411 
GetFillPattern procedure, 319, 412 
GetFillSettings procedure, 319, 413 
GetFfime procedure, 296, 414 
GetGraphMode function, 321, 414 
GetImage procedure, 305, 319,416 
Get info option, 155 
GetIntVec procedure, 296, 417 
GetLineSettings procedure, 319, 417 
GetMaxColor function, 321,418 
GetMaxX function, 321,419 
GetMaxY function, 321, 419 
GetMem procedure, 284,342-343,420 
GetModeRange procedure, 319, 421 
GetPalette procedure, 319, 421 
GetPic procedure, 326 
GetPixel function, 308, 321, 422 

Index 

Get procedure, 75 
GetTextSettings procedure, 307, 319, 

423 
GetTime procedure, 296, 424 
GetViewSettings procedure, 319,424 
GetX function, 321, 425 
GetY function, 321, 426 
Global declarations, 111 
Glossary, 609-618 
GotoXY procedure, 304, 427,523 
Graph3 unit, 62, 69, 105, 116,289, 

290, 324-327 
GraphBackground procedure, 326 
GRAPH.BIN, 325 
GraphColorMode procedure, 326 
GraphDefaults procedure, 319,428 
GraphErrorMsg function, 321, 428 
GraphFreeMem, 311 
Graphics, 29 

bit-image operations, 458 
cards, 391,434-436 
CloseGraph, 305 
current pointer in, 306 
drawing operations, 440-443, 458, 

466,488 
drivers, 305, 434-436 
figures and styles in, 308 
fill operations, 483-485 
InitGraph in, 305 
mode, 414, 434-436,441-442 
page operations, 478, 499 
palette operations, 479-481, 490 
plotting operations, 461 
pointer operations, 448 
polygon,drawing, 394 
routines, 82 
sample program, 310-311 
system operations, 486 
text operations, 451-454, 493, 505 
turtlegraphics, 116, 324-327 
video mode operations, 473 
viewport operations, 497 

GraphMode procedure, 326 
GraphMode variable, 433 
GRAPH.P,325 
GraphResult function, 308-309, 321, 

429 



Graph unit, 31, 62, 69, 82, 116,289, 
305,451-454,458 

Are, 375 
Bar, 378 
Bar3D,379 
bit images in, 308 
Circle, 383 
ClearDevice,384 
ClearViewPort, 384 
CloseGraph, 386 
colors in, 308 
DetectGraph,391 
DrawPoly, 394 
Ellipse, 395 
error handling in, 308 
figures and styles in, 308 
FillPattern, 325 
FillPoly, 402 
FloodFill, 404 
functions, 321 
GetArcCoords, 407 
GetAspectRatio,408 
GetBkColor, 409 
GetColor, 410 
GetFillPattern,412 
GetFillSettings, 413 
GetGrap~ode,414 
GetImage, 416 
GetLineSettings,417 
GetMaxColor, 418 
GetMaxX, 419 
GetMaxY,419 
GetModeRange, 421 
GetPalette, 421 
GetPixel, 422 
GetTextSettings, 423 
GetViewSettings, 424 
GetX,425 
GetY,426 
GraphDefaults, 428 
GraphErrorMsg, 428 
GraphResult, 429 
heap management routines, 311 
ImageSize, 432 
InitGraph, 434 
interface section, 313-318 
Line, 440 
LineRel, 441 

LineTo,442 
MoveRel, 447 
MoveTo,448 
OutText, 451 
OutTextXY, 453 
paging in, 308 
PieSlice, 456 
procedures, 318-321 
PutImage, 458 
PutPixel, 461 
Rectangle, 466 
RegisterBGIdriver, 467 
RegisterBGIfont, 468 
RestoreCrtMode, 473 
sample program, 310-311 
SetActivePage, 478 
SetAllPalette, 479 
SetBkColor, 480 
SetColor, 481 
SetFillPattern, 483 
SetFillStyle, 484 
SetGraphBufSize, 486 
SetGraphMode,486 
SetLineStyle, 488 
SetPalette, 490 
SetTextJustify, 493 
SetTextStyle, 494 
SetUserCharSize, 496 
SetViewPort, 497 
SetVisualPage, 499 
TextHeight, 505 
text in, 307 
TextWidth, 508 
viewports in, 308 

Graph Window procedure, 326 
GREP.COM,13,570-574 
grError, 314, 430 
grInvalidDeviceNum, 314, 430 
grInvalidFont, 314, 430 
grInvalidFontNum, 314, 430 
grIOError, 314, 430 
GROUP directives, 354 

H 
HaltOnError, 113 
Halt procedure, 283, 369,431 

Turbo Pascal Owner's Handbook 



Handles 
DOS, 377-378 
file, 348, See also 

FileRec, TextRec 
Hardware interrupts,362 
Hardware numeric processing 

option, 158,210,211 
Heading procedure, 326 
HeapError, 291, 343 
Heap management, 335,337-344 

allocating, 337, 338, 341-343 
deallocating, 337-343 
error trapping, See HeapError 
fragmenting, 337-343 
free list, 341-343 
granularity,342 
map,336 
pointers, 336 
procedures, 469 
routines, 311 
sizes, 121, 159, 182,544 
trapping errors, 343 

Heapmax, 544 
Heapmin, 544 
HeapOrg variable, 291, 338 
HeapPtr variable, 291, 337-340, 341 
Help, Turbo Pascal, 19 
Hexadecimal constants, 40, 117, 197 
HideTurtle procedure, 326 
Hi function, 287, 431 
High heap limit setting, 159 
High-intensity characters, 432 
High-order bytes, 431 
High Video procedure, 112, 116, 304, 

324,432 
HiResColor procedure, 326 
HiRes procedure, 326 
Home procedure, 326 
Hotkeys, 21-24 

I 
$1 compiler directive, 98, 112, 157, 

161,276,438,522-523,526 
Identifiers, 195-197 

defined,45 
Turbo3,107 

Index 

IEEE floating-point, 540 
$IFDEF, 92, 95, 547 
$IFNDEF, 92, 95, 547 
$IFOPT, 92, 94, 96, 548 
If statement, 51, 252 
IFxxx symbol, 94 
ImageSize function, 321, 432 
Implementation-dependent features, 

Pascal,535 
Implementation part (program), 272, 

352 
Include directive, 522-523 
Include directories option, 161, 186, 

543 
Include files, 110,522-523 

connecting to units, 120 
nesting, 543 

Include option, in version 3.0, 522 
Inc procedure, 285, 433 

. Index expressions, 225 
Index variable, 55 
InitGraph procedure, 305, 319, 434 

SetGraphMode and, 486 
Initialization 

program part, 273 
units, 86-87 
variables, 64 

Initial unit (UPGRADE), 110 
Inline 

declarations, 264 
directives, 83, 122,360-361 
machine code, 358 
statements, 82, 122, 358-359, 530 

In operator, 243, 245 
InOut function, 365 
INP:, 112 
Input and output, See I/O 
Insert and delete commands, 170 
Insert mode, 597 
Insert procedure, 286, 436 
Inserting 

lines, 436 
strings, 436 

InsLine procedure, 304, 437, 523 
Installation, Turbo Pascal, 11 

floppy disk, 14 
hard disk, 15 



Integers 
defined, 39-40 
types, 344 

Integrated environment 
Build command, 32, 34 
Compile menu, 26 
compiling in, 27 
context-sensitive help, 19 
Debug command, 36 
Destination setting command, 28 
Edit window, 20, 25, 146 
editor in, 165 
File menu, 26 
Find error command, 28, 36 
Graph and, 31 
graphics in, 29 
hotkeys in, 21-24, 147 
loading Turbo Pascal, 25 
machine code in, 32 
main menu commands, 145 
main screen, 20 
Make command, 32, 34 
menu reference, 143-164 
.OBJ files in, 34 
Output window, 20, 27, 150 
Primary file command, 32 
quitting 21 
Run command, 27, 29, 33 
runtime errors, See Errors, runtime 
saving files in, 26 
selecting menu items, 24 
syntax errors, See Errors, syntax 
TINST and, 22 
. TPU files in, 34 
Tutorial, 25-36 
using, 2, 12, 15, 19-36 
variables, 26 
Write to command, 29 

Interface section (program), 271, 313, 
322,352,354 

Internal data formats, 335, 344 
Interrupt 

directives, 262 
handlers, 362, 529 
handling routines, 292, 362 
procedures, 488 
routines (lSR's), 362 
support procedures, 296 

vectors, 292, 417 
Int function, 285, 437 
Intr procedure, 117,296,437,523-524 

registers and, 294 
Invalid typecasting errors, 627 
I/O, 119,275-282 

checking,436,540 
checking option, 157 
defined,38 
devices, 363 
DOS standard, 377-378 
error checking, 98, 126,276,540 
errors, 126, 524, 636 
files, 290, 298 
real numbers and, 120 
variable, 275 

/1 option, 186 
10Result, 112-113, 115, 127,277,324, 

438,524,540 
I/O checking with, 157 

IP flag, 362 
ISR's, 362 

J 
Journal file, UPGRADE's, 108 
Justification, font, 423 

K 
Kbd, 108, 112, 115,323,523,527 

See also ReadKey 
KBD:, 112 
Keep procedure, 297, 439 
Keyboard 

operations, 439,464 
scan codes, 583 
status, 300 
See also ReadKey 

Key codes, 582 
KeyPressed function, 300, 304, 439, 

523 
Keystrokes 

changing commands, 589 
changing control keys, 591-592 
changing function keys, 591 

Turbo Pascal Owner's Handbook 



L 
Labels, 197,527 

declaration part, 202 
Language help 

online, 176 
Large programs, 631 

managing, 85-98 
Last text mode constant, 525 
$L compiler directive, 63, 84, 158, 

161,353,522,530,540 
Length function, 118,286,440 
Libraries 

files, 4 
program, 12 
routines, 120 

Line input, Crt, 299 
Line numbers, in .MAP files, 539 
Line procedure, 320, 440 
LineRelprocedure,320,441 
Line settings, 417 
LineTo procedure, 320, 442 
Link 

assembly language, 353 
buffer, 158,540 
$L directive, 63 
object file, 543 

Ln function, 285, 443 
Loading 

options, 151, 162 
pick files, 163 
programs in 005, 602 
Turbo Pascal, 25 

Load options, 151, 162 
Lo function, 287, 443 
Logical operators, 48, 240 
LongFile functions (3.0), 112, 524 
LongFilePos function, 108, 115,324, 

523 
LongFileSize function, 108, 115,324, 

523-524 
Longint data type, 40, 76, 207 
LongSeek function, 108, 115, 324, 524 
Loops 

defined, 39 
for, 55 
repeat..until,54 

Index 

while, 53 
Low heap limit setting, 159 
LowVideo procedure, 112, 116, 304, 

324,444,523 
LPT devices, 281, 292 
LST:,l12 
Lstfunction,l17,292,523 
LstOutPtr, 523 

M 
Machine code, 32,358-361 
Macros 

inline,360-361 
makefile,556-561 

Main screen, integrated environment, 
20 

Make command, 3, 32, 34, 88, 154, 
182 

MAKE utility, 13,89-91 
command-line options, 89-91, 549, 

566 
error messages, 567-569 
syntax, 565 
using, 565 

Makefiles, creating, 549 
.MAP files, 4,132-142,539,542 

menu option, 158 
Mark procedure, 284, 337-338, 444 
MASM assembler, 84 
Math coprocessor, 40, 76, 94,96, 119, 

329-334,350,526-527,540 
data types, 76 
error messages, 632 
evaluation stack, 332 
menu option, 158 
mode, 632 
$N+ directive, 76, 119 

MaxAvail function, 108, 112, 115, 121, 
284,324,342,445,523 

Maxlnt,39 
$M compiler directive, 121, 159, 182, 

336,438,445-446,522 
Mem array, 361,530 
MemAvail function, 108, 112, 115, 

121,284,322,324,342,445,523 
MemL array, 361, 530 



Memory, 406, 420 
access, 515 
allocation, 182, 544 
DirectVideo and, 302 
error messages, 619, 631 
link buffer, 158 
map, 336 
menu option, 159 
size, 544 

Memory sizes option, 159 
MemW array, 361 
Menu 

commands, 145 
selecting items, 24 
settings, 145 
structure of, 144 
toggles, 145 

MicroCalc, 14 
MkDir procedure, 276, 446 
Mod operator, 240 
Modular programming, 271 
Monochrome Adapters 

CheckSnow and, 302 
/M option, 182 
Move procedure, 117,287,447,528 
MoveRel procedure, 320, 447 
MoveTo procedure, 307, 320, 448 
MS-DOS, See DOS 
MsDos procedure, 117, 449 
MsDos unit, 296, 522-523 

N 
$N compiler directive, 40, 76, 96, 

119-120,158,373,522,527,529,632 
Near calls, 351, 530 
Nesting files, 522, 543 
New option, 152 
New procedure, 216, 284, 337, 343, 

449 
Nil,216,226,347 
NormalPut constant, 316, 459 
NormVideo procedure, 112, 116,304, 

324,450,523 
North constant, 325 
NoSound procedure, 304, 450, 523 
Not operator, 241, 308 

NotPut constant, 316, 459 
NoWrap procedure, 327 
NUL,281 
Null string, 199, 211 
Numbers, counting, 39-40, 197,344 
Numeric processing option, 158, 540 

o 
Object directories option, 161, 186, 

543 
Object files, 353 

linking with, 543 
.OBJ files, 34, 353, 530 

linking with, 543 
MAKE utility and, 89 
.P AS files, 4, 14 

Odd function, 285, 450 
Ofs function, 286, 451 
Online help, 176 
/0 option, 186 
Op code, 358-360 
Open function, 364 
Operands, 235 
Operations, defined, 38 
Operators, 194,239-246 

@,49 
address, 49 
arithmetic, 239 
assignment, 46 
binary, 46 
bitwise, 47, 240 
boolean, 241 
defined,46 
logical, 48, 240 
makefile directives, 561 
precedence of, 239 
relational,47 
set, 49 
string, 49 
unary, 46 

Optimization of code, 97, 370-372 
Options command, 143, 156-164 
Options/Environment, in TINST, 596 
Order of evaluation, 371 
Ord function, 206, 209, 284, 451 
Ordinal functions, 285 

Turbo Pascal Owner's Handbook 



Ordinal procedures, 285 
Or operator, 241, 308 
OrPut constant, 316, 459 
OS shell option, 153 
OUT:, 112 
Out-of-bounds errors, 128 
Out-of-memory errors, 128,540, 628 
Output 

defined,38 
devices, 49 
DOS standard, 377-378 
files, 149,275-276,291 
~indo~,20,27, 150 
Writeln,49 

OutText procedure, 307, 320, 451 
OutTextXY procedure, 320, 453 
Overlays, 109-111, 121, 522 
Ovrpath, 109, 111 

p 
Packed (reserved ~ord), 212 
Pack procedure, 284 
PackTime procedure, 296, 455 

DateTime and, 295 
Palette procedure, 326 
ParamCount function, 287, 455 
Parameters, 266 

actual,250 
formal, 250 
passing, 250, 349 
untyped variables, 267 
value, 267 
variable, 267 

Parameters option, 162 
Parameter transfers, 332 
ParamStr, 287, 455 
.PAS files, 4,14 
Pattern procedure, 326 
PC-DOS, 601 
.PCK file, 4 
PenDo~n procedure, 326 
PenUp procedure, 326 
Periscope, 135-141 
Pick files, 4, 162-164 

list, 3 
Pick list, 163-165 

Index 

Pick option, 151 
PieSlice procedure, 320, 456 
Pi function, 285, 456 
Pixel values, 422 
Plot procedure, 326 
Pointer and address functions, 286 
Pointers, 44 

comparing, 244 
defined, 39 
symbol, 226 
types, 347 
values, 226 
variable, 246 

Polygons, dra~ing, 394 
Port access, 361 
Port array, 361 
PortW array, 361 
Posfunction,286,457 
Precedence of operators, 235 
Predeclared identifiers, 117,523 
Pred function, 206, 285, 457 
PrefixSeg variable, 291, 335 
Primary file option, 32, 155 
Printer devices, 281 
Printer Lst file, 112 
Printer unit, 62, 69, 117,289,292 
PRN,281 
Procedure and function declaration 

part (program), 202 
Procedures, 59 

arithmetic, 284 
body, 262 
built-in, 76 
declarations, 261 
defined, 56 
dynamic allocation, 283 
Exit,283 
Halt, 283 
headings, 261 
non-ANSI, 535 
ordinal, 285 
pointers, 352 
string, 286 

Process-handling routines, 297, 439 
Programs 

compiling, 26-27 
declarations, 521 



editing, 25 
execution options, 188 
halting, 431 
heading of, 269 
lines, 200 
parameters, 269 
running, 27-32 
saving, 26 
structure of, 57, 85-97, 120, 521 
syntax, 269 
termination, 368 
updating, 28 

Program Segment Prefix (PSP), 291, 
335 

Project management, 85-97 
Ptr, 286, 458 
PUBUC,354 

definition errors, 625 
PutImage procedure, 305, 308, 320, 

458 
PutPic procedure, 326 
PutPixel procedure, 308,320,461 
Put procedure, 75 

Q 
Qualified identifiers, 196,204 
Quiet mode UQ), 183 
Quitting, Turbo Pascal, 21, 153 

R 
Random function, 287, 291, 461 
Randomize procedure, 287, 462 
Random number generator, 291 
RandSeed function, 291 
Range-checking, 98, 121, 157, 181,541 

compile time, 372 
errors, 128 
Val and, 510 

$R compiler directive, 98, 121, 
156-157,522 

Reading records, 380 
Reading the keyboard, See ReadKey 
ReadKey function, 112, 115, 117,300, 

304,323,464 

Readln procedure, 51, 112, 278,465 
README.COM,13 
Read procedure 

text files, 51, 276, 278, 462 
typed files, 464 

Real numbers, 40, 210, 329-334, 
344-347 

Records, 213, 232, 348 
Rectangle procedure, 320, 466 
Redec1aration, 203, 221 
Reentrant code, 362-363 
Referencing errors, 632 
RegisterBGldriver function, 305, 312, 

321,467 
RegisterBGIfont function, 312, 321, 

468 
Register-saving conventions, 353 
Registers 

type, 294 
use of, 351, 353, 359, 362-363 

Relational operators, 47, 243 
Relaxed error-checking, 158 
Relaxed string parameter checking, 

542 
Release procedure, 284,337-338,471 
Relocatable reference errors, 626 
Rename procedure, 277, 472 
Repeat (syntax), 255 
Repeat..until loop, 54 
Reserved words, 62-63, 194, 533 
Reset procedure, 275, 277, 472 
Resize windows option, TINST, 600 
Resolution, graphics, 408 
RestoreCrtMode procedure, 305, 320, 

473 
Retain saved screen option, 160 
Rewrite procedure, 275, 277, 474 
RmDir procedure, 277, 475 
/R option, 188 
Round function, 284, 476 
Routines 

file-handling, 297 
operating system, 297 

Rules 
explicit, 550 
implicit, 552 
makefile, 550-555 

Turbo Pascal Owner's Handbook 



scope, 203 
Run command, 27, 29, 33, 145, 153 
Run in memory option, 188 
Runtime errors, 126, 157, 634-638 

Debug info option and, 155 
Find error option and, 155 
finding, 183-185 
handling, See ExitProc 

Runtime support routines, 290 

s 
SavelntOO, 291 
Savelnt02, 291 
Savelnt23,291 
Savelnt24, 291-292 
Savelnt75, 291 
Save option, 152, 162 
Saving 

files, See Close option 
pick files, 164 
programs, 26 

Scale factor, 198 
Scan codes, keyboard, 583 
$S compiler directive, 98, 157, 522 
Scope (of declaration), 203-204 
Screen 

editor, 146-148, 153 
mode control, 298 
output operations, 298 
routines, 79 
size, 160, 597 

Search utility, 13, 570 
Searching directories, 403 
SearchRec type, 295 
Seek procedure, 276,279,476,525 
SeekEof function, 278, 477 
SeekEoln function, 278, 477 
Seg function, 286, 477 
Separate compilation, 2, 61-73, 99-104 
Serial communications, 365 
Serial ports, 365 
SetActivePage procedure, 320, 478 
SetAllPalette procedure, 320, 479 
SetBkColor procedure, 320, 480 
SetColor procedure, 320, 481 
SetDate procedure, 296, 482 

Index 

SetFAttr procedure, 294, 297, 482 
SetFillPattern procedure, 320, 483 
SetFillStyle procedure, 308, 320, 484 
SetFfime procedure, 296, 485 
SetGraphBufSize procedure, 312, 320, 

486 
SetGraphMode procedure, 305, 320, 

486 
SetHeading procedure, 326 
SetIntVec procedure, 296,488 
SetLineStyle procedure, 320, 488 
SetPalette procedure, 320,490 
SetPenColor procedure, 327 
SetPosition procedure, 327 
Sets 

comparing, 245 
constructors, 236, 247 
membership, 245 
operators, 49, 242 
types, 347 

SetTextBuf procedure, 111, 120, 278, 
491,527 

SetTextJustify procedure, 307, 320, 
493 

SetTextStyle procedure, 307, 321, 494 
OutText and, 451 
OutTextXY and, 453 

SetTime procedure, 296, 496 
SetUserCharSize procedure, 307, 321, 

496 
SetViewPort procedure, 305, 321, 497 
SetVisualPage procedure, 321, 500 
Shl operator, 240 
Short-circuit Boolean expressions, 

113,119,158,371,529,538 
Shortint type, 40, 76 
ShowTurtle procedure, 327 
Shr operator, 240 
SI register, 362 
Signed number (syntax), 198 
Significand, 345 
Significant digits, defined, 40 
Sin function, 285, 500 
Single type, 76, 330, 345 
SizeOf function, 287, 401, 498 
Smart linking, 372 
Snow-checking, 302 



Software interrupts, 362, 437 
Software numeric processing, 158 
Sound operations 

NoSound, 450 
Sound, 304 

Sound procedure, 304, SOl, 523 
Source files, 4 

menu option, 160 
working with, 148-150 

South constant, 325 
Space characters, 193 
SP register, 353, 359 
SPtr function, 286, 501 
Sqrfunction,285,502 
Sqrt function, 285, 295, 502 
SSeg function, 286, 502 
SS register, 353, 359 
Stack 

checking, 98, 541 
checking option, 157 
8087,332 
overflow, 222 
segment, 222 
size, 120,544 
size setting, 159 

Standard Pascal, 531-536 
Standard units, 289-327 
Statement part (program), 203 
Statements, 26 

assignment, 250 
case, 253 
compound, 251 
conditional, 252 
for, 256 
goto,251 
if, 252 
procedure, 250 
repeat, 255 
simple, 249 
structured, 251 
with, 258 
while, 255 

Status line, 166 
Strict error-checking, 158 
Strings, 43, 230 

character, 198 
comparing, 244 
construction, 387 

deletion, 390 
functions, 286, 436, 502, 510 
handling, 290 
initializing, 401 
length byte, 347, 401 
library routines, 118 
maxrrnum length, 347 
operator, 49, 242 
parameters, relaxed checking, 542 
procedures, 286 
types, 347 
variables, 225 

Stroked fonts, 305, 307 
Str procedure, 286, 502 
Subdirectories, OOS, 604 
Subroutines, 56 

defined, 39 
See also procedures and functions 

Substrings 
copying, 388 
deleting, 390 
inserting, 436 
position of, 457 

Succ function, 207,285,502 
Swap function, 287, 503 
Symbol definition, menu option, 158 
Symbolic debugging, 13, 132,530 

.MAP files, 539, 542 
Symbols, 193 
Syntax diagrams, reading, 195 
Syntax errors, See Errors, syntax 
Syntax, MAKE, 565 
System unit, 62, 65,68,112,270, 

289-292, 373 

T 
Tabs default, 597 
Tab size option, 160 
Tag field (of records), 214 
$T compiler directive, 4, 132, 183, 

522,530 
/$T directive, 185 
Terminating a program, 368, 399 
Terms (syntax), 237 
Text, 307 

attributes, 423 

Turbo Pascal Owner's Handbook 



color constants, 300 
TextAttr variable, 303 

ClrEOL and, 386 
ClrScr and, 387 
High Video and, 432 
LowVideo and, 444 
NormVideo and, 450 
TextBackground and, 501 
TextColor and, 502 

TextBackground procedure, 300, 304, 
504,523 

Textbook programs, 75 
TextColor procedure, 300, 304, 504, 

523 
Text files, 396 

device drivers, 352, 363 
devices, 282 
records, 349 
variable-length buffers, 120 

TextHeight function, 321, 505 
TextMode procedure, 112, 300, 304, 

506,523-524 
restoring, See RestoreCrtMode 

TextRec record, 293, 348, 363 
TextWidth function, 321, 508 
Time procedures 

GetFfime, 414 
GetTime, 424 
SetFfime, 485 
SetTime, 496 

TINST, 12, 22, 37, 585-600 
Toggles, 145 
Tokens, 193-200 
Top of memory, See FreePtr 
IT option, 187 
TOUCH utility, 13, 569 
TPC.CFG file, 4, 189 
TPC.EXE, 2, 13, 15, 179-190 
TPCONFIG.EXE, 13 
.TP file, 4 
.TPL files, 4, 99 
TPMAP.EXE utility, 4,13,132,539, 

542 
. TPM files, 4, 132, 539 

generation of, 542 
.TPU files, 3, 34, 71 
TPUMOVER, 13, 70, 72, 290 
Tracing errors, 130 

Index 

Transfer functions, 284 
Trapping 

critical errors, 292 
interrupts, 362 
I/O errors, 126,540 

Trm,523 
TRM:,112 
Trunc function, 509 
Truncate procedure, 279, 509 
Turbo3 unit, 62, 69, 105, 107, 112, 

114-116, 121,289-290, 
322-324 

CBreak, 324 
functions, 324 
interface section, 322 
Kbd in, 323 
procedures, 324 

Turbo directory option, 161, 187 
TURBO.EXE, 2, 12, 15 
TURBO.HLP, 161 
Turbo Pascal 3.0, 13, 62, 76, 79 

compatibility with 4.0, 289 
conversion, 16, 69, 105-123,521-530 

ANSI compatibility, 119,531-536 
assembly language, 122 
BCD arithmetic, 112, 119,527 
BCDREAL.PAS, 119 
.BIN files, 112, 530 
Boolean expressions, 113, 119, 

529 
CBreak, 108, 115,523 
chaining, 511 
CheckBreak, 115 
Close, 526 
code size, 522 
compiler directives, 121 
Copy, 118, 526 
Crt, 116 
CSeg, 111, 526 
data types, 117 
$D compiler directive, 530 
debugging, 530 
Dos unit, 117 
ERR:, 112 
error-checking, 121 
ErrorPtr, 122, 529 
Execute, 524 
ExitProc, 122,529 



far calls, 530 
$F compiler directive, 530 
file names and, 106 
FilePos, 524 
FileSeek,524 
FileSize, 115,524 
for loop, control variables in, 526 
Form, 119 
forward declarations, 111 
global declarations, 111 
GotoXY, 523 
Graph3 unit, 69,105,116 
HaltOnError,113 
hexadecimal constants, 117 
HighVideo,116 
I/O errors, 119,524 
include directive, 523 
include files, 110, 120,523 
include option, 523 
initial unit, 110 
inline directive, 122 
inline statement, 122, 530 
interrupt handler, 529 
Intr, 117,524 
10Result, 115, 524 
journal file, 108 
FCbd, 108, 115,524,527 
KBD:, 115 
KeyPressed, 523 
labels, 527 
LastMode, 525 
$L compiler directive, 530 
LongFile, 524 
LongFilePos, 108, 115,524 
LongFileSize, 108, 115,524 
LongSeek,108, 115,524 
Lo~Video, 115,524 
Lst, 117, 524 
math coprocessor, 119 
MaxAvail, 108, 115, 121,524 
Mem, 530 
MemAvail,108,115,121,524 
MemL,530 
memory access, 530 
MemW,530 
Move, 117,528 
MsDos,117 
$N compiler directive, 527 

near calls, 530 
nesting files, 523 
Norm Video, 116 
.OBI files, 530 
overlays, 121, 522 
predeclared identifiers, 523 
predefined identifiers, 117,523 
Printer unit, 117 
program declarations, 521 
program structure, 521 
range-checking, 121 
ReadKey, 115, 117 
Seek, 525 
SetTextBuf, 120,527 
short-circuit Boolean evalution, 

113, 121,529 
string library routines, 118 
symbolic debugging, 530 
System.MaxAvail, 115 
$T compiler directive, 530 
TextMode, 525 
Turbo3 unit, 69, 105, 107-108, 

114, 121, 524 
typecasting, 528 
type-checking, 118,525 
typed constants, 122, 528 
type mismatches, 113 
units, 522 
UPGRADE.DTA,106 
UPGRADE.EXE,105-123 

versus 4.0, 438-439, 444-446, 
521-530 

Turbo Pascal map file, 158, 542 
TURBO.PCK, 3,161 
TURBO.TP, 37,161-162 
TURBO.TPL, 4, 12,37,62,68,76,99, 

290 
TurnLeft procedure, 327 
TurnRight procedure, 327 
TurtleDelay procedure, 327 
Turtlegraphics, 324, 324-327, 523 
TurtleThere procedure, 327 
TurtleWindo~ procedure, 327 
Tutorial, 19-59 
T~O' s complement, 47 
Typecasting, 117, 528 
Type-checking, 118, 525 

strings and, 542 

Turbo Pascal Owner's Handbook 



Type compatibility, 218 
Typed constants, 122, 229, 528 
Type declaration, 205 
Type declaration part, 202, 219 
Typed files, 291, 348 
Type identity, 217 
Type mismatch, error messages, 623 
Types, 205 

array, 212 
boolean, 208 
byte, 207 
char, 208 
common, 208 
comp,210 
data, See Data types 
double, 210 
enumerated,209 
extended,210 
file,216 
host, 209 
integer, 207 
longint, 207 
ordinal, 206 
pointer, 216 
real, 210 
record,213 
set, 215 
shortint, 207 
simp~e, 206 
single, 210 
standard,212 
string, 211 
subrange, 209 
word,207 

u 
$U compiler directive, 34, 70, 270, 

522,544 
$UNDEF directive, 92, 546-547 
Unit directories option, 70, 100, 161, 

187,544 
Units, 2, 3, 12-13, 61-73 

Build option, 88 
compiling, 34, 70, 88-91 
converting from 3.0 and, 106, 

109-111,522 

Index 

dependencies, 290 
8087 and, 334 
file name, 544 
forward declarations and, 63 
global, 72, 85 

large programs and, 72, 85-97 
heading, 271 
identifier, 196 
implementation section, 63 
initialization section, 64 
initializing, 86 
inserting, 102 
interface section, 62 

Turbo 3.0 and, 111 
large programs and, 71, 85-97 
Make option, 88 
merging, 70 
mover utility, 99-104 
overlays and, 109, 111 
removing, 103 
scope of, 203 
specify location of, 544 
standard, 289 

Crt, 62, 68, 79, 298 
Dos, 62, 68, 77 
Graph,31,62,69,82,305 
Graph3,62;69, 105, 116,324 
Printer, 62, 69 
System, 62, 65, 68 
Turbo3, 62,69, 105, 107,322-324 

syntax, 271 
.TPL file, 99 
.TPU file, 70-71, 99 
TPUMOVER,72 
TURBO.TPL file, 62, 68, 70, 72 

inserting into, 102 
removing from, 103 

Unit directories option, 70, 100 
uses statement, 62, 65, 70 
using units, 274 

version mismatch errors, 628 
version number, 274 
writing, 70 

Unpack procedure, 284 
UnpackTime, 297, 510 

DateTime and, 295 



Unsigned 
constant, 237 
integer, 198 
number, 198 
real, 198 

Untyped files, 291, 348 
variable, 380-381 

Untyped var parameters, 267 
IU option, 187 
UpCase function, 287, 510 
UPGRADE.DTA,106 
UPGRADE.EXE, 13 

comments, 109, 111 
options, 110 
using, 105-114 
warnings, 108, 111-112 

Uses statement, 34, 65, 70,270,290 
path to units, 544 

Usr,523 
USR:,l12 
UsrInPtr,523 
UsrOutPtr,523 
Utilities 

BINOB}, 575-577 
Build, 3 
GREP, 13,570-574 
MAKE, 3, 89-98, 549-569 
TINST, 12, 585-600 
TOUCH, 13,569-570 
TPMAP, 13,542 
TPUMOVER, 13, 72-73 
UPGRADE, 13, 105-113 

v 
Val procedure, 286, 510 

range-checking and, 510 
Value parameters, 267,350-351 
Value typecasts, 248 
Variable-length buffers, 120 
Variables, 26, 221-228 

absolute, 223 
CheckBreak, 301 
CheckEOF,301 
CheckSnow, 302 
declaration part, 201-202 
declarations, 221 

decrementing, 389 
DirectVideo, 302 
disposing of, 392, 406 
DosError, 296, 398, 403, 412, 414, 

483,485 
dynamic, 216, 226 
global, 222 
incrementing, 433 
initializing; 64,229 
local, 222 
Lst,292 
parameters, 267, 350 
pointer, 226 
record, 226 
reference, 223 
TextAttr, 303 
typecast, 226 
Wind Max, 303 
WindMin, 303 

Variant part (syntax), 214 
Var parameter checking, 98 
Var parameters, 267, 350 
Var-string checking option, 158,542 
$V compiler directive, 98, 158,542 
VER40, 93, 546 
Version 3.0, See Turbo Pascal 3.0 
VGAHi, 421, 435, 480 
VGALo, 421, 435, 480 
VGAMed, 421, 435, 480 
VGA modes, 421, 435, 480 
Video memory, 298 
Video modes, changing, 597 
Video operations 

AssignCrt, 378 
CirEoI,386 
CisScr,387 
DelLine, 390 
GoToXY,427 
High Video, 432 
InsLine,437 
LowVideo,444 
Norm Video, 450 
RestoreCrtMode, 473 
TextBackground, 504 
TextColor, 504 
WhereX,512 
WhereY,512 

Turbo Pascal Owner' s Handbook 



Window, 512 
Write (text), 513 
Write (typed), 516 
Writeln, 516 

Viewport parameter, 424 
Viewports, 308, 384 

w 
West constant, 325 
WhereX function, 304, 512 
WhereY function, 304,512 
While (syntax), 255 

loop, 53 
WindMax variable, 303 
WindMin variable, 303 
Window procedure, 298, 303, 512, 

523 
current coordinates, 303 

Windows, 298, 600 
active, 165 
compilation, 156 
Edit, 146, 156, 165 
graphics, See SetViewPort 
Output, 150 
zoom, 160 

With statements, 258 
Word alignment, 354 
Word data type, 40, 76 
WordStar, Turbo Pascal editor vs. 176 

Index 

Wrap procedure, 327 
Writeln statement, 49, 278, 516 

DirectVideo and, 302 
8087 and, 334 
field-width specifiers and, 50 

Write procedures, 275-282, 513-516 
Write statement 

AUX devices and, 365 
BIOS, 302 
DirectVideo and, 302 
DOS, 377-378 

Write to command, 28, 152 
Writing records, 381 

x 
XCor procedure, 327 
IX option, 189 
Xor operator, 241, 308 
XorPut, 316, 459 

y 
YCor procedure, 327 

z 
Zoom windows option, 160, 597 















~ ..• 

I 

urbo Pascal 4.0 now provides an amazing compilation spee 
27,000 lines per minute, * support for programs larger than 
a library of powerful standard units, separate compilation, 

and much more. 

The single-pass, native code compiler 
offers improved code generation, smart link
ing to remove unused code from your pro
grams, built-in project management, sepa
rate compilation using units, output screen 
saved in a window, MAP files for use with 
standard debuggers, a command-line ver
sion of the compiler and MAKE utility, and 
built -in support for 8087/80287/80387 
math corrocessors. 

All these advanced features, plus the 
integrated programming environment, on
line help, and Borland's famous pull-down 
menus, make Turbo Pascal 4.0 the high
speed, high-performance development 
tool every programmer hopes for. 

-an improved, full
screen editor for editing, compiling, and 
finding and correcting errors from inside 
the integrated development environment. 
Supports 25, 43, and 50 lines per 
screen, tabs, colors, and new command 
installation. 

:.1 I, .,'( ,,-the 
compiler instantly locates errors, auto
matically activates the editor, and shows 
you the location of the error in the source 
code. 

,Ii I'-Iets you pick a file from a list 
of the last eight files loaded into the edi
tor and opens it at the exact spot where 
you last edited the file. It even remembers 
your last search string and search options. 

a new and improved version of the full-

'Run on an BMHz IBM AT 

fledged spreadsheet included on y 
Turbo Pascal disk, absolutely free l 

get the complete, revised source c 
ready to compile and run. 

c Several powerful standard units 
(System Dos, Crt, and Graph) 

c Device-independent graphics supp 
CGA, MCGA, EGA, VGA, Hercules, 
6300, and IBM 3270 PC 

1:1 Extended data types, including Lon 
c Optional range- and stack-checkin( 

short-circuit Boolean expression 
evaluation 

[J Support for inline statements, inline 
macros, and powerful assembly Ian 
interface 

1:1 Faster software-only floating point; 
switch for 80x87 support including 
gte, Doub/e, Extended, and Camp If 
reals (with numeric coprocessor) 

c Automatic execution of initialization 
exit code for each unit 

1:1 Nested include files up to 8 levels ( 
including main module and units 

1:1 Operating system calls and interrupt 
1:1 Interrupt procedure support for ISR~ 
1:1 Variable and value typecasting 
1:1 Shell to DOS transfer 

1:1 A conversion program and compati
bility units help convert version 3.0 
programs to 4.0. 

Minimum system requirements: For the IBM PS/2'· and the IBM® and Compaq® families of personal computers 
100% compatibles Integrated environment 384K, command line 256K. one floppy drive 

All Borland products are trademarks or registered trademarks of Borland International. Inc. Other brand and product na 
are trademarks or registered trademarks of their respective holders Copyright ©1987 Borland International. Inc BOR 

(g~;;tm,~. ' " . {f&fJj]m 
(J]lJ[jj§j§fii!J1:f ;11f!i!1[jj 


