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Abstract
We aim at improving the power efficiency of network

routers without compromising their performance. Using
server-based software routers as our prototyping vehicle,
we investigate the design of a router that consumes power
in proportion to the rate of incoming traffic. We start with
an empirical study of power consumption in current soft-
ware routers, decomposing the total power consumption
into its component causes. Informed by this analysis, we
develop software mechanisms that exploit the underlying
hardware’s power management features for more energy-
efficient packet processing. We incorporate these mech-
anisms into Click and demonstrate a router that matches
the peak performance of the original (unmodified) router
while consuming up to half the power at low loads, with
negligible impact on the packet forwarding latency.

1 Introduction
The network infrastructure is often viewed as an attrac-
tive target for energy-efficient design since routers are
provisioned for peak loads but operate at low average
utilization levels – e.g., studies report network utiliza-
tion levels of <5% in enterprises [28], 30-40% in large
ISPs [15], and a 5x variability in ADSL networks [25].
At the same time, network equipment is notoriously in-
efficient at low load – e.g., a survey of network de-
vices [20, 24] reveals that the power consumed when a
router is not forwarding any packets is between 80-90%
of its peak power consumed when processing packets at
full line rate. Thus although in theory networks offer sig-
nificant opportunity for energy efficiencies, these savings
are rarely realized in practice.

This inefficiency is increasingly problematic as traf-
fic volumes continue their rapid growth and has led to
growing attention in both research and industry [2, 9, 15,
16, 20, 24, 25, 28]. To date however, there have been no
published reports on attempts to actually build an energy-
efficient router. Motivated by this deficiency, and by
recent advances in software routers [8, 12, 14, 17, 23],
we thus tackle the question of how one might build an
energy-efficient router based on general-purpose server
hardware.

∗This work was performed when the authors were affiliated with
Intel Labs Berkeley.

The traditional challenge in building an energy effi-
cient system lies in the inherent tradeoff between energy
consumption and various performance metrics—in our
case, forwarding rate and latency. We cannot compro-
mise on peak forwarding rates since the incoming traf-
fic rate is dictated by factors external to a given router
(and since we do not want to modify routing protocols).
We can however explore options that tradeoff latency for
improved efficiency. The ability to do so requires: (1)
that the underlying hardware expose primitives for low-
power operation and (2) higher-level algorithms that in-
voke these primitives to best effect. Our work focuses on
developing these higher-layer algorithms.

General-purpose hardware typically offers system de-
signers three ‘knobs’ for low-power operation: (i) regu-
late the frequency at which individual CPU cores process
work, (ii) put an idle core into a ‘sleep’ state (iii) consol-
idate packet processing onto fewer cores (adjusting the
number of active cores).

As we shall see, not only do each of the above offer
very different performance-vs-power tradeoffs, they also
lend themselves to very different strategies in terms of
the power management algorithms we must develop.

The question of how to best combine the above hard-
ware options is, to our knowledge, still an area of active
research for most application contexts and is entirely un-
charted territory for networking applications. We thus
start by studying the energy savings enabled by different
hardware options, for different traffic workloads. Build-
ing on this understanding, we develop a unified power
management algorithm that invokes different options as
appropriate, dynamically adapting to load for optimal
savings. We implement this algorithm in a Click soft-
ware router [21] and demonstrate that its power con-
sumption scales in proportion to the input traffic rate
while introducing little latency overhead. For real-world
traffic traces, our prototype records a 50% reduction in
power consumption, with no additional packet drops, and
only a small (less than 10 µs) cost in packet forwarding
latency. To our knowledge, this is the first demonstration
of an energy-efficient software router.

Before proceeding, we elaborate on our choice of
general-purpose hardware as prototyping platform and
how this impacts the applicability of our work. To some
extent, our choice is borne of necessity: to our knowl-



edge, current network hardware does not offer low-
power modes of operation (or, at least, none exposed to
third-party developers); in contrast, server hardware does
incorporate such support, with standard software inter-
faces and support in all major operating systems. There-
fore, our work applies directly to software routers built
on commodity x86 hardware, an area of growing interest
in recent research [12,14,17,23] with commercial adop-
tion in the lower-end router market [8]. In addition net-
work appliances – load-balancers, WAN optimizers, fire-
walls, IDS, etc. – commonly rely on x86 hardware [1, 6]
and these form an increasingly important component of
the network infrastructure – e.g., a recent paper [31] re-
vealed that an enterprise network of ∼ 900 routers de-
ployed over 600 appliances! However, at the other end of
the market, high speed core routers usually employ very
different hardware options with extensive use of network
processors (NPs) or specialized ASICs rather than gen-
eral purpose CPUs. Hence, our results cannot be directly
translated to this class of network equipment, though we
expect that the methodology will be of relevance.

The remainder of the paper is organized as follows.
We start with an overview of related work (§2) and
a review of the power consuption of current software
routers (§3) and of the power management features mod-
ern server hardware offer (§4). We continue with the
study of the tradeoffs between different power manage-
ment options (§5). We present the design and implemen-
tation of our unified power management algorithm in §6
and the evaluation of our prototype in §7.

2 Related Work

We discuss relevant work in the context of both network-
ing and computer systems.

Energy efficiency in networks. Prior work on improv-
ing network energy efficiency has followed one of two
broad trajectories. The first takes a network-wide view of
the problem, proposing to modify routing protocols for
energy savings. The general theme is to re-route pack-
ets so as to consolidate traffic onto fewer paths. If such
re-routing can offload traffic from a router entirely, then
that router may be powered down entirely [18, 20].

The second line of work explores a different strategy:
to avoid changing routing protocols (an area fraught with
concerns over stability and robustness), these proposals
instead advocate changes to the internals of a router or
switch [11,16,28,30]. The authors assume hardware sup-
port for low-power modes in routers and develop algo-
rithms that invoke these low-power modes. They evalu-
ate their algorithms using simulation and abstract models
of router power consumption; to date, however, there has
been no empirical validation of these solutions.

Our focus on building a power-proportional software

router complements the above efforts. For the first line of
work, a power-proportional router would enable power
savings even when traffic cannot be entirely offloaded
from a router. To the second, we offer a platform for
empirical validation and our empirical results in §5 high-
light the pitfalls of theoretical models.

Energy-efficient systems. With the rise of data cen-
ters and their emphasis on energy-efficiency, support for
power management in servers has matured over the last
decade. Today’s servers offer a variety of hardware op-
tions for power-management along with the correspond-
ing software hooks and APIs. This has led to recent sys-
tems work exploring ways to achieve power proportion-
ality while processing a particular workload.

Many of these efforts focus on cluster-level solutions
that dynamically consolidate work on a small number of
servers and power-down the remaining [13, 33]. Such
techniques are not applicable to our context.

Closer to our focus is recent work looking at single-
server energy proportionality [19, 22, 26, 27, 34]. Some
focus on improved hardware capabilities for power man-
agement [19, 22]. The remaining [26, 27, 34] focus (like
us) on leveraging existing hardware support, but do so in
the context of very different application workloads.

Tsirogiannis et al. focus on database workloads and
evaluate the energy efficiency of current query optimiz-
ers [34]. The authors in [27] focus on non-interactive
jobs in data centers and advocate the use of system-wide
sleep during idle times, assuming idleness periods in the
order of tens of milliseconds. As such, their results are
not applicable to typical network equipment that, even
if lightly utilized, is never completely idle. More re-
cently, Meisner et al. [26] explored power management
trade-offs for online data-intensive services such as web
search, online ads, etc. This class of workloads (like
ours) face stringent latency requirements and large, quick
variations in load. The authors in [26] use benchmarks to
derive analytical models, based on which they offer rec-
ommendations for future energy-efficient architectures.

In contrast to the above, we focus on networking work-
loads and exploiting low-power options in current hard-
ware. The result of our exploration is a lightweight, on-
line, power saving algorithm that we validate in a real
system. We leave it to future work to generalize our find-
ings to application workloads beyond networking.

3 Deconstructing Power Usage
A necessary step before attempting the design of a
power-proportional router is to understand the contribu-
tion of each server component to the overall power us-
age.

Server architecture. For our study, we chose an off-
the-shelf server based on the Intel Xeon processor that



is commonly used in datacenter and enterprise environ-
ments. Our server has two CPU processors each of which
consists of six cores packaged onto a single die.

The two processors are Xeon 5680 “Westmere” with
a maximum clock frequency of 3.3 GHz. They are con-
nected to each other and to the I/O hub via dedicated
point-to-point links (called QuickPath Interconnect in
our case). The memory (6 chips of 1 GB) is directly con-
nected to each of the processors. We equipped the server
with two dual-port Intel 10Gbps Ethernet Network Inter-
face Cards (NICs). The I/O hub interfaces to the NICs
(via PCIe) and to additional chipsets on the motherboard
that control other peripherals. Other discrete components
include the power supply and the fans.

From a power perspective, we consider only the com-
ponents that consume a non-negligible amount of power:
CPUs, memory, NICs, fans, and the motherboard. We
use the term “motherboard” as a generic term to include
components like the I/O Hub and PCIe bridge. It also in-
cludes other system peripherals not directly used in our
tests: USB controller, SATA controller, video card, and
so forth. The power supply unit (PSU) delivers power to
all components using a single 12V DC line to the mother-
board, which is in turn responsible for distributing power
to all other subsystems (CPUs, fans, etc.).

We measure the current absorbed by the system by
reading the voltage across 0.05Ω shunt resistors placed
in series to the 12V line. This gives us the ability to mea-
sure power with good accuracy and sampling frequency
and bypassing the PSU.

Workload. Our server runs Linux 2.6.24 and Click [21]
with a 10G Ethernet device driver with support for multi-
ple receive and transmit queues. Using multiple queues,
a feature available in all modern high speed NICs, we
can make sure each packet is handled from reception to
transmission by only one core without contention. We
use Receive Side Scaling (RSS) [5] on the NIC to define
the number of queues and, hence, the number of cores
that will process traffic. RSS selects the receive queue
of a packet using the result of a hash computed on the
5-tuple of the packet header. This way traffic is evenly
spread across queues (and cores). In the rest of the pa-
per, when we refer to a number of cores n we also imply
that there are n independent receive queues.

In the following sections, we first focus on the perfor-
mance and power consumption of a single server operat-
ing as an IPv4 router with four 10G ports. Later, in §7,
we consider more advanced packet processing applica-
tions such as NetFlow, AES-128 encryption and redun-
dancy elimination [10]. For traffic generation we use two
additional servers that are set up to generate either syn-
thetic workloads with fixed size packets or trace-driven
workloads. The two machines are identical to our router
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Figure 1: Breakdown of power consumption across vari-
ous components when the system is idle and Click is not
running (left), with Click running and no traffic (middle),
and with Click forwarding 40 Gbps of traffic (right).

server and each sends packets on two 10Gbps interfaces.

Power characterization. Isolating the power consump-
tion of each component is useful to answer two differ-
ent questions: (1) where does the power go in a modern
server? (2) how does the power consumption vary with
load?

The answer to the first question will let us identify
which components are the largest consumers while the
answer to the second tells us how much can be saved by
making that component more energy-proportional.

We measure power in three sets of experiments: i) an
idle system without Click running; ii) a system running
Click with no input traffic; iii) a system running Click
and forwarding 40 Gbps over four interfaces.

Given that we have only one aggregate power mea-
surement for the entire server (plus one dedicated to the
NICs), we need to perform several measurements to iso-
late each component. The system has eight fans, two
CPUs and six memory chips. For each scenario we mea-
sure the power P with all components and then we phys-
ically remove one component (a memory chip, a CPU or
a fan) and then measure the power P ′. The difference
P − P ′ is then the power consumed by that component.

Figure 1 shows the results of our experiments with
IPv4 routing. At peak the system reaches 269 W – 2.3x
the idle power consumption of 115 W. With Click run-
ning and no traffic the power consumption is 262 W,
which is less than 3% lower than the peak power. Several
design considerations stem from the results in Figure 1:

The CPUs are clearly the dominant component when it
comes to power usage. Even when all cores are idle, they
consume almost half of the total idle power, or ≈ 25 W
each. That energy is mostly used to keep the “uncore”
online. At peak, the CPUs reach ≈ 92 W each, which
is about four times their idle power; this contributes to
more than doubling the total power compared to idle.

The other system components contribute little to the over-



Id
le

 P
ow

er

0

50

100

150

200

●

●
●

●
●

●

● ●

●

● ●

●

● ●

●●

●
●

●
●

●

●●

●

●●

●

●
●

●● ●●
●
● ●

●
●

●
●●

●
●●

●

● ●
●

● ●

●●

●
●

●●
●

●●
●

●●

●

●●

●● ●●
●●●

2008 2009 2010 2011

●● Single Processor
Dual Processor

Figure 2: Server idle power over time (data from [32])

all power consumption. The motherboard absorbes a
constant power (24 W). The memory and NICs exhibit a
significant dynamic range but the overall contribution is
quite limited (20 W for the six memory chips and 15 W
for the four 10 Gbps interfaces).

The system idle power is relatively high at 115 W. This
is an ongoing concern for system architects and the gen-
eral trend is towards a reduction in idle power. Figure 2
shows the idle power of a number of systems since 2007
as reported by SpecPower [32]. The plot shows a clear
downward trend in idle power, that is expected to con-
tinue thanks to the integration of more components into
the CPUs and more efficient NICs [9] and memory [7].

Overall, our analysis indicates that to achieve energy
efficiency we should focus on controlling the CPUs as
they draw the most power and exhibit the largest dynamic
range from idle to peak.

Addressing Software Inefficiencies. From Figure 1 we
saw that the software stack exhibits very poor power scal-
ing: the total power consumption is almost constant at
zero and full load. A pre-requisitive to exploiting power
management features of the server is to ensure that the
software stack itself is efficient – i.e., doesn’t engage in
needless work that prevents the creation of idle periods.

In this case, the poor power scaling is caused by Click
that disables interrupts and resort to polling the inter-
face to improve packet forwarding performance. An al-
ternative solution is deploy the same mechanisms that
can be found in Linux-based systems under the name of
Linux NAPI framework. In that framework, interrupts
still wake up the CPU and schedule the packet process-
ing thread. That thread then disables the interrupts and
switches to polling until the queue is drained or a full
batch of packets is processed. It is well understood that
this approach will lead to power savings as it gives the
CPU an opportunity to transition to a low power state
when interrupts are enabled. However, there is no study
that show the forwarding latency penalty of using inter-
rupts. To this end, we modified the 10G ethernet driver
and Click to operate under the Linux NAPI framework
and run power and latency measurements. We call this
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Figure 3: Power consumption of NAPI-Click vs Click in
polling mode.

new codebase NAPI-Click.
Figure 3 shows the power savings with NAPI-Click vs.

unmodified polling-mode Click for different packet rates.
We see that NAPI-Click reduces power consumption by
50% in idle mode and 22% when forwarding 40 Gbps
of 1024B packets. On the performance side, enabling
interrupts has no impact on the maximum packet rate the
router can forward – 29 Mpps with 64B packets.

Regarding latency, we measured a packet forwarding
latency across the server of about 7 µs with polling and
12 µs with NAPI-Click. At high load, the latencies of
the two methods tend to converge as NAPI-Click degen-
erates to polling at high load. In the interest of space, we
refer the reader to [29] for a more exhaustive description
of our setup and analysis of the latency results.

4 Server Support for Power Management

Modern servers provide a variety of power management
mechanisms that operate at all levels in the platform.
Here, we summarize the controls exposed to the OS.

Core idle states (C-states). Each core in a package can
be independently put into one of several low power or
“idle” states, which are numbered from C1 to Cn. The
state C0 refers to a core that is executing instructions and
consuming the highest amount of power. Higher num-
bered states indicate that a successively larger portion of
the core is disabled resulting in a lower power draw.

A core enters into a C state either by executing a HALT
or MONITOR/MWAIT instruction. C states are exited
(to return to the C0 state) when the desired event (inter-
rupt, or write access to the monitored memory range) oc-
curs. With a larger amount of circuitry turned off, higher
idle states incur a higher exit latency to revert back to the
fully operational C0 state. We measure exit latencies for
C states in §5.

As an example, the processors we use offer three C
states: C1, C3 and C6. A core in C1 is clock gated, in
C3 the L1 and L2 caches are flushed and turned off while
in C6 power distribution into the core is disabled and the
core state is saved in the L3 cache.



Processor performance states (P-states). While a pro-
cessor core is in active C0 state, its power consump-
tion is determined by the voltage and operating fre-
quency, which can be changed with Dynamic Voltage
and Frequency Scaling (DVFS). In DVFS, voltage and
frequency are scaled in tandem. Modern processors offer
a number of frequency and voltage combinations, each of
which is termed a P state. P0 is the highest performing
state while subsequent P states operate at progressively
lower frequencies and voltages. Transitions between P
states require a small time to stabilize the frequency and
can be applied while the processor is active. P states af-
fect the entire CPU and all cores always run at the same
frequency. The processor in our system offers 14 P states
with frequencies ranging from 1.6 GHz to 3.3 GHz.

5 Studying the Design Space
We now turn to exploring the design space of power-
saving algorithms. A system developer has three knobs
by which to control CPU power usage: i) the number
of cores allocated to process traffic; ii) the frequency at
which the cores run; and iii) the sleep state that cores
use when there is no traffic to process.

The challenge is how and when to use each of these
knobs to maximize energy savings. We first consider the
single core case and then extend our analysis to multiple
cores. Our exploration is based on a combination of em-
pirical analysis and simple theoretical models; the latter
serving to build intuition for why our empirical results
point us in a particular direction.

5.1 Single core case
With just one core to consider our design options boil
down to one question: is it more efficient to run the core
at a lower frequency for a longer period of time or run
the core at a (relatively) higher frequency for a shorter
period of time and then transition to a sleep state?

To understand which option is superior, we compare
two extreme options by which one might process W
packets in time T :

• the “hare”: the core runs at its maximum frequency,
fmax and then enters a low-power sleep state (C1
or below). This strategy is sometimes referred to as
“race-to-idle” as cores try to maximize their idle time.

• the “tortoise”: the core runs at the minimum fre-
quency, fx, required to process the input rate of W/T .
I.e., we pick a core frequency such that there is no idle
time. This is a form of “just-in-time” strategy.

To compare the two strategies we can write the total en-
ergy consumption of one core over the period T as:

E = Pa(f)Ta(W, f) + PsTs + PiTi, (1)

where T = Ta(W, f) + Ts + Ti. The first term
Pa(f)Ta(W, f) accounts for the energy used when ac-
tively processing packets. Pa(f) is the active power at
frequency f and Ta(W, f) is the time required to process
W packets at frequency f . The second term is the energy
required to transition in and out of a sleep state, while
the third is the energy consumption when idle.
With the tortoise strategy, the core runs at a frequency
f = fx such that T = Ta(W, fx) and no idle time;
hence:

Etortoise = Pa(fx)Ta(W, fx) (2)

With the hare strategy, f = fmax and hence:

Ehare = Pa(fmax)Ta(W, fmax) + PsTs + PiTi, (3)

To facilitate comparison, let’s assume (for now) that
Ts = 0 (instantaneous transitions to sleep states) and
Pi = 0 (an ideal system with zero idle power). Note that
these assumptions greatly favor any hare-like strategy.

With these assumption the comparison between the
tortoise and hare boils down to a comparison of their
Pa()Ta() terms in Equations 2 and 3. The literature on
component-level chip power models tell us that the active
power Pa(f) for a component using frequency/voltage
scaling grows faster than O(f) but slower than O(f3).1

The term Ta(W, f) instead scales as 1/f in the best
case. Hence, putting these together, we would ex-
pect that Pa(fmax)T (W, fmax) is always greater than
Pa(fx)T (W, fx), since fmax ≥ fx. Hence, despite our
very ‘hare friendly’ assumptions (Ts = Pi = 0), basic
chip power models would tell us that it is better to behave
like a tortoise than a hare.

Do experimental results agree with the above reason-
ing? To answer this, we use the same experimental setup
as in §3 with a workload of 64B packets and plot results
for our server using between 1 to 12 cores. We show re-
sults with more than just one core to ensure we aren’t
inadvertently missing a trend that arises with multiple
cores; in all cases however we only draw comparisons
across tests that use the same number of cores.

We first look at how Pa(f) scales with f in practice.
Fig. 4 plots the active power consumption, Pa(), as a
function of frequency. For each data point, we measure
power at the maximum input packet rate that cores can
sustain at that frequency; this ensures zero idle time and
hence that we are indeed measuring only Pa(). We see
that Pa() does not grow as fast as our model predicted –
e.g., halving the frequency leads to a drop of only about
5% in power usage with one core, up to a maximum of
25% with twelve cores. The reason is that, in practice,

1This is because power usage in a chip can be modeled as cV 2f
where c is a constant that reflects transistor capacitance, V is the volt-
age and f is the frequency. As frequency increases voltage must also
increase – larger currents are needed to switch transistors faster.
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Figure 4: Power vs. Frequency at maximum sustained
rate. The solid black line marks the system idle power.
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Figure 5: Packet rate vs. frequency at maximum sus-
tained rate for different number of cores.

many of the server’s components, both within the CPU
(e.g., caches and memory controllers) and external to the
CPU (e.g., memory and I/O subsystems) are not subject
to DVFS leading to lower savings than predicted.

Thus, active power consumption grows much more
slowly with frequency than expected. What about
Ta(W, f)? Since the processing time dictates the for-
warding rate a core can sustain, we look at the forwarded
packet rate corresponding to each of the data points from
Fig. 4 and show the results in Fig. 5. Once again, we
see that our model’s predictions fall short: doubling the
frequency does not double the sustainable packet rate.
For example, with one core, doubling the frequency from
1.6 GHz to 3.2 GHz leads to an increase of approx. 70%
in the forwarded packet rate (down to 45% with twelve
cores). Why is this? Our conjecture is that the perfect
1/f scaling of processing time applies only to a CPU-
intensive workload. Packet processing however is very
memory and I/O intensive and access times for memory
and I/O do not scale with frequency. Therefore, as we in-
crease the frequency we arrive at a point where the CPU
does its work faster and faster but it is then stalled waiting
for memory accesses, leading to a point where increasing
the frequency no longer improves productivity.

In summary, we find that, Pa() grows more slowly
than expected with frequency but at the same time Ta()
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Figure 6: Processed packets per Joule varying the fre-
quency and the number of cores.
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1.9 Mpps
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Figure 7: Power consumption of three frequencies for a
constant input rate. At the lowest frequency (black bar)
the system has no idle time.

decreases more slowly than expected. Where does this
leave the product Pa()Ta()? We cannot directly measure
this product (energy) and hence we look at efficiency in
terms of packets-forwarded per Joule, obtained by divid-
ing the maximum sustained forwarding rate (from Fig. 5)
by the power consumption (Fig. 4). The result is shown
in Fig. 6 for increasing frequency. As before, this cap-
tures system efficiency while actively processing work
(i.e., there’s no idle time). We see that, empirically, run-
ning at the maximum frequency is marginally more en-
ergy efficient in all configurations. That is, if our as-
sumptions of Ts = Pi = 0 were to hold, then the hare
would actually be marginally more power-efficient than
the tortoise – counter to theoretical guidelines.

Of course, our assumptions are not realistic. In partic-
ular, we saw earlier (Fig. 3) that Pi is quite high. Hence,
the consumption due to the Pi and Ps terms in Eqn. 3)
tilts the scales back in favor of the tortoise.

The final validation can be seen in Fig. 7 where we
plot the total power consumption for a fixed input packet
rate at different frequencies. These are the first set of re-
sults (in this section) where we include idle and transition
times. Based on our analysis from the following section,
we make an idle core enter the C1 sleep state. We con-
sider 1, 6 and 12 cores and, for each experiment, we fix
the input packet rate to be the maximum rate the system
can sustain at a frequency of 1.6 GHz; i.e., at 1.6 GHz,
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there is no idle time and this corresponds to the tortoise
strategy; the tests at 2.4 GHz and 3.3 GHz represent the
(fast and fastest) hare strategy. It is clear from the fig-
ure that the configuration with the lowest frequency is
always the most energy efficient.

Hence, in summary, the tortoise wins in keeping with
what the theoretical power model would suggest. How-
ever this is not because the work is more efficiently pro-
cessed at low frequency (as the power models would in-
dicate) but because being idle is not sufficiently efficient
(i.e., the terms PiTi and PsTs are quite significant).

5.2 Multiple cores
We now consider the case where we have N cores to
process W packets in time T . The results in the previ-
ous section show that it is more energy efficient to run
an individual core at a low frequency and minimize idle
time. Applying this to the multiple cores case would
mean dividing the work across multiple cores such that
each core runs at a frequency at which it is fully utilized
(i.e., no idle time). In doing so, however, we must decide
whether to divide the work across fewer cores running
at a (relatively) higher frequency or more cores at a low
frequency. Again, we first look to theoretical models to
understand potential trade-offs.

Let us assume that a single core at a frequency f can
process exactlyW/k packets in time T . Then, our design
choice is between:

• “strength in speed”: use k cores at a frequency f .
Each core processes W/k packets, sees no idle time,
and hence consumes energy kPa(f)T (W/k, f);

• “strength in numbers”: use nk cores at a fre-
quency f/n. Each core now processes W/nk pack-
ets, sees no idle time, and hence consumes energy
nkPa(f/n)T (W/kn, f/n).

As before, an idealized model gives T (W/k, f) =
T (W/kn, f/n) (since cores at f/n process 1/n-th the
number of packets at 1/n-th the speed) and hence our
comparison is between kPa(f) and nkPa(f/n). If the
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Figure 9: System power varying number of cores and op-
erating frequency. Each point corresponds to the maxi-
mum 64B packet rate that configuration can sustain.

active power Pa(f) grows faster than O(f) (as the the-
ory suggests) then the strength-in-numbers approach is
clearly more energy efficient. This points us towards run-
ning with the maximum number of cores, each running
at the minimum frequency required to sustain the load.

Looking for empirical validation, we consider again
the packets forwarded per Joule but now comparing two
sets of configurations: one with k cores running at fre-
quency f and one with nk cores at frequency f/n. Un-
fortunately, since our hardware offers a frequency range
between [1.6, 3.3] GHz, we can only derive data points
for n = 2 and k = [1, 6] – the corresponding results are
shown in Fig. 8. From the figure we see that the empiri-
cal results do indeed match the theoretical guidelines.

However, the limited range of frequencies available in
practice might raise the question of whether we can ex-
pect this guideline to hold in general. That is, what can
we expect from m1 cores at frequency f1 vs. m2 cores at
frequency f2 where m1 < m2 and f1 > f2? To answer
this, we run an exhaustive experiment measuring power
consumption for all possible combinations of number of
cores (m) and core frequency (f ). The results are shown
in Fig. 9 – for each 〈m, f〉 combination we measure the
power consumption (shown on the Y-axis) and maximum
forwarding rate (X-axis) that the m cores can sustain at a
frequency f . Thus in all test scenarios, the cores in ques-
tion are fully utilized (i.e., with no idle times). We see
that, for any given packet rate, it is always better to run
more cores at a lower frequency.

Applying this strategy under the practical constraints
of a real server system however raises one additional
problem. A naive interpretation of the strength-in-
numbers strategy would be to simply turn on all N avail-
able cores and then crank up/down the frequency based
on the input rate — i.e., without ever worrying about
how many cores to turn on. This would be reasonable
if we could tune frequencies at will, starting from close
to 0 GHz. However, as mentioned, the frequency range
available to us starts at 1.6 GHz and, so far, we’ve only



sleep state system power avg. exit latency
C1 133 W < 1 µs
C3 120 W 60 µs
C6 115 W 87 µs

Table 1: Power consumption and exit latency for differ-
ent sleep states. See [29] for details on the experimental
setup used to measure the above.
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Figure 10: Comparing the impact of different C states on
power consumption. All cores are running at 1.6 GHz.

considered the efficiency of m cores that run fully uti-
lized at any frequency. For example, if we consider the
12 core case in Fig. 9 we only see the power consump-
tion for data rates higher than approx. 19Mpps (the max
forwarding rate at 1.6 GHz). How would 12 cores fare at
lower packet rates?

Before answering this question, we must first decide
how to operate cores that are under-utilized even at their
lowest operating frequency. The only option for such
cores is to use sleep states and our question comes down
to which of the three sleep states – C1, C3 or C6 – is
best. This depends on the power-savings vs. exit-latency
associated with each C state. We empirically measured
the idle power consumption and average transition (a.k.a
‘exit’) latency for each C state – the results are shown
in Table 1. We see that C3 and C6 offer only modest
savings, compared to C1, but incur quite large transition
times. This suggests that C1 offers the ‘sweet spot’ in the
tradeoff.

To verify this, we measured the power consumption
under increasing input packet rates, using a fixed number
of cores running at a fixed frequency. We do three set of
experiments corresponding to whether an under-utilized
core enters C1, C3 or C6. Fig. 10 shows the results for 2,
4, and 12 cores and a frequency of 1.6 GHz. We see that
which C-state we use has very little impact on the total
power consumption of the system. This is because, even
at low packet rates, the packet-interarrival times are low
enough (e.g., 1 Mpps implies 1 packet every 1µs) that
cores have few opportunities to transition to C3 or C6.
In summary, given its low transition time, C1 is the best
choice for an under-utilized core.
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Figure 11: System power consumption varying the input
data rate. Cores transition to C1 when underutilized.

Now that we know what an under-utilized core should
do, we extend the results from Fig. 9 by lowering the in-
put data rates to consider the case of under-utilized cores.
For clarity, in Fig. 11 we plot only a subset of the data
points. We see that, for any packet rate, the appropriate
strategy is not to run with the maximum cores at the low-
est frequency but rather to run with the maximum cores
that can be kept fully utilized. For example, at 5 Mpps,
the configuration with 3 active cores saves in excess of
30 W compared to the 12 cores configuration.

In summary, our study reveals three key guidelines
that maximize power savings:

1. strength in numbers: the aggregate input work-
load should be equally split between the maximum
number of cores that can be kept fully utilized.

2. act like a tortoise: each core should run at the low-
est possible frequency required to keep up with its
input workload.

3. take quick-n-light naps: if a single core running
at its lowest possible frequency is under-utilized, it
should enter the lightest C1 sleep state.

Following the above guidelines leads to the lower en-
velope of the curves in Fig. 9 which represents the opti-
mal power-consumption at any given packet rate. In the
following section, we describe how we combine these
guidelines into a practical algorithm.

6 Implementation

Our empirical results tell us that a strategy that yields
the maximum power saving is one that tracks the lower
envelope of the curves in Figure 9. A simple implemen-
tation of that strategy could be to use a lookup table that,
for any input data rate, returns the optimal configuration.
However, such an approach has two limitations. First,
perfect knowledge of instantaneous data rate is required.
Second, any change in the hardware would require com-
prehensive benchmarking to recompute the entire table.
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Figure 12: Power usage as a function of packet rate for
our power saving algorithm and an optimal strategy.

An alternative is to devise an algorithm that tries to ap-
proximate the lower envelope of the curves with no ex-
plicit knowledge of those curves. An approach that maps
quite well to the guidelines is the following iterative al-
gorithm (that we will call “PowerSave”):

• Start with only one core active at the minimum fre-
quency. All other cores are in C6 deep power down
state (“inactive”).

• As the load increases wake up one more core and split
the traffic evenly among all active cores. If all cores
are active, increase the frequency of all cores to keep
up with the input data rate.

• If traffic load decreases, first lower the frequency of
all cores and then start turning off one core at a time
consolidating traffic onto the remaining active cores.

To understand how well this algorithm could approx-
imate the optimal power curve we emulate its behavior
by using the power measurement used to plot Figure 9.
In Figure 12, we show the power usage for an optimal
algorithm, that follows the lower envelope of Figure 9,
and for our PowerSave algorithm. The approximation
closely tracks the optimal algorithm. At very low rate
our algorithm chooses to turn two cores on much earlier
than the optimal solution would. Even so, the additional
power consumption is very small (below 5 W) given that
the two cores always run at the lowest frequency.

Turning this algorithm into an actual implementa-
tion requires two mechanisms: i) a way of determin-
ing whether the current configuration is the minimum
required to sustain the input rate, and ii), a way of di-
verting traffic across more cores or consolidating traffic
onto fewer cores. The remainder of this section describes
our implementation of the two mechanisms.

6.1 Online adaptation algorithm
The goal of the adaptation algorithm is to determine if the
current configuration is the minimum configuration that
can sustain the input traffic rate. The algorithm needs to
be able to quickly adapt to changes in the traffic load and
do so with as little overhead as possible.

A good indicator of whether the traffic load is too high
or low for the current configuration is the number of
packets in the NIC’s queues. Obtaining the queue length
from the NICs incurs very little overhead as that infor-
mation is kept in one of the NIC’s memory-mapped reg-
isters. If the queues are empty – and stay empty for a
while – we can assume that too many cores are assigned
to process the incoming packets. If the queues are filling
up instead, we can assume that more cores (or a higher
frequency) are needed to process the incoming packets.

This load estimation is run as part of the interrupt han-
dler to allow for a quick response to rate changes. Only
one core per interface needs to run this estimator to de-
cide when to wake up or put to sleep the other cores.
We set two queue thresholds (for hysteresis) and when
the number of packets is below (above) a threshold for a
given number of samples we turn off (turn on) one core
The pseudocode of the algorithm is the following:
for (;;) {

// get a batch of packets and queue length
qlen, batch = input(batch_len);

// now check current queue length
if (qlen > q_h) {

// the queue is above the high threshold.
c_l = 0; c_h++;
if (c_h > c_up) {

c_h = 0;
<add one core, if all are on, raise frequency>

}
} else if (qlen < q_l) {

// the queue is below the low threshold
c_l++; c_h = 0;
if (c_l > c_down) {

c_l = 0;
<decrease frequency, if at min remove one core>

}
} else { c_h = c_l = 0; }
// process a full batch of packets
process(batch);

if (qlen == 0) halt();
}

The parameters qh and ql are used to set the target
queue occupancy for each receive queue. Setting low
queue thresholds leads to smaller queueing delays at a
cost of higher power usage. The choice of the most
appropriate thresholds is best left to network operators:
they can trade average packet latency for power usage.
In our experiments we set qh = 32 and ql = 4 for a
target queueing delay of ≈ 10 µs – assuming a core can
forward at 3 Mpps.

The variables ch and cl keep track of how many times
the queue size is continuously above or below the two
thresholds. If the queue is above the qh threshold for
a sufficient time, the system is under heavy load and
we add one more core or increases the frequency. Con-
versely, if we are under the ql threshold for a sufficient
time, we decrease the frequency or turn off one core.
Note that every time we change the operating point, the
counter is reset to give the system sufficient time to re-
act to the change. After adjusting the operating level, we
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Figure 13: NIC queues and redirect table. Hashes are
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dress one of the 128 entries of the redirect table.

process a batch of packets, and either repeat the loop, or
halt (thus moving to state C1) if there are no more pack-
ets to be processed. In case of a halt, the next interrupt
will resume processing with no further delays other than
those related to interrupt generation and dispatching.

6.2 Assigning queues to cores dynamically
Our algorithm requires that the NIC be able to split the
incoming traffic evenly between a variable set of cores.
For this we use the Receive Side Scaling (RSS) [5] mech-
anism that implement the support for multiple input and
output queues in modern NICs.

For each incoming packet, the NIC computes a hash
function on the five-tuple (source and destination IP,
source and destination port, and protocol number) of the
packets. The 7 least significant bits of the hash are used
as an index into a redirect table. This table holds 128
entries that contain the number of the queue to be used
for packets with that hash, as shown in Figure 13. Each
queue has a dedicated interrupt and is assigned to one
core. The interrupt is raised on packet reception and
routed to the associated core.

The number of queues on a NIC can only be set at
startup. Any change in the number requires a reset of
the card. For this reason we statically assign queues to
cores as we start Click. To make sure inactive cores do
not receive traffic, we modify the redirect table by map-
ping entries to queues that have been assigned to active
cores.The entries are kept well balanced so that traffic is
spread evenly across active cores. The table is only 128
bytes long, so modifications are relatively fast and cheap.

If a core does not receive traffic on its queue it remains
in deep power down. When additional cores are needed
to process traffic, we reconfigure the redirect table to in-
clude the additional queue. The update to the redirect
table has almost immediate effect; this is important be-
cause it immediately reduces the load on the active cores.
As soon as the first packets arrives to the new queue, the
interrupt wakes up the corresponding core, which even-
tually (after the exit latency) starts processing the traffic.

Taking out a core is equally simple: we reprogram the
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Figure 14: Input traffic profile for different applications.

redirect table so that no new packets will reach the ex-
tra core. Also, we instruct the core to enter a C6 state
on halt() instead of C1. Eventually, the queue will
become empty, and the core will enter C6 from which it
does not exit until the queue is enabled again.

7 Evaluation
To evaluate the performance of our prototype router in
a realistic setting we generate traffic using two packet
traces: the “Abilene-I” trace collected on the Abilene net-
work [4] and a one day long trace from the “2009-M57
Patents” dataset [3] collected in a small-enterprise 1Gbps
network. The former contains only packet headers while
the latter includes packet payloads as well.

Our generator software is composed of many traffic
sources, each reading from a copy of the original traces.
By mixing multiple traffic sources we can generate high
bit rates as well as introduce burstiness and sudden spikes
in the traffic load. This helps in testing the responsive-
ness and stability of our power saving algorithm.

We are interested in evaluating the performance of our
system with a broad range of applications. To this end,
we run experiments with the following packet processing
applications: IPv4 routing, a Netflow-like monitoring ap-
plication that maintains per-flow state, an IPSEC imple-
mentation that encrypts every packet using AES-128 and
the Redundancy Elimination implementation from [10]
which removes duplicate content from the traffic. Note
that we use all applications as-is, without modifications
from their original Click-based implementations.

This set of applications is quite representative of typ-
ical networking applications. Routing is a state-less ap-
plication where each packet can be processed indepen-
dently of the other. Netflow is stateful and requires to
create and maintain a large amount of per-flow state.
IPSEC is very CPU intensive but stateless. Finally, Re-
dundancy Elimination is both stateful (keeps information
about previously observed packets) and CPU intensive
(to find duplicate content in packet payloads).

We generate similar input traffic profiles for all appli-
cations. Figure 14 shows the traffic load over time for
the different applications. We tune the traffic profiles so
that the average utilization of the router over the dura-
tion of the experiment is around 35%. This results in
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Figure 15: Power usage with (a) IPv4 routing, (b) Net-
Flow, (c) IPSEC, (d) Redundancy Elimination.

different bit rates for different applications as they differ
in per-packet processing cost (with Redundancy Elimi-
nation being the most demanding). The load is evenly
distributed across the four interfaces and the routing ta-
ble is uniform so that no output interface has to forward
more than the 10 Gbps it can handle.

We first focus on the power consumption of the various
applications and then measure the impact of PowerSave
on more traditional performance metrics such as latency,
drops and packet reordering.

Power consumption. Figure 15[a-d] shows the power
consumption over time for the four applications under
study. In the figures we compare the power consump-
tion of the default Click implementation, the NAPI-Click
and Click with PowerSave. As expected, unmodified
Click fares the worst with a power consumption hover-
ing around 270 W for all applications at all traffic rates.
The power usage with NAPI-Click and PowerSave in-
stead tracks, to varying degree, the input traffic rate.

PowerSave is consistently the most energy efficient
at all rates for all applications. The advantage of Pow-
erSave is more prominent when the load is fairly low
(10−20%) as that is when consolidating the work across
cores yields the maximum benefits. Over the duration
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Figure 16: Average, minimum and 99th percentile of
the packet forwarding latency when using Click with the
power save algorithm.

of the experiments, PowerSave yields an overall energy
saving between 12% and 25% compared to NAPI-Click
and 27-50% compared to unmodified Click.

Traditional performance metrics. We turn our at-
tention to other metrics beyond power consumption,
namely: packet loss, latency and reordering. Our algo-
rithm may introduce loss or high latency by turning on
cores too slowly in the face of varying traffic demands.
Reordering may be introduced when packets belonging
to the same flow are redirected to a different core.

Regarding packet losses, the PowerSave algorithm re-
acts quickly enough to avoid packet drops. Indeed, no
packet losses were observed in any of our experiments.

We also measured the latency of packets traversing the
router. Figure 16 plots the average, minimum and 99th
percentile over each 1s interval – we collect a latency
sample every 1ms. In the interest of space we only plot
results for one PowerSave experiment with IPv4 Rout-
ing. Other experiments show similar behavior [29].

The average latency hovers in the 15 − 20 µs range.
The same experiments with Click unmodified yield an
average latency of 11 µs. The 99th percentile of the la-
tency is up to 4 times the average latency – it peaks at
55 µs. Some of the peaks are unavoidable since waking
up a core on from C6 may introduce a latency of up to
85 µs. However, that is limited to the first packet that
reaches the queue handled by that core.

As a last performance metric we also measured packet
reordering. In our system, reordering can only occur
when traffic is diverted to a new queue. Hence, two back
to back packets, A and B, belonging to the same flow
may be split across two queues and incur very differ-
ent latency. Given that new queues are activated only
when the current ones start to fill up, it is possible to
have packet A at the back of one queue while packet B is
first in line to be served on the new queue. On the other
hand, packets in the newly activated queue will not be
processed until the core assigned to it exits a C6 state.
Given that in our setting the adaptation algorithm aims
for ≈ 10 µs of queueing delay, it is quite likely that
packet A will be served while the new core is still exit-
ing C6. We confirmed this conjecture in our experiments
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Figure 17: System power varying the burstiness of the
input traffic. The average traffic rate is constant at 2.5
Gbps per interface

where we have measured zero packets being reordered.

Impact of traffic burstiness. Our results so far were
based on input traffic whose fine-grained “burstiness”
derived from the natural variability associated with a
software-based traffic source and multiplexing traffic
from multiple such sources. To study the impact of fine-
grained burstiness in a more controlled manner, we mod-
ified the traffic sources to generate traffic following an
on/off pattern. During an “on” period the traffic source
generates a burst of back-to-back packets at the maxi-
mum rate. We control the burstiness by setting the length
of the “on” period (i.e., the number of back-to-back pack-
ets) while keeping the average packet rate constant.

Fig. 17 shows the power usage of our system as we
vary the burstiness of the sources (a value of 1 corre-
sponds to uniform traffic). The average traffic rate is
around 2.5 Gbps per interface. In the interest of space
we only plot the results for IPv4 Routing. Other applica-
tions exhibit a similar behavior [29]. As we can see the
power usage varies very little as we increase the bursti-
ness. This shows that the controller is stable enough to
make sure short-term burstiness does not impact its per-
formance. As expected, the power usage with unmodi-
fied Click is flat while NAPI-Click benefits from traffic
burstiness as interrupts are spaced out more with burstier
traffic. However, for all levels of burstiness, PowerSave
is clearly the most energy efficient. We measured also
latency and packet loss and saw similar results where
burstiness has little or no impact. We refer the reader
to [29] for a detailed analysis of the latency results.

8 Conclusion

We tackle the problem of improving the power efficiency
of network routers without compromising their perfor-
mance. We studied the power-vs-performance tradeoffs
in the context of commodity server hardware and de-
rived three guiding principles on how to combine differ-
ent power management options. Based on these guide-
lines we build a prototype Click-based software router
whose power consumption grows in proportion to the of-
fered load, using between 50% and 100% of the original

power, without compromising on peak performance.
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