
Mwave
Device Driver Developer’s Guide

Version 1.0

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

ii

NOTICE:
The information contained in this document is subject to change without notice. The products described
in this document are NOT intended for use in implantation or other life support applications where
malfunction may result in injury or death to persons. The information contained in this document does
not effect or change IBM’s product specifications or warranties. Nothing in this document shall operate
as an express or implied license or indemnity under the intellectual property rights of IBM or third
parties. All the information contained in this document was obtained in specific environments, and is
presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS”
BASIS. In no event will IBM be liable for any damages arising directly or indirectly from
any use of the information contained in this document.

First Edition (July 1996)

This edition is prepared and maintained by IBM Microelectronics. For further information, see
IBM Microelectronics’ Homepage at http://www.chips.ibm.com.

© Copyright International Business Machines Corporation 1996. All rights reserved.

This document contains information that
is subject to change without notice.

iii

Table of Contents

Chapter 1 -- Introduction to the Mwave Device Driver Developer’s Guide1
Chapter 2 -- Mwave Client/Server Support ..3

Mwave Agent/Client/Server Relationships ..3
Server Registration Flows...4
Client Connect, Send, Disconnect Flows ..5
API Description ..6
API Calls for Mwave Client/Server Support ..7

Chapter 3 -- Mwave Notification Server ...15
Messages Supported by Notification Server ...16

NS_REQNOTIFICATION ...16
NS_EVENTNOTIFICATION ...19

Chapter 4 -- Mwave Contention Server..21
Contention Server Overview ..21

Contention Server Name ..21
Understanding Contention Management ..22

Understanding Relative Priority Values ...23
Typical Scenarios ...23

Development Environment for Contention Server Clients ..31
Diagnostics...31
Using the Diagnostics Tool (MWCONFGR.EXE) ..31
Test Application..32
Using the Test Application (MWTEST.EXE) ...33
Using the Test Application (MWTEST) with the Diagnostics Tool (MWCONFGR)34

Messages Supported by Contention Server ...35
Messages That Must Be Supported by A Client..41

Appendix A — ServerProc and ClientProc Protocol ...45
ServerProc ..45
ClientProc..48

Chapter 1

This document contains information that
is subject to change without notice.

1

Chapter 1 -- Introduction to the Mwave Device Driver
Developer’s Guide

The Mwave Client/Server architecture provides a flexible method of communication among
device drivers (clients) in the Mwave System. The Mwave Agent is the Operating System-
independent interface that device drivers use to access Client/Server capabilities. Chapter 2
provides an overview of the Client/Server architecture and describes the messages used
between clients, servers, and the Mwave Agent.

One implementation of the Mwave Client/Server architecture is the Mwave Notification Server.
The Notification Server, in conjunction with the Mwave Agent, allows client device drivers to
request notification of power management events and PCMCIA events such as card insertion
and removal. Chapter 3 describes the Notification Server and the messages sent and received
by the Server.

A recent implementation of the Mwave Client/Server architecture is the Mwave Contention
Server. Prior to the integration of the Contention Server in the Mwave System, device drivers
were not loaded until they were needed and were then unloaded as soon as the task had
completed. This driver behavior resulted in performance problems in the following scenarios:

• A first task is loaded in the system and a second task needs to load but is constrained by resource
limitations. There is no way for the first task to unload and free resources until the task has
completed. As a result, the second task fails to load.

• Every task has to unload as soon as it completes to avoid the previous scenario. Continuous
loading and unloading of tasks consumes host processor cycles and causes delays for needed
tasks.

The Contention Server provides the framework in which Mwave device drivers contending for
resources can cooperatively use Mwave resources. Each client device driver in the system has
an assigned priority establishing a hierarchy in which higher priority drivers can request lower
priority drivers to remove themselves from the system to free resources. This ensures that the
critical tasks can load. Because drivers can receive requests to remove themselves from the
system, this framework also allows lower priority device drivers to remain loaded until other
drivers request that they unload.

For applications developed by independent software vendors to run compatibly in the Mwave
System, application developers must use the Contention Server when developing device drivers.
Chapter 4 describes the Mwave Contention Server.

The API calls for the ServerProc and ClientProc are defined in Appendix A.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

2

Chapter 2

This document contains information that
is subject to change without notice.

3

Chapter 2 -- Mwave Client/Server Support

Mwave Agent/Client/Server Relationships

Proc C

Server C

Proc B

Server B

Proc A

Server A
Send

Notify

Send

Notify

Send

Notify

Proc 1

Client 1
Send

Notify

Proc 2

Client 2
Send

Notify

Proc 3

Client 3
Send

Notify

Proc 4

Client 4

0
1
2
3

CONNECTION
LIST

Send

Notify

Mwave Client/Server
Support

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

4

Server Registration Flows

audioprocaudio.drv audioprocaudio.drv control.drvcontrolproc

Server ClientMwave

mwOpenMwave

mwRegisterServer

hmserver

hmwave

mwNotifyClient

Notify

ServerId

lResult

Chapter 2

This document contains information that
is subject to change without notice.

5

Client Connect, Send, Disconnect Flows

audioprocaudio.drv audioprocaudio.drv control.drvcontrolproc

Server ClientMwave

hmwave

mwOpenMwave

mwSendToServer

wMessage

mwDisconnect From Server

Disconnect

Disconnect

mwConnectToServer

Connect

hmconv

Connect

ConversationId

ConversationId

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

6

API Description

This section describes the set of API calls for Mwave Client/Server support.

Mwave Agent Error Reporting

All API calls have identical error return protocol. Every API function returns some type that is
32 bits in length. If the Mwave Agent needs to return an error code, it is returned in the 32 bit
type. Error return values can be distinguished from normal return values by the range of the
value. Error return values, and conversely, no normal return values, fall within the range of
0xFF000000 to 0xFFFF0000. A macro in MWAGENT.H provides a simple test to determine if a
returned value is an Mwave Agent error code. The macro is mwAGErrChk(rc), where rc is the
value returned by the API function. The macro has a non-zero (TRUE) value if the returned
value is an error code.

Error code values are listed below.

Mwave Agent Error Codes

Error Name Error Value Description
MWAGERR_INVALIDPARMS invalid parameters
MWAGERR_NAMEINUSE Object Name already in use
MWAGERR_SERVERNOTREGISTERED unknown server
MWAGERR_INVALIDHANDLE invalid handle
MWAGERR_UNSUPPORTEDMESSAGE unsupported message to client

or server proc
MWAGERR_INVALIDPROC invalid procedure address
MWAGERR_SYSTEMERROR operating system error
MWAGERR_NOMORERESOURCES out of resources

Chapter 2

This document contains information that
is subject to change without notice.

7

API Calls for Mwave Client/Server Support

mwOpenMwave
HMWAVE mwOpenMwave (lpszUserName, lParam1, lParam2)
LPSTR lpszUserName
LPARAM lParam1
LPARAM lParam2

Opens an Mwave context. Allows a single call mwCloseMwave to clean up all
resources allocated in this context.

Parameters
lpszUserName

Allows a text string name to be attached to the user of Mwave resources.

lParam1
Reserved for future use. Must be zero.

lParam2
Reserved for future use. Must be zero.

Return Value
The return value is the Mwave context handle if successful. A NULL context handle
is returned if the function is unable to allocate storage for the Mwave context.
Function returns error code: MWAGERR_INVALIDPARMS if lParam1 or
lParam2 is not 0.

Note:

MWAGERCHK_INVALIDPARMS is necessary but not sufficient for this API. It
does not check for null.

mwCloseMwave
LRESULT mwCloseMwave (hmwave,reserved)
HMWAVE hmwave
LPARAM reserved

Close an Mwave context previously opened by mwOpenMwave. All resources
allocated are freed.

Parameters
hmwave

Mwave context handle.

reserved
must be 0

Return Value
The return value is 0 if successful. Function returns error code
MWAGERR_INVALIDHANDLE if the HMWAVE handle is invalid.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

8

mwRegisterServer
HMSERVER mwRegisterServer (hmwave, lpszServerName, serverprc, lParam. reserved)
HMWAVE hmwave
LPSTR lpszServerName
SRVPROC serverprc
LPARAM lParam
LPARAM reserved

Registers a server with the Mwave Agent. Client establishes conversations with the
server by issuing a mwConnectToServer specifying the name provided by the
lpszServerName argument. This function sends the SRV_REGISTER message to
the ServerProc (see Appendix A).

Parameters
hmwave

Mwave system handle that was returned by mwOpenMwave.

lpszServerName
The name clients use to connect to the server. This name must be unique.

serverprc
Specifies the address of the procedure that is called when messages are sent to the
server. (See Appendix A for the ServerProc function prototype on page 45.

lParam
User data that is passed as the lParam argument to ServerProc with the
SRV_REGISTER message. This may be used by the ServerProc to create
server instance specific data. The use of this parameter is entirely up to the
implementer of the server.

reserved
Must be 0

Return Value
The return value is the handle of the registered server if successful. The function
returns the error code MWAGERR_INVALIDHANDLE if the HMWAVE is
invalid, or MWAGERR_NAMEINUSE if the lpszServerName is in use, or
MWAGERR_INVALIDPARMS if reserved is non-zero.

Chapter 2

This document contains information that
is subject to change without notice.

9

mwUnregisterServer
LRESULT mwUnregisterServer (hmserver, reserved)
HMSERVER hmserver
LPARAM reserved

Unregisters the specified server. For each conversation of this server, Mwave Agent
first sends the SRV_DISCONNECT to the server followed by the
CLI_DISCONNECT message to client. Then the SRV_UNREGISTER message is
sent to the server.

Parameters
hmserver

The handle of the server.

reserved
Must be 0

Return Value
The return value is 0 if successful. Possible error return values are
MWAGERR_INVALIDPARMS if the reserved value is non-zero or
MWAGERR_INVALIDHANDLE if the HMSERVER handle is invalid.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

10

mwConnectToServer
HMCONV mwConnectToServer (hmwave, lpszServerName, lpszClientName, clientprc,

lInitialData)
HMWAVE hmwave
LPSTR lpszServerName
LPSTR lpszClientName,
CLTPROC clientproc
LPARAM lInitialData

Connects a client to the specified server. The server must have been previously
registered with a mwRegisterServer call. mwConnectToServer() sends a
CLI_CONNECT message to the specified ClientProc passing lInitialData, in
dwConversationId, as the initial instance data and the lpszServerName in wSize and
pBuffer. It also sends a SRV_CONNECT message to the ServerProc for the
specified Server passing the lpszClientName in wSize and pBuffer. The HMCONV
value is passed to both ClientProc and ServerProc in their respective lParam
parameters.

Parameters
hmwave

Mwave system handle that was returned by mwOpenMwave.

lpszServerName
Used to specify the server to be connected to this client. The string is also
passed to the ClientProc in wSize/pBuffer.

lpszClientName
Used to tell server name of connected client. Passed to the ServerProc in
wSize/pBuffer.

clientprc
Specifies the address of the procedure that is called when messages are sent to the
client. The ClientProc is called by the Mwave Agent during
mwConnectToServer and mwDisconnectFromServer calls and also may be
called by the connected server via mwNotifyClient calls. See the ClientProc
function prototype in Appendix A on page 45.

lInitialData
User data that is passed as the dwConversationId argument to ClientProc with
the CLI_CONNECT message. This is typically used as initial instance data by
the ClientProc. Note that the ClientProc's dwConversationId is replaced, on all
subsequent calls, with the value returned by the ClientProc after processing the
CLI_CONNECT message.

Return Value
The return value is the conversation handle, if successful. The function returns the
error code MWAGERR_INVALIDHANDLE if the HMWAVE is invalid, or
MWAGERR_SERVERNOTREGISTERED if the server has not registered with
the Mwave Agent.

Chapter 2

This document contains information that
is subject to change without notice.

11

mwDisconnectFromServer
LRESULT mwDisconnectFromServer (hconversation, reserved)
HMCONV hconversation
LPARAM reserved

Disconnects the client from server. This call sends the SRV_DISCONNECT to the
ServerProc followed by the CLI_DISCONNECT message to ClientProc.

Parameters
hconversation

Client/Server conversation handle returned from mwConnectToServer().

reserved
Must be 0

Return Value
The return value is 0 if successful. The function returns the error code
MWAGERR_INVALIDHANDLE if the hconversation is invalid, or
MWAGERR_INVALIDPARMS if reserved is non-zero.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

12

mwSendToServer

LRESULT mwSendToServer (hconversation, wMessage, lParam, wSize, pBuffer)
HMCONV hconversation
USHORT wMessage
LPARAM lParam
USHORT wSize
PVOID pBuffer

Sends the message specified by wMessage and optionally a value, lParam, and a
buffer length, wSize, and address, pBuffer, to the server.

Parameters
hconversation

The conversation handle returned by mwConnectToServer().

wMessage
This may be any message, greater than or equal to SRV_USERBASE, to which
the server responds.

lParam
The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass any 32 bit (or shorter) data value to the server. It
is not recommended that this be used as a pointer, however, since some addresses
may be invalid in the server context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to by pBuffer.

pBuffer
If wSize does not equal zero, pBuffer specifies a pointer to a buffer containing
wSize bytes. If wSize=0, this parameter is ignored.

The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass a block of data to the server. The size of the
block must be less than or equal to 65535 bytes. The data block should not
contain pointers, however, since some addresses may be invalid in the server
context on some operating systems.

Return Value
The return value is server/wMessage dependent. Refer to Server documentation for a
description of return values. Mwave Agent returns the error code
MWAGERR_INVALIDHANDLE if the hconversation is invalid, or
MWAGERR_UNSUPPORTEDMESSAGE if the server does not support the
wMessage value.

Comments
The values for lParam and pBuffer are entirely dependent on the
ServerProc/wMessage combination. Refer to individual server documentation for
descriptions of messages and their corresponding parameters. Note that wMessage
values below SRV_USERBASE are reserved by the Mwave Agent and their
corresponding parameters are described in Appendix A, ServerProc and ClientProc
Protocol, on page 45.

Chapter 2

This document contains information that
is subject to change without notice.

13

mwNotifyClient
LRESULT mwNotifyClient (hConversation, wMessage, lParam, wSize, pBuffer)
HCONV hconversation
USHORT wMessage
LPARAM lParam
USHORT wSize
PVOID pBuffer

Sends the message specified by wMessage and optionally a value, lParam, and a
buffer length, wSize, and address, pBuffer, to the Client.

Parameters
hconversation

The conversation handle passed to the server by way of the ServerProc in
lParam with the SRV_CONNECT message.

wMessage
This may be any message, greater than or equal to CLI_USERBASE, to which
the client responds.

lParam
The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass any 32 bit (or shorter) data value to the client.
You should not use this parameter as a pointer, however, since some addresses
may be invalid in the client context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to by pBuffer.

pBuffer
If wSize does not equal zero, pBuffer specifies a pointer to a buffer containing
wSize bytes. If wSize=0, this parameter is ignored.

The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass a block of data to the client. The size of the block
must be less than or equal to 65535 bytes. The data block should not contain
pointers, however, since some addresses may be invalid in the client context on
some operating systems.

Return Value
The return value is client/wMessage dependent. Refer to Client documentation for
description of return values. Mwave Agent returns the error code
MWAGERR_INVALIDHANDLE if the hconversation is invalid, or
MWAGERR_UNSUPPORTEDMESSAGE if the client does not support the
wMessage value.

Comments
The values for lParam and pBuffer are entirely dependent on the
ClientProc/wMessage combination. Refer to individual server documentation for
descriptions of messages and their corresponding parameters. Note that wMessage
values below CLI_USERBASE are reserved by the Mwave Agent and their
corresponding parameters are described in Appendix A, ServerProc and ClientProc
Protocol, on page 45.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

14

Clients must be prepared to handle any notifications that a connected-to server are
likely to generate. Refer to server documentation relating to notifications and what,
if any, events may cause a server to send notifications to the ClientProc.

Chapter 3

This document contains information that
is subject to change without notice.

15

Chapter 3 -- Mwave Notification Server
This chapter describes the messages and functions provided by the Mwave Notification Server.
This server, used in conjunction with the Mwave Agent, (see Mwave Agent/Client/Server
Relationships on page 3), provides Mwave Clients with notifications for events such as DSP
INIT, DSP FAIL, and Power Management Events.

This Server is implemented for Windows, OS/2, WIN-OS2, and DOS. The bulk of the Server is
OS independent and the Server could, therefore, be easily implemented for any operating
systems supported by the Mwave Agent.

Notification Server Name

The Mwave Notification Server registers itself with the name MWNOTIFY.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

16

Messages Supported by Notification Server
NS_REQNOTIFICATION

A client sends this message to request or update a previous request for notification
services. A client can request notification of any combination of the following
events:

Notification Events

EVENT TYPE EVENT DESCRIPTION

DSP INIT DSP Initiation Notify client when a DSP INIT has occurred.

DSP FAIL DSP Failure Notify client when one of the specific DSP failure
events occur.

PCMCIA Events PCMCIA card events Notify client when an Mwave PCMCIA card has been
added or removed from the system.

Power
Management

Power Suspend

Power Resume

Power Critical Resume

Notify client when a power management event has
occurred.

Note: If the client processes any of the events, the
client should process all of the power management
events.

Note: This event can only be generated on machines
and operating systems providing Power Management
capability.

If any of the requested events occur, mwNotifyClient() sends an
NS_EVENTNOTIFICATION message to the client. The lParam parameter sent to
the ClientProc contains bits indicating the cause of the event. The Event Filters
table lists the masks that may be used to determine the exact events. While it is
unlikely, it is possible for more than one event to be posted within a single
notification. The ClientProc should check for all events that it processes. See
ClientProc on page 48 for additional information.

The client may optionally specify a DSP handle with the request. If a DSP handle is
included with the request, the client is only notified of the relevant events for that
DSP. If no DSP handle is included, the client is notified of relevant events for any
DSP. The pBuffer parameters pass the DSP handle to the Notification Server. The
caller must set wSize to sizeof(HDSP) and the pBuffer parameter to the address of
a valid HDSP variable containing the DSP handle. If a DSP handle is not being
passed to the Notification Server then the caller merely sets wSize to 0. A client
may specify a maximum of one DSP handle. If multiple requests are issued by a
client, the last DSP handle value (including none) used. If a client wants to receive
events for more than one DSP, the client must request notifications of the events
composite for all DSPs and filter the notifications within its ClientProc().

Chapter 3

This document contains information that
is subject to change without notice.

17

Event Filters

NS_DSPINIT DSP is initialized. This may be due to a dspInit() call to the Mwave
Manager or the result of some internal exception processing of the
Manager. All DSP data is lost. A DSP FAIL event is usually
followed by a DSP INIT event.

NS_DSPFAIL The DSP has failed in some way. This mask is the Boolean sum of
the next set of individual failure filters. This event indicates that the
DSP stopped processing but the DSP data may still be valid. Check
individual failure events for likelihood of valid data.

NS_DSPMIPO The DSP stopped processing due to a task overrunning its allocated
cycle count. This indicates that the DSP was overloaded with too
much real-time processing. This error should only occur in a
development environment where Instruction Cycle Counter error
trapping is disabled for debug purposes. This is a critical error which
would cause unpredictable results if not detected and reported.

NS_DSPICC The insturction cycle counter is a 16 bit counter which decrements
each time a DSP instruction is executed. The insturction cycle counter
interrupt occurs whenever the insturction cycle determines whether
the current task has exceeded its allocated number of insturction
cycles by checking the upper 16 bits of the task’s instruction cycle
allocation. If the upper 16 bits is not zero, then it is decremented and
control is returned to the interrupted task. If the upper 16 bits is zero,
then the task has exceeded its allocated instruction cycles. The
Mwave Manager can identify the task which violated its cycle count
by reading SYSDSPTR. This is a critial error which indicates a
serious system error or a flaw in the task code.

NS_PCMCIA_CARDEVENT This mask is the Boolean sum of the twc PCMCIA Event Filters. It
can be used to set the value for the notification request and as a
general filter for PCMCIA events.

NS_PCMCIA_CARDUNPLUGGED The DSP is removed from the system and no longer available for use.
The Mwave Manager returns DSP_NOTAVAILABLE on all calls
related to this DSP after this event is processed by the Manager. The
Notification Server generates an NS_PWRSUSPEND event for this
DSP after the PCMCIA event is sent.

NS_PCMCIA_CARDREPLUGGED The DSP is reinserted into the system. This event is sent and the
Notification Server generates an NS_PWRCRITICALRESUME event
for this DSP.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

18

Event Filters (continued)

NS_PWRMGMT This mask is the Boolean sum of the three Power Management Event
Filters. It can be used to set the value for the notification request and
as a general filter for Power Management events.

NS_PWRSUSPEND This event is generated when the host system is suspending all activity
in order to save power. The client should stop its DSP processing and
save any pertinent state information. Clients are guaranteed that the
Manager's services are available at the time of this notification but
should assume that the DSP is halted and reset after return.

NS_PWRRESUME This event is generated when the host system resumes processing after
it had suspended operations. The client should reload all DSP tasks,
reconnect all GPCs and ITCBs, and restore its DSP state in
preparation for normal activity. Clients are guaranteed that the
Manager's services are available at the time of this notification and the
DSP has been initialized with MwaveOS.

NS_PWRCRITICALRESUME This event is generated when the host system resumes processing after
it has shutdown abnormally without having previously sent an
NS_PWRSUSPEND notification. Consequently, no state information
was saved during the last shutdown. The client should recover by
reloading all DSP tasks, reconnecting all GPCs and ITCBs, and
restoring its DSP state in preparation for normal activity. Clients are
guaranteed that the Manager's services are available at the time of this
notification and the DSP has been initialized with MwaveOS.

Parameters
dwServerId

Server Instance data returned from SRV_REGISTER processing.

dwConversationId
Conversation Instance data returned from SRV_CONNECT message

wMessage
NS_REQNOTIFICATION

lParam
Requested event filter using bits as defined in the above table. A zero value in a
bit position resets a previous request for the corresponding event.

wSize
Should be 0 if no DSP handle is passed to the Notification Server, and should be
set to sizeof(HDSP) if a DSP handle is passed.

pBuffer
Not valid if wSize = 0. pBuffer contains the address of a DSP handle if wSize =
sizeof(HDSP).

Return Value
0

Chapter 3

This document contains information that
is subject to change without notice.

19

 NS_EVENTNOTIFICATION

This message is sent by the Server to a client when an event occurs matching the
client's requested event notification filter. See NS_REQNOTIFICATION on page
16 for additional information.

Parameters
dwConversationId

Conversation Instance data returned from CLI_CONNECT message

wMessage
NS_EVENTNOTIFICATION

lParam
Event filter using bits as defined in the table, Event Filters, on page 17.

wSize
Will be 0 if no DSP handle is passed to the Notification Server. Sets to
sizeof(HDSP) if a DSP handle is passed.

pBuffer
Not valid if wSize = 0. pBuffer contains the address of a DSP handle if wSize =
sizeof(HDSP).

Return Value
Returns any bits for events that are NOT processed by the client. Normally, a client
would process the one (and only) event causing the notification and would,
consequently, return 0.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

20

Chapter 4

This document contains information that
is subject to change without notice.

21

Chapter 4 -- Mwave Contention Server

This chapter describes the messages used and functions provided by the Mwave Contention
Server and includes:

 • an overview of the Contention Server
 • an in-depth explanation of how the Server manages contention among clients
 • descriptions of the messages supported
 • information about the development and testing environment for client writers

Contention Server Overview

The Contention Server, used in conjunction with the Mwave Agent (See Chapter 2 —Mwave
Client/Server Support on page 3), provides its clients (drivers) with a mechanism to contend for
limited Mwave resources. Resources include:

 • data store
 • instruction store
 • MEIO connections to other hardware components
 • DMA channels
 • IPCs
 • MIPS

The Contention Server is implemented for Windows 3.1, Windows 95, OS/2, and WIN-OS2.
However, the bulk of the Server is OS-independent and could, therefore, be easily implemented
for any operating systems supported by the Mwave Agent.

Contention Server Name
The Mwave Contention Server registers itself with the name MWCONTEND.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

22

Understanding Contention Management

The Contention Server is implemented to provide clients (drivers) with a mechanism to contend
for limited system resources. This server does not enforce contention management activities
such as loading and unloading tasks; that function is the handled by the Mwave Manager.
Instead, when clients (drivers) register with the Contention Server, it keeps a list of the client
names, the priority at which they register, and their state (active or stopped). When a client
attempts to use Mwave resources and resource constraints prevent it from successfully loading,
the client notifies the Server. The Server then requests that all clients, whose priority is lower
than or equal to that of the client whose load failed, unload to free resources for the higher
priority client.

The Contention Server only operates as a notification mechanism and has no enforcement
capability. Therefore, the Contention Server uses a buddy system to maintain a reasonable
balance of concurrent function in the Mwave system. Each client is a buddy who agrees to
operate within the established policy constraints and to allow optimum concurrency in the
system.

The priorities of each client are established based on a projection of the customer's personal
preferences. Different markets call for different sets of priority relationships. For example, in
the small office/home office (SOHO) market and in general, telephony functions are higher
priority than audio functions. In the home market, however, the priorities might be a little more
balanced to give priority to games and audio functions.
Client developers should not consider their client the most important in the system. Instead,
they should consider that the customer can best be served by all the clients working
cooperatively with the Contention Server to provide the greatest concurrency and most seamless
service to the end user.

The Contention Server is accessible to clients when they register with the Mwave Agent. The
following diagram illustrates how clients communicate with the Contention Server via the Mwave
Agent.

Client 1

MWCONTENDClient 2

Client n

MWAGENT
 mwNotifyClient

serverproc

Clients
Mwave
Agent

Contention
Server

 mwSendToServer

ClientProc

Figure 4- 1. Mwave Client-Server Environment

As shown in Figure 4- 1. Mwave Client-Server Environment , the clients use the
mwSendToServer() call to communicate with the Contention Server via the Mwave Agent. The
Mwave Agent calls the Contention Server’s serverproc to pass the information contained in the
mwSendToServer(). Conversely, the Contention Server uses the mwNotifyClient() call to
send information to the Agent, which calls the client’s ClientProc to pass that information on to
the client.

Chapter 4

This document contains information that
is subject to change without notice.

23

For more information about how clients and servers communicate via the Mwave Agent, see
Mwave Client/Server Support on page 3.

Understanding Relative Priority Values
The Contention Server uses the priority of a client (relative to the priority of other clients in the
system) to determine which clients should load and in what order. The priority is always passed
in the lParam of the messages sent between the client and the Contention Server.

Priorities are defined in the MWAVE.INI file. However, client writers should NOT get priorities
directly from the MWAVE.INI or hardcode the priorities in the client code. Instead, client writers
should include the MWHELPER.DLL or MWHLPOS2.DLL, which includes the
mwHelpGetLOSPriorities() function. (See the description of the mwHelpGetLOSPriorities
function on page 44 for more information about the function.)

Because the priorities may change in different implementations of the Mwave product, client
writers should write clients to work at any priority level. Clients can register with the Contention
Server multiple times at different priorities to provide granular levels of service. For example,
the Mwave Synth driver registers its 32-voice driver at a low level of priority because it
consumes the greatest amount of resources. Mwave Synth also registers its 24, 16, and 8-voice
drivers at higher levels of priority. When an application requests the Synth driver by an MCI
call, the Mwave Synth can attempt to load its 32-voice driver at a median priority. If that
attempt fails, the Mwave Synth can keep trying until one of its higher priority drivers successfully
loads. As resources become available, the higher priority Synth drivers get an opportunity to
load and increase the level of service and the quality of sound.

Typical Scenarios
This section includes scenarios that illustrate how the Contention Server and clients
communicate in a dynamic system environment. These examples show the role of the Server
and how it manages contention among several clients.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

24

Scenario 1: Simple Transaction Without Contention

Figure 4- 2. Simple Transaction Without Contention , illustrates a simple transaction that occurs
when clients request resources, obtain them without contention, and later release the resources.
Figure 4- 2 also shows how the client uses the mwConnectToServer() call to register with the
Contention Server. All subsequent communications use the mwSendToServer() call to
communicate with the Contention Server. The messages (such as mwCfgServiceRequest) and
the priority are passed as parameters.

Note: For the sake of brevity, subsequent illustrations omit the mwConnectToServer() and
mwDisconnectFromServer() calls. Also, the mwSendToServer() call is assumed; only the
message and priority that are passed are shown in the format (messagename, priority).

mwConnectToServer

mwSendToServer(mwCfgServiceRequest,priority)

LoadModule
 OK

Function
Complete

mwSendToServer(mwCfgServiceRemoved,priority)

mwDisconnectFromServer

FreeModule

End Client

Client MWCONTEND

Figure 4- 2. Simple Transaction Without Contention

Chapter 4

This document contains information that
is subject to change without notice.

25

Scenario 2: Contention Between Two Clients

When two clients that must contend for resources attempt to connect, the scenario is more
involved. In the example shown in Figure 4- 3. Contention Between Two Clients, the high
priority client loads first. Then the low priority client attempts to load and is unable to do so; that
client sends a mwCfgServiceFailure message to the Server. The Server then checks the list
for any active clients whose priority is lower than that of the client who failed to load. Finding
none, the Server marks the low priority client as stopped, which indicates that the Server will
notify the client when resources are available. When the high priority client releases the
resources, the Server removes it from the list, checks the list for clients that are stopped, and
sends a mwCfgReinstateService message to the low priority client, who then loads
successfully. The low priority client then sends a return code (RC=1) to the Server to indicate
that it successfully loaded. The Server then marks the client as active.

Note: In Figure 4- 3, the mwSendToServer() calls are not shown. Only the message and
priority that are passed are shown in the format (messagename,priority).

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

26

(mwCfgServiceRequest, 500)

(mwCfgServiceRequest, 100)

(mwCfgServiceFailure, 100)

(mwCfgServiceRemoved, 500)

(mwCfgReinstateService, 100)

LoadModule OK

LoadModule FAILS

RC=0 (resources not freed)

RC=1 (function reinstated)

Client H Client L MWCONTEND

End Client

LoadModule OK

Function Complete

FreeModule

Figure 4- 3. Contention Between Two Clients

Chapter 4

This document contains information that
is subject to change without notice.

27

Scenario 3: Contention Among Three Clients

A more complicated scenario involves three clients contending for resources. As illustrated in
Figure 4- 4. Contention Among Three Clients, the high priority client loads first; the Server marks
it active in the list. The low priority client then loads successfully and is marked active in the list.
When the medium priority client attempts to load and fails, it sends a mwCfgServiceFailure
message to the Server. The Server checks the list and sends a mwCfgReleaseService
message to the low priority client. The low priority client unloads and sends
ReleaseServiceCanReinstate return code to indicate to the Server that the client released and
should be notified when resources are available. The Server returns a return code of 1 to the
medium priority client, who tries again, loads successfully and returns a
mwCfgServiceAvailable message. After marking the medium priority client active, the Server
sends a mwCfgReinstateService message to the low priority client, who does not load
successfully and returns a zero return code.

Note: In Figure 4- 4, the mwSendToServer() calls are not shown. Only the message and
priority that are passed are shown in the format (messagename, priority).

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

28

(mwCfgServiceRequest, 500)

(mwCfgServiceRequest, 100)

(mwCfgReleaseService, 100)

mwCfgReinstateService(100)

(mwCfgServiceRequest, 200)

mwCfgServiceAvailable(200)

(mwCfgServiceFailure, 200)

RC=1 (function can attempt to load)

RC=0 (function not reinstated)

LoadModule FAILS

LoadModule OK

LoadModule OK

LoadModule OK

FreeModule

LoadModule Fails

RC=ReleaseServiceCanReinstate

Client H Client M Client L MWCONTEND

Figure 4- 4. Contention Among Three Clients

Chapter 4

This document contains information that
is subject to change without notice.

29

Scenario 4: Client Removed Rather Than Reinstated

This scenario illustrates a complex example in which the Server’s request to release causes the
low priority client to terminate and exit the system rather than wait to be reinstated.

As shown in Figure 4- 5. Client Removed Rather Than Reinstated, the following events occur:

1. A medium priority client sends a mwCfgServiceRequest message to the Server and
successfully loads.

2. Next, a high priority client sends a mwCfgServiceRequest message to the Server, attempts
to load, and fails. This client sends a mwCfgServiceFailure message to the Server, which
starts a contention cycle.

3. The Server sends a mwCfgReleaseService message to the medium priority client, which
frees the module and sends a ReleaseServiceCanReinstate return code to indicate that the
Server should notify this client when resources are available.

4. To indicate that a lower priority task has been removed and resources freed, the Server
sends a return code of 1 to the a mwCfgServiceFailure message sent by the high priority
client.

5. The high priority client then attempts to load.
6. While the high priority client is loading, the low priority client sends a

mwCfgServiceRequest message to the Server and loads.
7. When the high priority service finishes loading, it sends a mwCfgServiceAvailable message

to the Server.
8. The Server then sends a mwCfgReinstateService message to the medium priority client,

which attempts to load, and fails.
9. The Server then requests the low priority task to unload.
10. When the low priority client unloads, it also terminates and sends a

ReleaseServiceTerminated return code to the Server to indicate that the client has left the
system and should be taken out of the list.

11. The Server then sends a mwCfgReinstateService message to the medium priority client,
which successfully loads and returns a mwCfgServiceAvailable message.

Note: In Figure 4- 5, the mwSendToServer() calls are not shown. Only the message and
priority that are passed are shown in the format (messagename, priority).

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

30

Figure 4- 5. Client Removed Rather Than Reinstated

Chapter 4

This document contains information that
is subject to change without notice.

31

Development Environment for Contention Server Clients

Diagnostics
A diagnostics program (MWCONFGR.EXE) is included to help client writers debug their client
implementations. When invoked, the diagnostic program uses the client name MWCONTEND
to register with Mwave Agent. The Contention Server recognizes MWCONTEND as a special
client. Using the MwNotifyClient() call, the Contention Server forwards a record of every action
it performs to the MWCONTEND client. Developers can use the log kept by MWCONFGR as
an audit trail when debugging their client implementations.

Client 1

MWCONTEND
Client 2

Client n

MWAGENT
SendToServer NotifyClient

ServerProcClientProc

MWCONFGR

Con
ne

ctT
oS

er
ve

r(m
wco

nte
nd

)

Figure 4- 6. MWCONFGR Registers With the Contention Server via MWAGENT

Using the Diagnostics Tool (MWCONFGR.EXE)
The diagnostics tool (MWCONFGR.EXE) enables you to view a list of the clients registered with
the Contention Server, the states of each of those clients, and the transactions. The Mwave
Contention Control main window is shown in Figure 4- 7.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

32

Figure 4- 7. Mwave Contention Control Main Window

As shown in Figure 4- 7, you can select the following menu bar items:

Print Writes the log to a printable text file.
Reset Clears the log.
Diagnose Displays current client assignments and resource allocations.

To add notes to the log, type text in the Notes entry field and click the Annotate button. To
close the diagnostics tool, click Close.

Test Application
A test application (MWTEST.EXE) is included to enable developers to simulate a dynamic
environment for testing purposes. Multiple instances of MWTEST can be invoked to simulate
multiple clients attempting to load at various priorities. All instances of MWTEST use one
client, MWCFGCLI.DLL. This client includes the ClientProc through which messages are
returned from the Contention Server.

MWCONTENDMWCFGCLI.DLL MWAGENT
SendToServer

ClientProc

MWTEST

MWTEST

MWTEST

Figure 4- 8. Test Environment Using MWTEST

Figure 4- 8. Test Environment Using MWTEST, shows a sample client that uses
MWCFGCLI.DLL to communicate with the Contention Server (MWCONTND) via the Mwave
Agent (MWAGENT). MWTEST.C, the source for the test application, is also included as sample

Chapter 4

This document contains information that
is subject to change without notice.

33

code for developer reference. This test application is written in C and compiled using Borland
C.

Using the Test Application (MWTEST.EXE)
The test application (MWTEST.EXE) enables you to simulate a client that registers with the
Contention Server and attempts to load in the system. The MWTEST main window is shown in
Figure 4- 9.

—— uu

© Copyright 1993-1996 IBM

Priority:
Virt DS:
Virt IS:

CPF:
DSP:

Release type: Reinstate
Last Mgr. RC:

Request

Remove

Close

Figure 4- 9. MWTEST Main Window

As shown in Figure 4- 9, you can set the following parameters on the MWTEST main window:

Priority Sets the priority of the test client.
Virt DS Sets the virtual DSP data store to be used by the test client.
Virt IS Sets the virtual DSP instruction store to be used by the client.
CPF Cycles per frame is used to compute client consumed MIPS.
Release Type Return code for mwCfgReleaseService (Reinstate, Ignore,

 Terminate).

Click the Request button to attempt to load the test client. Click Remove to unload the test
client. Click Close to close the test client.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

34

Using the Test Application (MWTEST) with the Diagnostics Tool (MWCONFGR)
The test application (MWTEST.EXE) used with the diagnostics tool (MWCONFGR.EXE) assists
you in understanding the transactions that occur between the clients and the Contention Server.
They are also used for testing purposes during client development. The log produced by
MWCONFGR is particularly helpful when doing problem determination.
To better understand how the clients and the Contention Server interact, perform the following
test scenario.

Note: This scenario assumes that you have an Mwave Reference Adapter installed in your
personal computer and that the corresponding system software and test applications are installed
and running under Windows 3.1, Windows 95, or Win-OS/2.

1. Open the diagnostics tool (MWCONFGR.EXE). Press Diagnose to view the list of clients
and the current resource allocations.

2. Open the first instance of MWTEST.EXE as MWTEST1. On the Run menu, type:
C:\fully_qualified_path\MWTEST.EXE MWTEST1 1000 20000 20000

3. On the Mwave Contention Control window, click Diagnose again to view the updated list of
clients and resource assignments. Notice that MWTEST1 is in the list.

4. Open a second instance of MWTEST.EXE as MWTEST2. On the Run menu, type:
 C:\fully_qualified_path\MWTEST.EXE MWTEST2 800 20000 20000

5. Open a third instance as MWTEST3. On the Run menu, type:
 C:\fully_qualified_path\MWTEST.EXE MWTEST3 500 20000 20000

6. On the MWTEST2 window, click Request to attempt to load the client. On the Mwave
Contention Control window, click Diagnose to view the updated list of allocations.
Whether or not MWTEST2 loads is dependend on what else is running in your Mwave
system. In many cases, MWTEST2 loads successfully and the following entry is written to
the log: Client(MWTEST2) Priority(800) State(0)

7. On the MWTEST3 window, click Request to attempt to load the client. On the Mwave
Contention Control window, click Diagnose to view the updated list of allocations. In most
cases, MWTEST3 is not able to load and the following entry is written to the log:
Client(MWTEST3) Priority(500) State(1)

8. On the MWTEST1 window, click Request to attempt to load the client. On the Mwave
Contention Control window, click Diagnose to view the updated list of allocations. In most
cases, MWTEST2 releases resources and goes to a stopped state. MWTEST1 loads
successfully, and MWTEST3, still unable to load, is in a stopped state.

 The log entries are:

 Client(MWTEST1) Priority(1000) State(0)
 Client(MWTEST2) Priority(800) State(1)
 Client(MWTEST3) Priority(500) State(1)

9. Continue to attempt to load and unload the three test clients and notice the Contention
Server actions that are documented in the diagnostics tool log.

Chapter 4

This document contains information that
is subject to change without notice.

35

Messages Supported by Contention Server
The Contention Server supports the following messages:

mwCfgServiceRequest
mwCfgServiceRemoved
mwCfgServiceAvailable
mwCfgServiceFailure
mwCfgServiceStopped

The client sends these messages to notify the Contention Server when the client requests
services, removes services, successfully loads services, and fails to load services. These
messages are sent through the mwSendToServer() call, which is supported by the Mwave
Agent. For more information, see Mwave Client/Server Support on page 3.

The following code sample illustrates how the MWTEST client implements these messages:

For more information about the MWTEST implementation, refer to the source files included with
this document.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

36

mwCfgServiceRequest

This message is sent to the Contention Server by a client to register a function at a
given priority. When the Contention Server receives the mwCfgServiceRequest
message, it adds the client’s name and priority to the list, and marks the client’s
status as active—unless it receives a mwCfgServiceFailure message.

mwSendToServer Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgServiceRequest

lParam
Requested priority obtained using the mwHelpGetLOSPriorities function on page
44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

Chapter 4

This document contains information that
is subject to change without notice.

37

mwCfgServiceRemoved

A client sends this message to the Contention Server when the client has removed a
function from the system.

mwSendToServer Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgServiceRemoved

lParam
Requested priority as obtained using the mwHelpGetLOSPriorities function on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

38

mwCfgServiceFailure

This message is sent to the Contention Server by a client when the client fails to
load.

mwSendToServer Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgServiceFailure

lParam
Requested priority as obtained using the mwHelpGetLOSPriorities function on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value

A non-zero return code indicates that a lower priority task has been removed; the
driver can attempt LoadModule() again. A return code of 0 indicates that the
driver should not attempt to load.

Chapter 4

This document contains information that
is subject to change without notice.

39

mwCfgServiceAvailable

This message is sent to the Contention Server by the client when the client loads
successfully after a contention cycle.

mwSendToServer Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgServiceAvailable

lParam
Requested priority as obtained using the mwHelpGetLOSPriorities function on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

40

mwCfgServiceStopped

This message is sent to the Contention Server by the client when a function still fails
to load after a contention cycle.

mwSendToServer Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgServiceStopped

lParam
Requested priority as obtained using the mwHelpGetLOSPriorities function on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

Chapter 4

This document contains information that
is subject to change without notice.

41

Messages That Must Be Supported by A Client

The following messages must be supported by a client:

mwCfgReleaseService
mwCfgReinstateService

These messages are sent by the Contention Server to request a client to release services or
notify a client to reinstate services. These messages are sent via the mwNotifyClient() call
supported by the Mwave Agent. For more information, see Mwave Client/Server Support on
page 3.

Additionally, client writers should use the mwHelpGetLOSPriorities function to obtain priorities for
their clients.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

42

mwCfgReleaseService

This message is sent by the Contention Server to a client during a contention cycle to
request that the client release resources. When the Contention Server sends a
mwCfgReleaseService message to a client at a given priority, the Contention Server
expects the client to release all resources less than or equal to that priority.

mwNotifyClient Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgReleaseService

lParam
Client's priority as passed in the mwCfgServiceRequest message.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
Return value of 0 (ReleaseServiceIgnored) indicates that the driver ignored the
mwCfgReleaseService message.

NOTE: Clients should not use the return value of 0 except in extreme
circumstances. Misuse of this return code seriously disrupts Mwave system
performance.

A return value of 1 (ReleaseServiceCanReinstate) indicates that the driver released
the resources and can be reinstated when resources become available.

A return value of 2 (ReleaseServiceTerminated) indicates that the driver released the
resources and removed itself from the system.

Chapter 4

This document contains information that
is subject to change without notice.

43

mwCfgReinstateService

Contention Server send this message to the client to allow the client to again attempt
to load.

mwNotifyClient Parameters
dwConversationId

Conversation Instance data returned from SRV_CONNECT message

wMessage
mwCfgReinstateService

lParam
Client's priority as passed in the mwCfgServiceRequest message.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
Return value of 0 indicates that the driver could not reinstate in the system. A
return value of 1 indicates that the driver was reinstated.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

44

mwHelpGetLOSPriorities

The client uses this function to obtain the correct priority for use when
communicating with the Contention Server. This function is provided in the
MWHELPER.DLL (Windows) or the MWHLPOS2.DLL (OS/2).

Parameters
ServiceName

Pointer to a string that contains the name of the client.

LoadPriority
Pointer to an integer that represents the priority the client uses when it loads into
the system.

RunPriority
Pointer to an integer that represents the priority the client uses when it runs in
the system.

Return Value
A return code of 0 is returned when the name of the client is not found.

A return code of 1 is used when the Contention Server sets the load priority.

A return code of 2 is used when the Contention Server sets the run and load priorities.

Appendix A

This document contains information that
is subject to change without notice.

45

Appendix A — ServerProc and ClientProc Protocol

ServerProc
LRESULT APIENTRY ServerProc (dwServerId, dwConversationId, wMessage, lParam, wSize,
pBuffer)
DWORD dwServerId
DWORD dwConversationId
USHORT wMessage
LPARAM lParam
USHORT wSize
PVOID pBuffer

Parameters
dwServerId

Server instance specific data. This is the value that was returned when the server
processed the SRV_REGISTER message. This value is NULL when
wMessage=SRV_REGISTER.

dwConversationId
Conversation specific data. This is the value that was returned when the server
processed the SRV_CONNECT message. This value is NULL when
wMessage=SRV_REGISTER, SRV_UNREGISTER, or SRV_CONNECT.

wMessage
Identifies the message that the server must process.

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

46

Message Description Return Value
SRV_REGISTER Sent to ServerProc when Server

makes an mwRegisterServer()
call. The ServerProc should
create any instance data it
needs to support this instance
of the server. The instance (or
reference to it) is returned and
is passed on subsequent calls
to ServerProc as dwServerId.

lParam—contains the lParam
passed in the
mwRegisterServer call. This
may be used by the ServerProc
in the creation of its server
instance data.

WSize/pBuffer— contains the
name of the Server being
registered (lpszServerName).

Server instance
data to be passed as
dwServerId on all
subsequent calls to
this server
instance.

SRV_UNREGISTER Sent to ServerProc when the
Server makes an
mwUnregisterServer() call or
as a result of a fatal error in the
Mwave Agent. ServerProc
deallocates any resources
allocated on the
SRV_REGISTER message.

0

SRV_CONNECT Sent when a client executes an
mwConnectToServer call. The
ServerProc should create any
instance data it needs to
support this client connection.
The instance (or its reference)
is returned and passed on
subsequent calls to ServerProc
as dwConversationId.

lParam—contains the
conversation handle HMCONV
created by the agent. This
handle is required by the server
to send, by way of
mwNotifyClient(), notifications
to the corresponding client.

wSize/pBuffer— contains the
unique Client name
lpszClientName.

Conversation
instance data is
passed as
dwConversationId
on all subsequent
calls to this
instance of the
client/server
conversation.

Appendix A

This document contains information that
is subject to change without notice.

47

SRV_DISCONNECT Sent when a client issues
mwDisconnectFromServer call
or when a fatal error causing
the connection to break occurs.
ServerProc should deallocate
any resources allocated while
processing the
SRV_CONNECT message.

0

lParam
The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass any 32 bit (or shorter) data value to the server.
This should not be used as a pointer, however, since some addresses may be
invalid in the server context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to by pBuffer.

pBuffer
If wSize not equal zero, specifies a pointer to a buffer containing wSize bytes. If
wSize=0 this parameter is ignored.

The meaning of this parameter is dependent on the wMessage value. This
parameter may be used to pass a block of data to the server. The size of the
block must be less than or equal to 65535 bytes. The data block should not
contain pointers, however, since some addresses may be invalid in the server
context on some operating systems.

Return Value
The return value is server/wMessage dependent. Refer to Server documentation for a
description of return values. mwDefServerProc() returns the error code
MWAGERR_UNSUPPORTEDMESSAGE if the server does not support the
wMessage value.

See wMessage table on page 45 for values returned on standard Mwave Agent
messages.

Comments
The values for lParam and pBuffer are dependent on the ServerProc/wMessage
combination. Refer to individual server documentation for descriptions of messages
and their corresponding parameters. Note that wMessage values below
SRV_USERBASE are reserved by the Mwave Agent.

Server Proc defined message values must start at SRV_USERBASE.

ServerProc is shown here for prototype purposes. The actual name of ServerProc
is at the discretion of the user. The ServerProc name is, in general, not exported.
The Mwave Agent uses the registered name (by way of mwRegisterServer()) to
associate a connection to a specific ServerProc.

Unsupported messages must be passed to

 LRESULT mwDefServerProc(dwServerId,
dwClientId,
wMessage,
lParam,

Mwave Device Driver Developer’s Guide

This document contains information that
is subject to change without notice.

48

wSize,
pBuffer);

ClientProc
LRESULT ClientProc (dwConversationId, wMessage, lParam, wSize, pBuffer)
DWORD dwConversationId
USHORT wMessage
LPARAM lParam
USHORT wSize
PVOID pBuffer

Parameters
dwConversationId

Conversation specific data. This is the value that was returned when the
ClientProc processed the CLI_CONNECT message. It is set to lParam from
mwConnectToServer call when wMessage=CLI_CONNECT.

wMessage
Identifies the message that the client must process.

Message Description Returned value
CLI_CONNECT Sent when the client is connected

with mwConnectToServer call.

The ClientProc creates any instance
data it needs to support this server
connection. The instance (or
reference to it) is returned and is
passed on subsequent calls to
ClientProc as dwConversationID.

dwConversationId —set to value of
lParam in the mwConnectToServer
call. This is used as a means of
passing initial conversation instance
data from the client to the
ClientProc.

lParam — contains HMCONV for
the established client/server
connection.

wSize/pBuffer—contains the unique
Server name lpszServerName.

Conversation
instance data
passed back in
dwConversationId
on all subsequent
calls on this
client/server
conversation.

CLI_DISCONNECT Sent when a client executes a
mwDisconnectFromServer call or
when a fatal error causing the
connection to break occurs.

0

lParam
The meaning of this parameter is dependent on the wMessage value and may be
used to pass any 32 bit (or shorter) data value to the client. This parameter
should not be used as a pointer, however, since some addresses may be invalid in
the client context on some operating systems.

Appendix A

This document contains information that
is subject to change without notice.

49

wSize
Specifies the length in bytes of the buffer pointed to by pBuffer.

pBuffer
If wSize not equal zero, specifies a pointer to a buffer containing wSize bytes. If
wSize=0 this parameter is ignored.

The meaning of this parameter is dependent on the wMessage value and may be
used to pass a block of data to the client. The size of the block must be less than
or equal to 65535 bytes. The data block should not contain pointers, however,
since some addresses may be invalid in the client context on some operating
systems.

Return Value
The return value is client/wMessage dependent. Refer to Client documentation for
description of return values. mwDefClientProc() returns the error code
MWAGERR_UNSUPPORTEDMESSAGE if the client does not support the
wMessage value.

Comments
The values for lParam and pBuffer are dependent on the ClientProc/wMessage
combination. Refer to individual server documentation for descriptions of messages
and their corresponding parameters. Note that wMessage values below
CLI_USERBASE are reserved by the Mwave Agent and their corresponding
parameters are described in the wMessage table above.

Clients must be prepared to handle any notifications that a connected-to server is
likely to generate. Refer to server documentation relating to notifications and what,
if any, events may cause a server to send notifications to the ClientProc.

Unsupported messages must be passed to

 LRESULT mwDefClientProc(dwConversationId,

wMessage,
lParam,

 wSize,
 pBuffer);

	TITLE PAGE
	Table of Contents
	Chapter 1 -- Introduction to the Mwave Device Driver Developer’s Guide
	Chapter 2 -- Mwave Client/Server Support
	Mwave Agent/Client/Server Relationships
	Server Registration Flows
	Client Connect, Send, Disconnect Flows
	API Description
	API Calls for Mwave Client/Server Support

	Chapter 3 -- Mwave Notification Server
	Messages Supported by Notification Server
	NS_REQNOTIFICATION
	NS_EVENTNOTIFICATION

	Chapter 4 -- Mwave Contention Server
	Contention Server Overview
	Understanding Contention Management
	Development Environment for Contention Server Clients
	Messages Supported by Contention Server
	Messages That Must Be Supported by A Client

	Appendix A — ServerProc and ClientProc Protocol
	ServerProc
	ClientProc

